
Limitations on the topological BF scheme in Riemann-Cartan spacetime with torsion

Eckehard W. Mielke*

Departamento de Fı́sica, Universidad Autónoma Metropolitana Iztapalapa, Apartado Postal 55-534, C.P. 09340, México, D.F., México
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Cartan’s structure equations in the Riemann-Cartan framework and some topological invariants of

gravity are reanalyzed from the perspective of BF theories. This is related to a variational approach to

Chern-Simons terms and Bianchi identities employing Lagrange multipliers. Here, it is pointed out that

the BF scheme has some limitations to the effect that a coupling to matter would leave the minimal

coupling prescription of gauge theories. In the case of gravity, the field equations would, generically,

become higher order with a coupling to the relocalized Belinfante-Rosenfeld energy-momentum current.
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I. INTRODUCTION

A rather new development in topological field theory is
the BF formalism, which provides potentially interesting
relations to higher-dimensional knots, cf. Refs. [1,2]. BF
theory is a framework where the connection one-form A ¼
Aidx

i and an auxiliary1 two-form B ¼ Bijdx
i ^ dxj=2 are

varied independently. In the Abelian case, the one-form A
can be interpreted as electromagnetic potential. In its pri-
mordial form, it starts from the metric-independent
Lagrangian four-form

LBF ¼ �B ^ F ¼ �B ^ dA: (1.1)

Independent variations with respect to A and B lead to
dB ¼ 0 and the constraint of vanishing field strength F :¼
dA ¼ 0. This topological model has no local degrees of
freedom.

This pure BF system can be modified [3] via a boundary
term such that the Lagrangian

~L BF ¼ �B ^ dAþ 1
2B ^ B ffi �B ^ dAþ 1

2dC (1.2)

becomes, ‘‘on shell,’’ quadratic2 in B. Now, independent
variations provide the definition of the field strength to-
gether with the corresponding Bianchi identity

B ffi dA :¼ F; dB ¼ dF � 0; (1.3)

respectively, in compliancy with the Poincaré lemma dd �
0. It still defines a topological theory since, ‘‘on shell,’’

Eq. (1.2) is equivalent to (1.1) amended by a boundary term
dC derived from a Chern-Simons three-form C. For an
Abelian connection, this is simply given by C ¼ A ^ F.
In general, it is well known [7] that Bianchi-type identities
can be recovered via the variation of the associate
Pontrjagin term dC ¼ F ^ F, e.g. �dC=�A ¼ 2dF � 0
in the Abelian case.
Bianchi identities do not allow for couplings to source

terms thus seriously limiting applications of such a topo-
logical scheme. In order to proceed to more realistic
physical models admitting matter couplings as in
Maxwell’s theory, the corresponding BF Lagrangian

Lmax ¼ �B ^ �dAþ 1
2B ^ �Bþ Lmatter (1.4)

necessarily involves the Hodge dual � depending on the
metric, cf. Ref. [8]. Then, independent variations of (1.4)
provide again the definition of the field strength B ¼
dA :¼ F but, as a bonus, the nontrivial physical field
equation d�B ¼ d�F ffi j.
However, it should not be overlooked that in a coupling

to matter such a BF scheme would leave the minimal
coupling prescription since it generates a current three-
form

j :¼ �Lmatter

�A
¼ @Lmatter

@A
þ d

@Lmatter

@dA

¼ � ^ @Lmatter

@D�
þD

@Lmatter

@B
;

(1.5)

which ‘‘on shell,’’ is conserved classically, i.e. dj ffi 0. In
general, this includes Pauli-type terms generated by the
variation of the Lagrangian with respect to dA, cf. (5.2.18)
of [9]. Because of Eq. (1.3), this additional term is equiva-
lent to the one generated by the variation with respect to B,
as indicated in (1.5).

*ekke@xanum.uam.mx
1In four dimensions, B resembles the two-form potential for

the gauge-invariant field strength or excitation H ¼ dB, the
Kalb-Ramond axion three-form.

2In three dimensions, non-Abelian BF systems with a cubic
term �B ^ Fþ B ^ B ^ B=3 are directly related to Chern-
Simons theories departing from the three-form C :¼ A ^ F�
A ^ A ^ A=3, cf. Refs. [4,5]. The resulting field equations F ¼
�B ^ B together with the Bianchi identity DB ¼ DF � 0 cor-
respond, in 3D gravity [6], to those with a cosmological term.
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II. GRAVITY IN RIEMANN-CARTAN SPACETIME

In the case of topological gravity, the structure equa-
tions3 for the curvature R�� in Riemann-Cartan (RC)

spacetime and its Bianchi identity can be recovered simi-
larly as in the BF scheme.

The Lagrangian corresponding to the second Bianchi
identity

DR�
� � 0 (2.1)

is the boundary term

dCRR ¼ � 1

2
R�

� ^ R�
�: (2.2)

As is well known, its integration yields a number propor-
tional to the topological invariant of Pontrjagin. Because of
the Poincaré lemma dd � 0, there do not arise higher-
order terms4 in this chain, cf. our scrupulous related
method [7] using Lagrange multipliers as well as
Ref. [12]. Such a topological theory can, similarly to
(1.2), be given the generalized BF structure

B�
� ^ R�

� � 1

2
B�

� ^ B�
� ¼ B�

� ^ R�
� þ dCRR:

(2.3)

However, for torsion the situation is more subtle: The

linear or Lorentz connection ��� ¼ ���� ¼ �fg
�� �

K�� ¼ �fg
�� þ e�cT� þ ðe�ce�cT�Þ ^ #� can be regarded

as a ‘‘deformation’’ [4] of the unique Levi-Civita connec-

tion �fg�� of Riemannian geometry via the contortion
K�� ¼ �K�� implicitly related to torsion via T� ¼
K�

� ^ #�. In order to account for the torsion content,

one can consider a change of variables in the gravitational
Lagrangian with optional matter couplings, i.e.

Lð#�;��
�;�;D�Þ! L̂ð#�;T�;�;D�Þ

þ��^ðB��D#�Þþ �T
2‘2

B�^B�;

(2.4)

thereby leaving, as in the Maxwell case, the minimal
coupling scheme. As is explained in more detail5 in
Section 5.6 of Ref. [9], when torsion is regarded as an
independent B-type two-form in the variational procedure,
the first Cartan structure equation

B� ¼ D#� :¼ d#� þ ��
� ^ #� ¼ T� (2.5)

needs to be enforced by a term involving the Lagrangian
multiplier two-form ��. Then torsion couples via �B� ^
½�� þ ð�T=‘2ÞB�� to the former Lagrange multiplier and,
finally, the variation of the translational gauge field, the
soldered coframe #� together with (2.5), induces a reloc-
alization of the canonical energy-momentum current
�� :¼ �L=�#� into

�� ¼ �� �D�� þ e�cðT� ^��Þ

ffi �� �D�� � ‘2

�T
e�cð�� ^��Þ; (2.6)

generalizing the familiar Belinfante-Rosenfeld symmetri-
zation of general relativity (GR). Since ��� ¼ #½� ^���
is the spin current, Eq. (2.6) reveals the physical interpre-
tation of �� as spin energy potential of matter. This
relocalization [13,14] can be traced back to the transla-
tional nature of energy momentum and torsion (‘‘transla-
tional’’ curvature) in the Lagrange-Noether machinery for
the affine group and, for �T � 0, a quadratic contact-type
interaction to the spin energy potential emerges ‘‘on shell.’’
Since torsion involves the exterior derivative of the

coframe #�, the above change of variables cannot be
regarded as a point-transformation in the canonical for-
malism, and therefore its complete elimination would, in
general, generate a change of the gravitational gauge
energy-momentum current E� according to

2D

�
e�cDH�� � 1

4
#�e

�ce�cDH��

�
� E� ¼ �� �D��;

(2.7)

where H�� :¼ �@L=@R�� are curvature excitations sub-

jected to the constraint T� ¼ 0. If the two higher derivative
Cotton-type terms in the left-hand side of (2.7),
cf. Eq. (5.8.25) of Ref. [9], are nonvanishing, the gravita-
tional field equation becomes third order in the Levi-Civita

connection �fg��, i.e. fourth order in the holonomic metric
with an induced coupling to the symmetric Belinfante-

Rosenfeld energy-momentum current �� �Dfg��,
cf. Ref. [14].

3Incidentally, the 3þ 1 decomposition of Cartan’s structure
equations and Bianchi identities in Ref. [10] are well known and
can also be performed in a rather general slicing of spacetime, cf.
Appendices B, C, and D of Ref. [11]. The tangential parts of both
Bianchi identities are ‘‘constraints,’’ which are preserved during
time evolution, as proven in Eqs. (D.5) and (D.6) of Ref. [11].
The so-called ‘‘reducibility’’ equations (10) of Ref. [10] are
contained in Eqs. (2.15) and (2.16) of Ref. [7] as tangential
pieces. There, also the reducibility of the de Rham chain for
curvature and torsion is explicitly derived, cf. the ‘‘Identities of
the identities’’ in Sec. II of Ref. [7].

4This can also be seen by applying the Ricci formula to the
first Bianchi identity (2.1), i.e. DDR�

� ¼ �R�
� ^ R�

� þ
R�

� ^ R�
� � 0.

5The nonmetricity Q�� :¼ �Dg�� is always put to zero here
following the constraint formalism of Sec. 5.8.1 of Ref. [9],
although a metric-affine framework would easily allow to lib-
erate this constraint.
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III. NIEH-YAN TOPOLOGICAL TERM

As an example of a partial BF structure in RC spacetime
with torsion, let us consider the so-called Nieh-Yan (NY)
term [15,16]

dCTT ¼ 1

2‘2
ðT� ^ T� þ R�� ^ #� ^ #�Þ; (3.1)

which violates parity [11,17]. It simply can be obtained by
multiplying the first Bianchi identity

DT� � R�
� ^ #� (3.2)

of RC spacetime with #� from the left. Vice versa, this
identity can be recovered via the variation of (3.1) with
respect to the coframe, as carefully demonstrated in
Ref. [7]. Since (3.2) constitute a purely geometric identity,
it does not admit couplings to extended matter. Even for
models with ‘‘distributional’’ matter, like cosmic strings
[12], nonvanishing distributional torsion and curvature
compensate each other for (3.2) to hold exactly [18]. The
four-form on the right-hand side of the NY identity (3.1)
even vanishes, as explicitly demonstrated in Eqs. (2.21) and
(2.22) of Ref. [19].

Again, in order to obtain more realistic models, one of
the field strengths in (3.1) needs to be converted via a
duality rotation into its Hodge dual. Then the NY term
suggest two options [20] for a viable gravitational
Lagrangian: Hilbert’s original choice

LHE ¼ � 1

2‘2
Rfg
�� ^ �ð#� ^ #�Þ ¼ � 1

2‘2
Rfg	; (3.3)

where Rfg
�� denotes the Riemannian curvature for vanish-

ing torsion and Rfg :¼ �ðRfg�� ^ 	��Þ the Riemannian

curvature scalar, as in GR. Formally, it can be put into
the BF scheme [12] when choosing B�� ¼ 	�� ¼ �ð#� ^
#�Þ albeit the no-avoidance of the Hodge dual6. The purely
torsion-square Lagrangian

Lk :¼ 1

2‘2
T� ^ ���ð1ÞT� þ 2ð2ÞT� þ 1

2
ð3ÞT�

�
(3.4)

where the torsion excitation Hk
� :¼ �@Lk=@T� ¼

ð1=‘2Þ	���K
�� is dual to the contortion one-form K��.

It leads to proper teleparallelism (GRk) when constrained

by vanishing RC curvature, i.e. R�� ¼ 0 via a Lagrangian

multiplier term 
�� ^ R��, as was suggested already by

Einstein.

Because of the geometric identity

Lk � LHE þ 1

2‘2
R�� ^ �ð#� ^ #�Þ þ 1

2‘2
dð#� ^ �T�Þ;

(3.5)

GRk with the teleparallel constraint R�� ¼ 0 is classically

equivalent to GR up to a boundary term dð#� ^ �T�Þ
constructed from the Hodge dual �T� of the torsion,
cf. Ref. [11].
Both pieces on the right-hand side of the dimensionless

boundary type four-form (3.2) have found tentative appli-
cations before: The pseudoscalar curvature R�� ^ #� ^
#� ¼ 	����R����	 has been used for generating a self-

dual or chiral reformulation of GRwith its Hilbert-Einstein
Lagrangian7 proportional to curvature scalar R�� ^
�ð#� ^ #�Þ. This was anticipated already by Plebanski
[22], Hojman et al. [23] and Dolan [24], but only later
‘‘rediscovered’’ by Holst [25] without references to earlier
work. On the other hand, the torsion-squared term T� ^ T�

in Eq. (3.1) has been employed to induce a chiral reformu-
lation of the teleparallelism equivalent of GR, cf. Ref. [11]
where the limiting case of vanishing RC curvature is con-
sistently enforced8 again via Lagrange multipliers.
In the supersymmetric extension of EC theory, the NY

boundary term (3.1) induces a chiral formulation [27] of
simple (N ¼ 1) supergravity, whereas the translational
Chern-Simons three-form CTT :¼ #� ^ T�=2‘

2 is instru-
mental for first order models of topological gravity [6] in
3D.
Interesting enough, the generalized BF scheme (1.2) can

also be employed to induce a ‘‘breaking’’ [28] of the
de Sitter gauge symmetry down to Einstein’s GR with
cosmological constant. This and its relation to BRST
quantization of gravity [29,30] needs to be seen.
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6In fact, there have been attempts, to restrict oneself to the Lie
dual ð?Þ only, as is the case of the Lie dual Rð?Þ

��
:¼ 1=2	����R

��

of the curvature featuring, e.g. in the Euler invariant. However, it
is not always realized, cf. for example Eq. (33) of Ref. [10], that
the Lie dual 	�� :¼ 1

2	����#
� ^ #� ¼ �ð#� ^ #�Þ of the

‘‘unit’’ two-form #� ^ #� is equivalent to its Hodge dual � as
a consequence of the soldering of the coframe #�, cf. Eq. (3.7.8)
of Ref. [9].

7The currently widespread usage of the label ‘‘Palatini action’’
or ‘‘method’’ has been questioned in Ref. [21] from the historical
point of view and, therefore, appears to be a misnomer.

8For instance, it is claimed that the pseudoscalar action S5 and
the torsion-squared action S6 of Ref. [10] ‘‘ . . .define the same
dynamical system.’’ However, according to (3.1) they differ by
the boundary term 2‘2dCTT, which invariantly characterizes
nontrivial topologies [26]. In fact, integration over the boundary
three-sphere at infinity yields the invariant nNY :¼R
R4[1 dCTT ¼ R

S31 CTT ¼ 6�2k; , where k is the winding or
instanton number of Pontrjagin. The Lagrangian S7 is of the
BF type (1.2), but merely leads to the truncated Bianchi identity
DT� ¼� dd#� � 0 of a teleparallel spacetime, where ��� ¼� 0
locally.
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