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We investigate recovery of the bulk S matrix from the AdS/CFT correspondence, at large radius. It was

recently argued that some of the elements of the S matrix might be read from CFT correlators, given a

particular singularity structure of the latter, but leaving the question of more general S matrix elements.

Since in AdS/CFT, data must be specified on the boundary, we find certain limitations on the correspond-

ing bulk wave packets and on their localization properties. In particular, those we have found that

approximately localize have low-energy tails, and corresponding power-law tails in position space. When

their scattering is compared to that of ‘‘sharper’’ wave packets typically used in scattering theory, one

finds apparently significant differences, suggesting a possible lack of resolution via these wave packets.

We also give arguments that construction of the sharper wave packets may require nonperturbative control

of the boundary theory, and particularly of the N2 matrix degrees of freedom. These observations thus

raise interesting questions about what principle would guarantee the appropriate control, and about how a

boundary CFT can accurately approximate the flat space S matrix.
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I. INTRODUCTION

The proposed [1] AdS/CFT correspondence has inspired
an enormous amount of investigation, particularly due to
its claim to provide an equivalence between a boundary
conformal field theory, and a nontrivial higher-dimensional
bulk string theory. As such, it has been deemed to hold the
prospect of serving as a nonperturbative definition of string
theory in anti–de Sitter (AdS) space. Such a definition
would in turn allow one to investigate all the mysteries
of gravitational physics in such a space, and, in particular,
questions such as how to give a unitary description of black
hole formation and evaporation, etc. Of course, the asymp-
totics of AdS are very different from Minkowski space, but
the radius R of AdS is a free parameter, and as such we
could imagine adjusting it to be large as compared to all
relevant physical scales, and thus imagine recovering, in a
good approximation, string theory in flat space. For that
reason, there is widespread belief that the correspondence
furnishes a complete description of physics in this limit.

However, in practice it has been much easier to read the
correspondence in the direction of bulk to boundary,
namely, to infer from some given bulk phenomenon, an
image phenomenon on the boundary. It is comparatively
more difficult to infer from the boundary theory the ex-
pected detailed structure of the bulk theory, which has been
widely anticipated to behave approximately like a local
field theory at distances large as compared to the string or
Planck scales, and small as compared to the AdS radius.

A particularly important target is the bulk S matrix. The
conformal field theory (CFT) correlators define an AdS
analog of the S matrix [2]. But, to realize the goal of using

the CFT as a nonperturbative definition of string theory,
and, in particular, to directly investigate various nontrivial
features of quantum gravity, one would like to derive from
the boundary theory a unitary bulk S matrix describing
scattering in the flat-space limit. Early investigations of
this question include [3–5].
Further progress was made on this matter in a recent

paper [6]. In particular, it was found that for CFTs with a
particular singularity structure in their correlators, there is
a prescription to extract features of a bulk S matrix, in the
plane-wave limit. One might be tempted to view this as
answering in the affirmative the question of whether the S
matrix can in principle be extracted. However, one should
recall that a careful definition of the S matrix provides its
matrix elements for a complete set of asymptotic states,
which behave like asymptotically noninteracting multipar-
ticle states in the Hilbert space of a free field theory.1 The
plane wave states are not states in a Hilbert space, although
one can ordinarily superpose them to provide states of the
Hilbert space. But, if we consider the case of R large as
compared to all relevant physical scales, but finite, we do
not exactly produce the plane wave states. Specifically, we
found in [6] that we could extract plane-wave S matrix
elements from the R ! 1 limit of wave packets termed
‘‘boundary-compact.’’ At finite R, we can define scattering
via the boundary theory for the space of states generated by
the boundary-compact states; more general states typically
produce pathologies such as divergent behavior near the
boundary of AdS [5].
This raises the question of whether scattering amplitudes

for boundary-compact wave packets contain all the infor-
mation of the bulk S matrix. In exploring this, we will
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exhibit some differences between scattering amplitudes of
boundary-compact wave packets and those of wave pack-
ets usually used in scattering theory. These suggest that
boundary-compact wave packets could lack a certain de-
gree of resolution of bulk physics. However, this does not
necessarily imply that boundary-compact wave packets
lack some of the scattering information, if one can repro-
duce healthier wave packets from sums of boundary-
compact wave packets. While we do not have a complete
answer whether this is possible, we investigate this ques-
tion, and find arguments suggesting that recovery of more
local wave packets such as those of rapid falloff (Schwartz
functions) or compact support may not automatically fol-
low, in the absence of further nonperturbative input from
the matrix degrees of freedom of the boundary theory. This
then raises the question of how such a boundary theory
might adequately reproduce a unitary bulk S matrix.

In outline, the next section will first sketch, as a review
and to set the stage, the usual treatment of the S matrix for
scattering of wave packets. We then introduce the
boundary-compact wave packets and explore some of their
properties in Sec. III; in particular, we will show that they
have long-range power-law tails in position space, which
are closely associated with the corresponding boundary
correlators. Section IV then considers scattering of these
wave packets, and shows that for certain of these wave
packets, the tails can make non-negligible contributions to
the scattering amplitudes, such that they do not closely
approximate those of wave packets more commonly used
in scattering theory. In Sec. V, we discuss the apparent
limitations of resolution that thus arise if one is only
allowed to probe the bulk theory via boundary-compact
wave packets. We also briefly investigate the question of
whether boundary-compact wave packets might be super-
posed to form wave packets of better resolving power.
Section VI contains further discussion and conclusions.

II. THE PROBLEM OF EXTRACTING THE S
MATRIX

A. Posing the problem

The question we will explore is the extent to which the
flat space Smatrix can be extracted, perhaps in an approxi-
mation as the AdS radius becomes large, from the bound-
ary theory in a proposed AdS/CFT dual. For the purposes
of asking this question, we would like to assume that we
have a means of computing all relevant quantities (corre-
lators) in the boundary theory. However, since in practice
such calculations are intractable, we can explore it via a
more modest approach. Namely, we suppose, as is com-
monly done, we begin with a local bulk theory, and then
use it to define the boundary theory. Then, we ask whether
from the corresponding correlators of the boundary theory,
calculated via the underlying bulk theory [7,8], one can
reproduce the flat space S matrix of the bulk theory.
Certainly if we begin with such a bulk theory and cannot

recover it in full, that suggests it would be even more
problematical to recover the full bulk dynamics from an
intrinsic definition of a boundary theory.
Since the bulk theory is gravitational, the best under-

stood observables are the elements of the S matrix.2 Here
we assume that the gravitational S matrix actually exists;
one finds improvement of the usual infrared problems in
dimensions D � 5. (For further discussion see [13,14].)
There are two essential ingredients in the usual defini-

tion of the S matrix. The first is the identification of the
Hilbert space of asymptotic states corresponding to ‘‘freely
propagating’’ particles. The second is the set of amplitudes
for scattering from any given initial asymptotic state, to
any given final asymptotic state. Given that for any finite
AdS radius R one is dealing with very different asymp-
totics from Minkowski space, it is important to take some
care with the corresponding definitions in AdS.
Specifically, in many modern treatments of the S matrix,
one immediately takes the plane-wave limit, corresponding
to working in infinite volume. However, such a cavalier
procedure seems potentially problematic in the AdS con-
text, since the geometry at large distance differs an arbi-
trarily large amount from that of flat space.
Instead, we will adhere to a more cautious approach to

the Smatrix, using bona-fide states of the Hilbert space, i.e.
normalizable wave packets, as is done in careful treatments
in flat space. Specifically, if one works with wave packets
corresponding to normalizable states, the flat-space S ma-
trix is a rule that constructs finite amplitudes for scattering
from a complete set of such incoming wave packet states to
a complete set of outgoing wave packet states.
We would like to know whether the boundary ampli-

tudes reproduce this quantity, at least to a very accurate
degree of approximation as R becomes large as compared
to relevant scales. Thus, this question has two parts. The
first part is whether, using quantities to which we have
access if we work within the boundary theory, we can
construct good approximations of the appropriate normal-
izable flat-space wave packets. The second part is whether
the boundary theory yields amplitudes for their scattering,
that well-approximate the amplitudes that follow from the
flat-space S matrix. Thus, in our view an important ques-
tion is whether the boundary theory yields a sufficiently
complete set of normalizable states for which we get an
accurate approximation to the flat-space S matrix.

B. Scattering in flat space

Before investigating approaches to the S matrix from
AdS space, let us recall some basic features of the flat
space story. In a perturbative expansion we typically write

2However, it has been proposed that one may define other
proto-local observables that approximate local observables [9–
12] in certain situations, as is needed to address questions of
cosmology, etc.
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the S matrix in the form

S ¼ 1þ iT : (2.1)

If we consider, for example, two-to-two particle scattering,
in D ¼ dþ 1 dimensions, the transition matrix T then
arises from the plane-wave matrix elements,

hp3; p4jT jp1; p2i ¼ ð2�ÞD�D

�X
i

pi

�
TðpiÞ: (2.2)

In the case of t-channel exchange of a massless particle
with coupling g, we have a leading Born contribution

TðpiÞ ¼ � g2

t
; (2.3)

in the case of gravity, in the high-energy limit, g2 �Gs2.
In a more careful approach where the Smatrix is defined

on the Hilbert space of states, we recall that Eqs. (2.1) and
(2.2) define a distribution on that space. The scattering
amplitudes arise from integrating the expressions (2.1) and
(2.2) against the corresponding wave functions. To be very
explicit, if we have four wave packets c ðpi0;�piÞ with
approximately definite momenta pi0, and with momentum
uncertainties �pi, then the scattering contribution to the
amplitude is of the form

A sðpi0;�piÞ ¼ i
Z Y

i

gdpi c ðpi0;�pi;piÞ

� ð2�ÞD�D

�X
i

pi

�
TðpiÞ; (2.4)

where

fdp ¼ ddp

ð2�Þd2!p

(2.5)

is the Lorentz-invariant volume element. The scattering
amplitude Asðpi;�piÞ of course depends nontrivially on
all of the pi0 and �pi; there is also a direct contribution
Ad to the full amplitude, that comes from the ‘‘1’’ in (2.1).

There are different choices of wave packets that are
found in the literature. One typically uses Schwartz func-
tions, which fall more rapidly than any power of the
distance from the center of the wave packet. A more
refined choice is to chose wave packets of compact support
(which are of course Schwartz), either in position space or
momentum space.3 The latter, wave functions of compact
support in momentum space, and not including zero fre-
quency, are used in e.g. [15] and are referred to as regular
wave packets.

Such regular wave packets, in particular, are useful for
taking the plane-wave limit, where the scattering ampli-
tudes (2.4) approach the form (2.2). To understand this
limit better in terms of wave packets, note that if in (2.4)

we consider regular wave packets with very narrow support
in momenta, �pi � pi0, then this amplitude will vanish ifP

ipi0 are more than an amount ��pi outside the
momentum-conserving range. If the pi0’s approximately
satisfy momentum conservation, then the scattered ampli-
tude becomes

A sðpi;�pi0Þ � iTðpi0Þ
Z gdp1

gdp2

pD�3
3

4E4

� d�3

ð2�ÞD�2
c 4c 3c 2c 1: (2.6)

where ~p4 ¼ ~p1 þ ~p2 � ~p3 and E3 ¼ E1 þ E2 � E4ð ~p4Þ,
and �3 represents the angles of ~p3 with respect to some
axis. Recall that this is not the full amplitude; there is also
the direct contribution Ad from the ‘‘one’’ in (2.1).
However, this does not contribute to the amplitude if we
take p30 and p40 to be more than �pi away from the
‘‘forward’’ direction,4 p30 ¼ p10, p40 ¼ p20.

C. Approaches from AdS space

In trying to extract the Smatrix from the boundary CFT,
one approach is to seek directly an expression that gives a
good approximation to the expressions (2.1), (2.2), and
(2.3). However, one finds [5] that there are important
contributions from interactions near the boundary of
AdS, which interfere with such a direct approach.
This indicates the need to construct wave packets more

carefully, as suggested in [3,4]. Indeed, since we want to
extract the flat-space S matrix at large R, we would like to
consider a situation where our wave packets interact only
in one AdS region, or more specifically, following [4], in a
small subregion of size L � R of that AdS region, which
we might refer to as the ‘‘lab.’’
A first approach to this fails, as emphasized in [5].

Sources at the boundary correspond to non-normalizable
bulk states. If one considers interactions of generic non-
normalizable bulk states, one finds that the integration over
one of the interaction vertices of the t-channel Feynman
diagram takes the following form:

Z
dVc NNc NNGB; (2.7)

where dV is the volume element in AdS, c NN denote the
non-normalizable states, and GB is the bulk propagator.
This integral generically has a divergence near the bound-
ary of AdS, far outside the lab region.
It seems clear that one wants to work with normalizable

wave functions; indeed, these are the wave functions that
will reduce to normalizable states in the flat-space limit.
There are two approaches to constructing normalizable

wave functions in AdS. The first is to specify normalizable

3The Fourier transform of a Schwartz function is Schwartz.

4In cases with identical particles, one must also exclude the
case with p30 $ p40.
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initial data at timelike infinity. One might hope to extract
the flat-space S matrix from scattering of such states.
However, one immediately notes a significant problem.
AdS behaves like a finite-size box of size R, with reflecting
walls. If one introduces two wave packets at t ¼ �1, they
will scatter an infinite number of times before they reach
t ¼ þ1. Thus, one apparently cannot isolate the contri-
bution of a single scattering event, where the particles
approach once from infinity, scatter, and subsequently
separate.

In order to construct wave packets that only scatter once,
one would thus like to send in states from the spacelike
boundary of AdS. This returns one to the problem of
introducing sources on the boundary, and consequent
non-normalizable behavior. However, one might attempt
to limit the damage, by taking the boundary source to be of
compact support. In this case, the corresponding bulk wave
function will be normalizable for AdS times outside the
range of times of the support. We will refer to such states,
which were recently introduced in [6], as boundary-
compact states.5 Using this type of state is the only obvious
solution to the problem of constructing bulk normalizable
wave packets that localize and scatter only once.

We next turn to a careful study of the construction of
such wave packets, and then to the question of their scat-
tering amplitudes.

III. BOUNDARY-COMPACT WAVE PACKETS AND
THEIR PROPERTIES

A. AdS preliminaries

We begin with some basic aspects of AdS. For more
details, and notation, see e.g. [5].

We work in global coordinates for AdSdþ1, ð�; �; êÞ,
where ê is a d-dimensional unit vector. The metric is

ds2 ¼ R2

cos2�
ð�d�2 þ d�2 þ sin2�d�2

d�1Þ; (3.1)

and the AdS boundary corresponds to � ¼ �=2.
We will also want to take the flat-space limit of this

metric; without loss of generality, we can work in the
vicinity of the point � ¼ � ¼ 0. The flat-space limit can
then be explicitly seen in the coordinates

t ¼ R�; r ¼ R�; (3.2)

where the metric takes the form

ds2 ¼ 1

cos2ðr=RÞ
�
�dt2 þ dr2 þ R2sin2

�
r

R

�
d�2

�
: (3.3)

This is manifestly flat in the R ! 1 limit.

B. Construction of boundary-compact wave packets

As outlined in the preceding section, in order to con-
struct wave packets that are normalizable and thus have a
good flat-space limit, we use boundary sources that are
compactly supported [6]. Recall some basic features of the
AdS/CFT correspondence. Let� be a bulk field of massm,
and O be its corresponding boundary operator. Then, a
boundary correlator including O is related to a bulk corre-
lator by taking the field to the boundary and rescaling

hOðbÞ � � �i ¼ 2�Rðd�1Þ=2 lim
�!�=2

ðcos�Þ�2hþh�ð�; �; êÞ � � �i;
(3.4)

where b ¼ ð�; êÞ denotes the boundary coordinate and6

4h� ¼ d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2R2

p
¼ d� 2�: (3.5)

We can project on a particular wave packet by integrat-
ing this expression against a boundary source fðbÞ. In the
Feynman diagrams used to compute the bulk correlator on
the right-hand side of (3.4), the Feynman propagator
GBðx0; xÞ ¼ ihT�ðx0Þ�ðxÞi thus gets replaced by

c fðxÞ ¼
Z

db0fðb0ÞGB@ðb0; xÞ (3.6)

where

GB@ðb0; xÞ ¼ 2�Rðd�1Þ=2 lim
�0!�=2

ðcos�0Þ�2hþGBðx0; xÞ (3.7)

is the bulk-boundary propagator.7 Thus, c f is the wave

packet resulting from the source f. Note that one can then
easily show that the wave packet has non-normalizable
behavior,

c fðxÞ !�!�=2 ðcos�Þ2h�
Rðd�1Þ=2 fðbÞ: (3.8)

Boundary-compact sources are those with compact fðbÞ.
We will build such wave packets by using a basic smooth
function LðxÞ of compact support, chosen so Lð0Þ ¼ 1, and
to vanish for jxj> 1. We also would like to approximate as
closely as possible incoming wave packets of definite
frequency. Thus, we take wave packets with additional
time dependence:

fðbÞ ¼ L

�
�� �0
��

�
L

�
�

��

�
e�i!Rð���0Þ; (3.9)

where cos� ¼ ê � ê0 and where �� and �� are character-
istic widths. Note from (3.2) that the frequency dependence
introduced corresponds to frequency ! with respect to the

5Compact sources have also been studied in related contexts in
[7,16].

6The quantity 2hþ is denoted � in [6] and elsewhere in the
AdS/CFT literature.

7Note that the normalization here is missing a factor Rðd�1Þ=2
relative to the conventions of, e.g., [5]. The current convention is
chosen to better exhibit the dimensionality of bulk vs boundary
objects.
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time t. These, together with (3.6) will define our basic
boundary-compact wave packets. These wave packets
were used in [6] to extract S matrix elements in the
plane-wave limit. Here we consider the more general prob-
lem of extracting a more complete specification of the S
matrix via such wave packets.

We next turn to an investigation of the properties of
these wave packets. A first question is how closely they
approximate the desired regular or Schwartz wave packets
of flat space. Also, when we investigate scattering, as we
will see another relevant question is the appearance of the
boundary ‘‘image’’ of these wave packets, namely, the
quantity

h0jOðbÞjc fi (3.10)

in the state created by the source fðbÞ; this quantity enters
into the calculation of the direct contribution to scattering,
analogous to Ad in our discussion of flat space. We will
find that these questions are related.

C. Wave packets and tails

We are interested in properties of the boundary-compact
wave packets, of the form (3.6), with sources as in (3.9),
particularly on distance scales short as compared to R.
Properties of the relevant Green functions are described
in the appendix, and, in particular, the bulk-boundary
propagator is given in (A7). For our purposes, it is conve-
nient to rewrite this expression in a Schwinger-like form:

GB@ðb0; xÞ ¼ ðcos�Þ2hþN̂
Rðd�1Þ=2

Z 1

0
d��2hþ�1

� expfi�½cosðj�� �0j � i	Þ � sin�ê � ê0	g;
(3.11)

where

N̂ ¼ 2�C

i2hþ�1�ð2hþÞ
(3.12)

is a normalization constant. This simplifies the problem of
inferring the behavior of the wave packet.

For exploring distances � R, we need wave packets
sufficiently focused in angle and time. Thus, as in [6], we
take �� and �� in (3.9) small. In particular, in bulk
coordinates, the longitudinal spread of the wave packet is
�t� ��R. Thus, for a finite bulk wave packet, �� should
vanish in the large R limit.

For such a narrowly peaked source fðb0Þ, we can expand
the exponent in (3.11) about the central value ð�0; ê0Þ,
which we take to be ð��=2;�ẑÞ where ẑ is the direction
of propagation. Thus, with �0 ¼ ~�� �=2 and � > �0, we
have

cosðj�� �0j � i	Þ � � sin�þ cos�ð~�þ i	Þ þOð~�2Þ:
(3.13)

In the wave packet (3.6) we then findZ
d~�Lð~�=��Þe�i!R~�ei�½cosðj���0j�i	Þ	

� ��e�i� sin� ~L½��ð!R� � cos�Þ	; (3.14)

where

~Lð
Þ ¼
Z

dxe�i
xLðxÞ (3.15)

is the one-dimensional Fourier transform of L. This gives
for the wave packet (3.6)

c fðxÞ � ðcos�Þ2hþ��
Rðd�1Þ=2 N̂

Z 1

0
d��2hþ�1e�i� sin�

� ~L½��ð!R� � cos�Þ	

�
Z

dd�1e0e�i� sin�ê�ê0L
�
�0

��

�
; (3.16)

where

cos�0 ¼ �ê0 � ẑ: (3.17)

Let us consider the behavior of this wave packet in a flat
region

jrj � R; jtj � R; (3.18)

here sin� � r=R and sin� � t=R. Define ~r ¼ rê and define
the new variable

k ¼ �=R: (3.19)

In the limit (3.18), the wave packet becomes

c fðxÞ � �tN̂R��1=2
Z 1

0
kd�1dkdd�1e0

�
�
k2hþ�d ~L½�tðk�!Þ	L

�
�0

��

��
e�ikê0� ~r�ikt:

(3.20)

This clearly exhibits the Fourier representation of the wave

packet, with momentum ~k ¼ �kê0.
From this expression, one can immediately see several

features of the bulk wave packets arising from the
boundary-compact sources. First, note that since L is com-
pact support, its Fourier transform ~L is not, and therefore
does not vanish at k ¼ 0. This means that the wave packets
are not regular. Moreover, they are not Schwartz. This
follows from the fact that the wave packet is not a smooth

function of ~k at k ¼ 0, even with 2hþ ¼ d. In fact, (3.20)
explicitly exhibits a long-wavelength tail, at k � !, with
size ~Lð!�tÞ. This tail is moreover R independent.
One can also see these properties directly in position

space. Let us decompose

ê 0 ¼ � cos�0ẑþ sin�0ê0? � �ẑþ �0ê0?; (3.21)

where ê0? ? ẑ, and where in the second equality we have
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used the fact that the source f restricts one to small �0.
Next, note that for small �0, the integration measure is
approximated

kd�1dd�1e0 � kd�1�0d�2d�0dd�2e0? � dd�1k? (3.22)

where k? is interpreted as the transverse momentum. This
angular integral then gives

Z
dd�1k?Lðk?=k��Þeik?�x? ¼ ðk��Þd�1 ~Ld�1ðk��x?Þ;

(3.23)

the d� 1-dimensional Fourier transform, written in terms
of the transverse coordinate x?. Thus, the wave packet is

c fðxÞ � �tð��Þd�1N̂R��1=2
Z 1

0
dkk2hþ�1

� ~L½�tðk�!Þ	 ~Ld�1ðk��x?Þeikðz�tÞ: (3.24)

For small x? and u ¼ t� z, the first ~L is the most sharply
peaked term, and we find falloff of the wave function with
characteristic behaviors

c f � c fð0Þ
~Ld�1ð!��x?Þ

~Ld�1ð0Þ
Lðu=�tÞe�i!u (3.25)

where

c fð0Þ ¼ 2�N̂ð��Þd�1R��1=2!2hþ�1 ~Ld�1ð0Þ (3.26)

is the value of the wave packet at the origin. (Notice that, if
we want a wave packet that is unit-norm in the bulk, we
should rescale the source, (3.9), and thus c fð0Þ, by a

coefficient / R1=2��.)
When x? > �t=��, u=��, the second ~L is most sharply

peaked. This yields a power-law tail,

c f � c fð0Þ!�t ~Lð!�tÞL̂
ð!��x?Þ2hþ

; (3.27)

where L̂ is a constant determined by the function L,
indicating that the function is indeed not Schwartz.
Likewise, the expression exhibits a tail at u 
 �t:

c f � c fð0Þ!�t ~Lð!�tÞ
ð!uÞ2hþ

�ð2hþÞ
2�i2hþ

: (3.28)

We can thus describe the characteristics of the wave
packets as follows. In the longitudinal direction they
have characteristic width ��t, but power-law falloff
(3.28), from the long-wavelength tail, outside that. In the
transverse direction, the wave packets fall off exponen-
tially in x? with width �x? � 1=ð!��Þ, but for x? >
�t=��, this becomes the power-law falloff (3.27). Note
that �x?!�Oð1Þ requires ���Oð1Þ.

D. Boundary description of wave packets

The presence of the tails (3.27) is in fact directly con-
nected to the boundary description of the wave packet. To
see this, note that in the latter description, the wave packet
should be visible through the boundary operator as in
(3.10). It is straightforward to derive this from (3.16), using
the prescription (3.4) for deriving the boundary correlators
from those of the bulk. By this means, one finds

h0jOðbÞjc fi � 2���N̂
Z 1

0
d��2hþ�1e�i� sin�

� ~L½��ð!R� � cos�Þ	
Z

� dd�1e0e�i�ê�ê0L
�
�0

��

�
: (3.29)

Now, the change of variables (3.22) gives [compare (3.24)]

h0jOðbÞjc fi � 2���ð��Þd�1N̂
Z 1

0
d��2hþ�1ei�ðcos��sin�Þ

� ~L½��ð!R� � cos�Þ	 ~Ld�1ð��� sin�Þ:
(3.30)

For cos�= sin� 
 ��=�� ¼ R��=�t, the first ~L is
most peaked in � and essentially enforces � cos� � !R.
But, for cos�= sin� � R��=�t, the second ~L is most
peaked, and enforces � � 0. This range of � corresponds
to the region of the boundary Sd�1 away from the source
point or its antipodal point. In this region the operator
behaves as

h0jOðbÞjc fi � 2���ð��Þd�1N̂ ~Lð!�tÞ
�

Z 1

0
d��2hþ�1ei�ðcos��sin�Þ

� ~Ld�1ð��� sin�Þ: (3.31)

This describes a ‘‘signal’’ of strength / ~Lð!�tÞ propagat-
ing along the trajectory cos� ¼ sin�. It has a characteristic
width ðcos�� sin�Þ & �� sin�. For much larger values of
cos�� sin�, its behavior can be found by rescaling � !
�=ðcos�� sin�Þ. This yields a power-law falloff,

h0jOðbÞjc fi � 4����ð��Þd�1N̂ L̂ ~Ld�1ð0Þ

� ~Lð!�tÞ
ðj cos�� sin�jÞ2hþ : (3.32)

This is very similar to (3.27)—the bulk tail is directly
related to this propagating boundary signal along the Sd�1.
Let us also work out the behavior of the boundary

operator near the antipode to the source, at � ¼ 0, ��
�=2, where the direct contribution to the S matrix, coming
from the 1 in (2.1), is important. We do this using the
boundary propagator, given in Appendix A, which follows
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from a second rescaling as in (3.7). With �̂ ¼ �� �, we have

cosðj�� �0j � i	Þ � �1þ ð�̂� �0 � i	Þ2
2

: (3.33)

Define cos �� ¼ �ê � ê0. Then the boundary propagator near the antipodal point becomes

G@ðb; b0Þ � iCð2�Þ222hþ
½�̂� �0 � 2 sinð ��=2Þ � i		2hþ½�̂� �0 þ 2 sinð ��=2Þ � i		2hþ : (3.34)

Again rewriting the propagator in a Schwinger-like form,
one finds

G@ðb; b0Þ � N̂222hþ

iC

Z 1

0
d�1d�2ð�1�2Þ2hþ�1

� e�i�1½�̂��0þ2 sinð ��=2Þ	�i�2½�̂��0�2 sinð ��=2Þ	:

(3.35)

Integrating the propagator (3.35) against the source (3.9),
we will need Z

d�0Lð�0=��Þe�ið!R��1��2Þ�0

¼ �� ~L½��ð!R� �1 � �2Þ	: (3.36)

We can also write �� in terms of �, �0, and�0, where cos� ¼
ê � ẑ, cos�0 ¼ �ê0 � ẑ, and where Sd�1 is described as an
Sd�2 fibration over the interval, with �0 the angle of ê0 on
the Sd�2 relative to ê. Expanding in �0, we find

2 sin
��

2
� 2 sin

�

2
� �0 cos

�

2
cos�0: (3.37)

This can then be used in the integral over angles to yieldZ
dd�1ê0Lð�0=��Þe�2ið�1��2Þ sinð ��=2Þ

� ð��Þd�1 ~Ld�1

�
��ð�1 � �2Þ cos�2

�
e�2ið�1��2Þ sinð�=2Þ

(3.38)

where ~Ld�1 is as in (3.23). Combining these factors yields

h0jOðbÞjc fi���ð��Þd�1N̂222hþ

iC

�
Z 1

0
d�1d�2ð�1�2Þ2hþ�1 ~L½��ð!R��1

��2Þ	e�i�̂ð�1þ�2Þ ~Ld�1

�
��ð�1��2Þcos�2

�

�e�2ið�1��2Þsinð�=2Þ: (3.39)

For �̂ & �� this integral is easiest to perform by changing
to the basis �� ¼ �1 � �2 where it is approximated by
two independent one-dimensional Fourier transforms, re-
sulting in an operator of size

h0jOðbÞjc fi � ð2�Þ2ð��Þd�1N̂2

22hþ�1iC

�ð!RÞ4hþ�2L

�
�̂

��

�
e�i!R�̂

Ld�1ð2 tan
�
2

�� Þ
�� cos�2

(3.40)

where Ld�1 is the one-dimensional inverse Fourier trans-
form of ~Ld�1. This result grows with R at the antipodal
point. It falls as a Schwartz function in the immediate
neighborhood of the antipode. In deriving (3.40), in addi-
tion to �̂ & ��, we have assumed 1 
 �� 
 ��.

IV. SCATTERING OF BOUNDARY-COMPACT
WAVE PACKETS

Now that we have found basic features of the wave
packets, we would like to see how closely boundary corre-
lators, integrated against corresponding sources, can ap-
proximate the flat-space S matrix. While one could set up
the problem of investigating scattering by deriving expres-
sions like (2.4), given two ‘‘in’’ and two ‘‘out’’ wave
packets, we find that a useful and more intuitively clear
way to proceed is to construct the in wave packets, scatter
them, and directly investigate properties of the resulting
states. Of course, it is then relatively simple to take such
data and define an amplitude of the form (2.4), by integrat-
ing against the out wave packets. A particularly useful
diagnostic for the states is to look at the two-point function

h0jOðb3ÞOðb4Þjc f1c f2i: (4.1)

which ‘‘register’’ properties of the bulk state, in the bound-
ary theory. This can then be convolved with corresponding
sources to find expressions of the form (2.4).
There are two contributions to (4.1), the first being the

direct contribution, where no scattering occurs, corre-
sponding to the 1 in the S matrix (2.1), and the second is
the scattered contribution. The direct contribution

h0jOðb3ÞOðb4Þjc f1c f2id ¼ h0jOðb3Þjc f1ih0jOðb4Þjc f2i
(4.2)

is straightforward to examine using and (3.32) and (3.40).
For example, outside of the near-forward region, we have
power-law falloff given by (3.32),
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h0jOðb3Þjc f1ih0jOðb4Þjc f2i

� ~Lð!�tÞ2½4����ð��Þd�1N̂ L̂ ~Ld�1ð0Þ	2
ðj cos�13 � sin�̂3jÞ2hþðj cos�24 � sin�̂4jÞ2hþ

: (4.3)

Comparing this to the direct contribution for regular wave
packets in flat space, we find a marked difference. At
angles away from the antipodal points to the sources, the
direct contribution for regular wave packets would fall as a
Schwartz function, while for boundary-compact wave
packets we have found a power-law falloff. One can like-
wise infer the behavior where one or both of the boundary
points approaches an antipodal point, using (3.40).

We now turn to the scattered contribution to (4.1),

h0jOðb3ÞOðb4Þjc f1c f2is
¼ ig2

Z
dDx1d

Dx2GB@ðb3; x1Þc f1ðx1ÞGBðx1; x2Þ
�GB@ðb4; x2Þc f2ðx2Þ (4.4)

where g is the cubic coupling constant.
If we take �1 ���=2 and �2 ���=2, then c f1ðx1Þ

and c f2ðx2Þ localize x1 and x2 in the approximately flat

region (3.18),8 much as was described in the plane-wave
limit in [6]. Furthermore, we may choose to work in the
center of mass frame by taking ê10 ¼ �ẑ and ê20 ¼ ẑ. We
write the bulk-boundary propagators as in (3.11), yielding

h0jOðb3ÞOðb4Þjc f1c f2is
� ig2N̂2

Rd�1

Z
d�1d�2d

Dx1d
Dx2ð�1�2Þ2hþ�1

� ei�1ð�1��̂3� ~x1�ê3Þei�2ð�2��̂4� ~x2�ê4Þ

�GBðx1; x2Þc f1ðx1Þc f2ðx2Þ: (4.5)

Using the form of c f found in (3.20) and approximating

the bulk propagator by the flat-space expression,

GBðx1; x2Þ �
Z dDp

ð2�ÞD
eip�ðx1�x2Þ

p2 � i	
; (4.6)

we find

h0jOðb3ÞOðb4Þjc f1c f2is
� ig2ð�tÞ2N̂4R4�

Z
dd ~k1d

d ~k2dk3dk4ðk1k2Þ2hþ�d

� ðk3k4Þ2hþ�1ð2�ÞD�Dðk1 þ k2 � k3 � k4Þ

� e�iRðk3�̂3þk4�̂4Þ

ðk1 � k3Þ2
~Lð�tðk1 �!ÞÞL

�
�1
��

�

� ~Lð�tðk2 �!ÞÞL
�
�2
��

�
; (4.7)

where we have identified

~k 3 ¼ �1

R
ê3 ~k4 ¼ �2

R
ê4 (4.8)

and defined cos�i ¼ êi � êi0.
We would like to understand how this differs from the

flat-space scattering amplitude for regular wave packets.
Before considering wave packets, let us first consider
hypothetically replacing the incoming states by definite
momentum states,

~Lð�tðki �!ÞÞL
�
�i
��

�
! ð��Þd�1 ~Ld�1ð0Þ

�t

� �ðki �!Þ�d�1ðêi � êi0Þ (4.9)

and recall that we have chosen to work in the center of
mass frame by placing our sources such that ê1;0 � ê2;0 ¼
�1. This gives

h0jOðb3ÞOðb4Þjc f1c f2is � iðg2!d�5ÞN̂4ð!RÞ4�

� ð2�ÞD�d�1ðê3 þ ê4Þ
2sin2 �13

2

� e�i!Rð�̂3þ�̂4Þ

� ½ð��Þd�1 ~Ld�1ð0Þ	2 (4.10)

which is the usual flat space scattering result for plane
waves, up to normalization factors due to the AdS
construction.
However, our incoming states can not have a definite

momentum. Specifically, while the boundary-compact
wave packets we have constructed are approximately lo-
calized to the flat region (3.18), they have low-energy tails
of order ~Lð!�tÞ, which can lead to significant effects. To
see these effects, consider wave packets at definite angles,
i.e. with �� ! 0, but with the following general energy
profile:

~Lð�tðki �!ÞÞL
�
�i
��

�
! fið�tðki �!ÞÞ�d�1ðêi � êi0Þ

� ð��Þd�1 ~Ld�1ð0Þ: (4.11)

Making this replacement, we have

h0jOðb3ÞOðb4Þjc f1c f2is
!� ig2ð�tÞ2N̂4R4�ð2�ÞD�d�2ðk4?Þ½ð��Þd�1 ~Ld�1ð0Þ	2

�
Z

dk3dk4e
�iRðk3�̂3þk4�̂4Þðk1k2k3k4Þ2hþ�3=2

� f1½�tðk1 �!Þ	f2½�tðk2 �!Þ	

� �ðk3 sin�3 � k4 sin�4Þ
2 sinð�3=2Þ sinð�4=2Þ ; (4.12)

where �3 is the angle between k3 and k1, �4 is the angle
between k4 and k2, k1 and k2 satisfy

8Related discussion can be found in Appendix B.
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k1 ¼ k3cos
2 �3
2
þ k4sin

2 �4
2
;

k2 ¼ k3sin
2 �3
2
þ k4cos

2 �4
2
;

(4.13)

and where k4? is the component of k4 perpendicular to the
scattering plane defined by the other three momenta.

In the case of regular wave packets, where fið�tðki �
!ÞÞ are compactly supported on the momentum interval
½!� 1

�t ; !þ 1
�t	 and !�t > 1, while there are nonzero

contributions away from �3 ¼ �4, the largest deviation is

j�3 � �4jmax ’ sin�3 þ sin�4
!�t

: (4.14)

For j�3 � �4j> j�3 � �4jmax, the scattered contribution
for regular wave packets vanishes identically.

However, we are unable to construct regular wave pack-
ets from boundary-compact sources, and instead have fi ¼
~L½�tðki �!Þ	. Thus
h0jOðb3ÞOðb4Þjc f1c f2is

!� ig2N̂4ð�tÞ2½ð��Þd�1 ~Ld�1ð0Þ	2ðcos�3��4
2 Þ4hþ�3R4�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin�3 sin�4

p
sin�32 sin�42

� ð2�ÞD�d�2ðk4?Þ
Z

d

8hþ�6 ~L½�tð
�1 �!Þ	

� ~L½�tð
�2 �!Þ	e�iR
ð�̂3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin�4= sin�3

p
þ�̂4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin�3= sin�4

p
Þ;

(4.15)

where

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
sin�4
sin�3

s
cos2

�3
2
þ

ffiffiffiffiffiffiffiffiffiffiffi
sin�3
sin�4

s
sin2

�4
2
;

�2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
sin�4
sin�3

s
sin2

�3
2
þ

ffiffiffiffiffiffiffiffiffiffiffi
sin�3
sin�4

s
cos2

�4
2
:

(4.16)

First consider �3 � �4, �i � 1, so for �̂3;4 � �� both ~L
are equally peaked, fixing 
 � !. Then the dominant
contribution comes from the center of both wave packets,
as in the case of regular wave packets. Specifically, for
�3 ¼ �4 this gives the expression

h0jOðb3ÞOðb4Þjc f1c f2is
� ig2N̂4½ð��Þd�1 ~Ld�1ð0Þ	2

ð�tÞ8hþ�7

R4�ð2�ÞD�d�2ðk4?Þ
2 sin�3sin

2 �3
2

� e�i!Rð�̂3þ�̂4ÞL̂2 (4.17)

where L̂2 is a number determined by a Fourier transform of
~L2.
But, there are also significant scattered contributions for

�3 � �4. For example, if �3 � �4, then �1 
 �2, and so
the first ~L is more sharply peaked, fixing 
 � !=�1, and so

h0jOðb3ÞOðb4Þjc f1c f2is

!� ig2N̂4ð�tÞ½ð��Þd�1 ~Ld�1ð0Þ	2 �LR4�ðcos�3��4
2 Þ4hþ�3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin�3 sin�4

p
sin�32 sin�42

� ~Lð!�tÞ!
8hþ�6

�8hþ�5
1

ð2�ÞD�d�2ðk4?Þ

� e�iðR!=�1Þð�̂3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin�4= sin�3

p
þ�̂4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin�3= sin�4

p
Þ; (4.18)

where �L is a numerical coefficient arising from another
Fourier transform of ~L. We find a similar result for �3 

�4, with the roles of �1 and �2 reversed. This has support of
order ~Lð!�tÞ for j�3 � �4j of order 1 and falls as a power

of cos�3��4
2 for j�3 � �4j ! �, contrasting sharply with the

case of regular wave packets, where the amplitude would
be identically zero in this regime.
To physically understand how the noncompact momen-

tum tails lead to this order ~Lð!�tÞ haze of scattered
particles at all angles, consider the two cases k1 > k2 and
k1 < k2. For k1 > k2, c 1 will scatter less than the k1 ¼ k2
case, while c 2 will scatter more, causing �13 and �24 to be
smaller and larger than expected, respectively. For k1 < k2,
roles reverse.
Both this haze of scattered particles, and competition

between the direct and scattered contributions, raise ques-
tions about our ability to sharply resolve bulk physics, to
which we turn next.

V. THE QUESTION OF RESOLUTION

If one sought to give a complete nonperturbative defini-
tion of string theory via a dual CFT, a starting point for
such a definition is the set of correlators for the theory,
which one might imagine computing, e.g., on a sufficiently
large computer. The full correlators include contributions
from what, in the bulk viewpoint, are the direct and scat-
tered contributions:Z
db1db2f1ðb1Þf2ðb2Þh0jOðb3ÞOðb4ÞOðb1ÞOðb2Þj0i
¼ h0jOðb3ÞOðb4Þjc f1c f2idþh0jOðb3ÞOðb4Þjc f1c f2is:

(5.1)

A question is how accurate of an approximation to the
elements of the flat-space S matrix can be derived from
such correlators. In particular, to approximate flat space
scattering of Schwartz or regular wave packets, we should
recover a corresponding expression for the S matrix of the
form given in Sec. II. Instead, our boundary construction
produces amplitudes given by (5.1), which differ from that
form in the direct and scattered contributions. Let us
examine these results more closely to determine in what
regimes the boundary amplitude closely approximates
(2.4), for a basis of Schwartz or regular wave packets.
First, consider just the scattered contribution, as de-

scribed at the end of the preceding section. There we find
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an additional haze of scattered particles due to the low-
momentum tails. In particular, the ratio of the amplitude
for the haze at �3 � �4, (4.18), to the contribution at �3 ¼
�4, (4.17), is of size

ð!�tÞ8hþ�6 ~Lð!�tÞ: (5.2)

Thus wave packets with !�t�Oð1Þ receive significant
corrections to their scattering, compared to the usual wave
packets. In this range, amplitudes for the boundary-
compact wave packets appear not to sharply reproduce
the flat S matrix elements, (2.4), of Schwartz or regular
wave packets. [The limit of [6] corresponds to !�t ! 1,
where (5.2) vanishes.]

To recover the full Smatrix in the limit R ! 1, we must
have a sufficiently complete set of wave packets. However,
such a set must apparently include wave packets with
!�t�Oð1Þ, in which case ~Lð!�tÞ is not small and the
tail effects compete with the desired scattering amplitude,
impeding the attempt to recover the flat-space Smatrix. Put
differently, if �t represents the desired size of the lab, we
have encountered an apparent limitation in reproducing the
S matrix when considering wave packets with comparable
wavelengths.

If one notes that in a derivation of correlators within a
CFT, one computes the sum of the direct and scattered
contribution, (5.1), we see potential for a more serious
issue. Specifically, due to the tails, the direct contribution
is not sharply restricted to the forward direction. For
example, if we consider taking the boundary times to lie
in the small interval of size ��, which was in effect used to
extract the plane-wave limit of the Smatrix elements in [6]
(where the direct contribution was not included), we find
that the direct contribution to the correlator gives an angu-
lar distribution given by a product (4.2) of two terms of the
form (3.40). This is to be compared to the scattered con-
tribution, which in the same regime is given by (4.17) and
(4.18). Comparing the magnitude of the two angular dis-
tributions gives

h0jOðb3ÞOðb4Þjc f1c f2is
h0jOðb3ÞOðb4Þjc f1c f2id

� ðg2!d�5Þð!RÞ4�2d

ð!�tÞð8hþ�7Þ : (5.3)

Thus, in the large R limit the strength of the scattered
signal is suppressed relative to the tail of the direct signal,
raising the question of how one can isolate the scattered
signal and extract the relevant elements of the S matrix.

Note that in the boundary theory, this suppression can be
interpreted as being largely due to a relative 1=N2 between
the two contributions. This suggests a possibility of finding
a way to separate the two contributions that is intrinsic to
the CFT, through the systematics of the 1=N2 expansion (or
perhaps via the singularities discussed in [6]). Here,
though, note that one seemingly does not necessarily
have the advantages available in e.g. Rutherford scattering,
where the subleading contribution in the weak-coupling

expansion can be isolated from the direct contribution to
scattering by considering detectors at finite angle, where
the direct contribution is negligible.
The effects we have discussed arise from the tails of our

boundary-compact wave packets, and one might take the
viewpoint that the tails are an inessential complication.
After all, one can take the limit!�t ! 1 to recover plane
waves, and indeed [6] proposed a prescription by which
bulk S matrix elements might in principle be recovered in
this limit. One could then imagine superposing these to
make an arbitrary wave packet.
A more careful phrasing of the question is the following.

Our boundary-compact construction allows us to construct
a certain space of wave packets. If we are to recover the
complete S matrix, an important question is whether these
wave packets are dense in the desired Hilbert space of
single-particle states.
While we do not have a complete answer to this question

we can see that matters may not be so simple turning the
question around. Suppose that we have a wave packet in
the bulk of AdS that is a Schwartz function9; specifically,
suppose that it is taken to have exponential falloff, of the
form

c fðxÞ / exp

�
�
�
r

r0

�
a
�

(5.4)

for some width r0. In that case, for finite R, the size of this
wave packet at the radius r� R where the AdS geometry
begins to be relevant, is exponentially small in R. This in
turn means that when we take the scaling limit (3.4) to find
the corresponding behavior of the boundary operator, we
have

h0jOjc fi � e�ðR=r0Þa : (5.5)

Recall that R4 / Nl4p, whereN is the number of branes, and

lp the Planck length. From this, we see that the boundary

operator is nonperturbatively small in 1=N, suggesting that
we need nonperturbative control over the theory to exhibit
localized wave packets and study their tree-level scatter-
ing, and that in any case such wave packets do not trivially
follow from superposing those that we have considered.
Indeed, the form (5.5) is suggestive of the size of matrix
elements that one might expect if the wave packet corre-
sponds to excitation of theN2 matrix degrees of freedom in
a nontrivial way. Note moreover that transversely focused
wave packets, with !�x? �Oð1Þ, must have ���Oð1Þ
and thus be spread over a significant fraction of the bound-
ary S3, also possibly indicating a role for matrix degrees of
freedom. Of course, this is also suggested by the observa-
tion that the Bekenstein-Hawking entropy of an AdS re-

9Note that such a function will not necessarily remain
Schwartz in AdS, but we avoid this matter by focusing on
sufficiently short time scales.
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gion of size R is SBH � N2. If this is the situation, we see
no guarantee that the corresponding excitations will pro-
duce the correct S matrix elements of a local bulk theory,
for such states. The question is even more sharply stated if
one insists on being able to represent compact-support
wave packets in the bulk. Via the prescription (3.4), we
see that these would have to correspond to boundary states
with vanishing value for h0jOðbÞjc fi.

VI. DISCUSSION

We have found that the wave packets considered in [6],
which yield formulas for S matrix elements in the plane-
wave limit, do not accurately approximate all scattering
amplitudes of wave packets of rapid decrease (Schwartz
functions) or compact support. This behavior arises due to
certain long-distance power-law tails, which correspond in
momentum space to low-energy tails. The lack of accurate
approximation becomes particularly acute for wave pack-
ets whose width and wavelength are comparable. This
suggests that probes of bulk physics through such wave
packets could lack a certain resolution.

One might ask whether this is simply a problem requir-
ing introduction of more general wave packets. Let us
review the arguments that matters may not be so simple.
First, data specified at timelike infinity does not lead to
wave packets that asymptotically separate—instead they
scatter infinitely many times. Second, data on the spacelike
boundary of AdS in general leads to divergences and
delocalization, since such sources are convolved with cor-
relators associated with non-normalizable bulk behavior.
The only obvious way to avoid such behavior is to restrict
ones boundary sources to have compact support, which is
precisely what we have done.

Moreover, we have briefly investigated more generally
what boundary one-point functions would correspond to
bulk wave packets of rapid decrease, or those of compact
support. We find that the former seem to have correspond-
ing boundary correlators indicative of nontrivial excitation
of the N2 matrix degrees of freedom, and the latter have
vanishing value for the one-point function corresponding
to the field in question. These statements suggest to us that
full recovery of scattering amplitudes for such wave pack-
ets might require additional nontrivial behavior of the N2

matrix degrees of freedom, and if so, we see no principle
that guarantees that such behavior arises. Thus, in short,
our arguments raise the question of how extraction of the
corresponding elements of the scattering matrix is pos-
sible, from the correlators of the boundary theory, in the
absence of rather nontrivial effects.

If the boundary theory did not fully specify a unitary S
matrix for the bulk theory, then this could have important
consequences. For example, claims that the AdS/CFT cor-
respondence solves the black hole information paradox
appear to rest on this sort of complete unitary description

of the bulk theory.10 If this were the case, the AdS/CFT
correspondence might only permit study of certain gross
features of black hole physics.
More generally, there are now apparently two nontrivial

tests for whether a given CFT reproduces a bulk S matrix
and unitary bulk evolution with familiar features such as
approximate locality, etc. The first test arises from [6]: it
appears that the boundary CFT has to have certain charac-
teristic singularity structure in its correlators, to produce
the plane-wave limit of the S matrix. Secondly, one must
have a way of specifying boundary data that allows one to
construct the appropriate complete set of asymptotic scat-
tering states of the bulk theory. These thus both appear to
be tests that can be used in diagnosing whether a particular
CFT accurately reproduces a bulk theory that has expected
properties, such as locality on scales large as compared to
the string and Planck lengths, in situations where scattering
is not ultra-Planckian [13,14].
If no CFT did fully reproduce an appropriate bulk S

matrix, such as that of string theory, one might ask how the
AdS/CFT correspondence could have had as much success
as it has had in matching certain bulk features to boundary
features. We do not have a complete answer, but two
common themes throughout physics are the power of sym-
metry and universality. Perhaps successful matches be-
tween bulk and boundary physics might be analogous to
other situations where theories that are inequivalent on a
fine-grained level nonetheless match in many features of
their coarse-grained behavior, as is e.g. commonly seen in
effective field theory. One might contemplate investigating
how robust the boundary predictions of AdS/CFT, typically
obtained in the form of boundary correlators, would be to
adjustments of the fine details of the bulk theory, e.g. at
scales & R; the required singular behavior of [6] does
suggest a certain such sensitivity, but it may be that acces-
sible features of the boundary theory are insensitive to
certain perturbations of the bulk physics. In any case, we
regard these questions regarding possible limitations on
resolution of the AdS/CFT hologram as deserving more
complete answers.
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APPENDIX A: ADS PROPAGATORS

In this appendix we collect some facts about propaga-
tors. In particular, it is important to have a careful defini-
tion of the i	 prescription. Following [17], we write the
propagator as a sum over normalizable solutions to the
Klein-Gordon equation with Feynman boundary condi-
tions. We make use of the homogeneity of AdS to choose
x0 ¼ 0:

GBðx; 0Þ ¼ ie�i2hþj�jðcos�Þ2hþ
2Rd�1�d=2

X1
n¼0

�ð2hþ þ nÞ
�ðnþ �þ 1Þ

� e�2nij�jPðd=2�1;�Þ
n ðcos2�Þ: (A1)

Written in this form, the propagator manifestly exhibits
periodicity in � with period 2�, up to an overall phase
e�4�ihþ , as inherited from the embedding description of
AdS. Furthermore, as required by Feynman boundary con-
ditions, the propagator is manifestly symmetric under time
reversal and purely positive frequency in the future. If we
deform j�� �0j � j�� �0j � i	 this sum converges to
[18]

GBðx; x0Þ ¼ iC

Rd�1ð1þ �	=R
2Þ2hþ F

�
hþ; hþ þ 1

2
;�

þ 1;
1

ð1þ �	=R
2Þ2

�
(A2)

where

�	ðx; x0Þ ¼ R2

�
�1þ cosðj�� �0j � i	Þ � sin� sin�0ê � ê0

cos�cos�0

�
(A3)

is the geodetic distance, defined with respect to the embed-
ding metric, and we have defined the constant

C ¼ �ð2hþÞ
22hþþ1�d=2�ð�þ 1Þ : (A4)

This is the form of the propagator found in [19,20],
although the i	 prescription has been made more transpar-
ent. Using the quadratic transformation for hypergeometric
functions, (15.3.20) in [21], we can further simplify this
expression to

GBðx;x0Þ¼ iC

Rd�1ð�	=R
2Þ2hþF

�
2hþ;

2�þ1

2
;2�þ1;

�2R2

�	

�
:

(A5)

This particularly simple form of the propagator with i	
prescription is to our knowledge not present elsewhere in
the literature.
There are a number of further checks we can perform to

ensure we have, indeed, found the correct form of the
propagator. Some of these checks, including ensuring the
propagator has the correct equal-time behavior, have been
performed in [20], although some properties were left
unconfirmed. We can consider the propagator at scales
much smaller than R, in which case we find

GBðx; x0Þ �
i�ðd�1

2 Þ
4�ðdþ1Þ=2

1

½�ðt� t0Þ2 þ ð ~x� ~x0Þ2 þ i		ðd�1Þ=2

(A6)

which is the expected flat-space behavior. Taking one point
to the boundary and rescaling as in (3.7), we find the bulk-
boundary propagator

GB@ðb; x0Þ ¼ lim
�!�=2

2�Rðd�1Þ=2 GBðx; x0Þ
ðcos�Þ2hþ

¼ 2i�C

Rðd�1Þ=2

�
cos�0

cosðj�� �0j � i	Þ � sin�0ê � ê0
�
2hþ

:

(A7)

Taking the other point to the boundary and again rescaling
as in (3.7), we find the boundary CFT propagator

G@ðb; b0Þ ¼ lim
�0!�=2

2�Rðd�1Þ=2 GB@ðb; x0Þ
ðcos�0Þ2hþ

¼ ið2�Þ2C
½cosðj�� �0j � i	Þ � ê � ê0	2hþ : (A8)

APPENDIX B: LOCALIZATION IN A FLAT
REGION

It is useful to understand the boundary image of a state
that is an approximate plane-wave localized to one ap-
proximately flat region, given on the spatial slice t ¼ 0 by

�ð ~k; ~x0Þ ¼ L

�j ~x� ~x0j
�x

�
eik�ðx�x0Þ (B1)

where �x � R, localizing � to a single region near ~x0 of
size much less than R. Such a state propagates to the
boundary according to
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h0jOðbÞj�i� N̂

Rðd�1Þ=2
Z
d�dd ~x0�2hþ�1L

�j ~x0 � ~x0j
�x

�

�e�ikt0þi ~k�ð ~x0� ~x0Þð�i@
$
t0 Þ

�ei�ðcosj���0j�ð ~x0=RÞ�êÞj�0¼0

� iN̂ð�xÞd
Rðd�1Þ=2

Z
d��2hþ�1

�
kþ�

R
sin�

�

� ~Ld

�
�x

�������� ~k��

R
ê

��������
�
ei�ðcos��ð ~x0=RÞ�êÞ: (B2)

If we take j ~x0j � R, restricting ourselves to contribu-
tions from the flat region (3.18), (B2) is similar to expres-
sions considered in Sec. IV; in particular, for�xk 
 1, it is

well localized in momentum, �ê ’ ~kR. Note that if ~x0 is
moved away from the center of the AdS region in question,

this can produce an amplitude at the boundary at an angle
that is not the same as the scattering angle. Specifically, if
instead of scattering near j ~x0j ¼ 0, the tail of one of the
wave packets scatters off the center of another wave packet
at some nonzero radius j ~x0j at an angle �0, the scattered
amplitude will arrive at the boundary at an angle

� ¼ sin�1

�
sinj ~x0jR tan�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðj ~x0jR Þ2sec2 j ~x0j
R þ sin2 j ~x0j

R tan2�0

q
�
: (B3)

For j ~x0j � R, �� �0 can be of order 1. While this might
have seemed to lead to additional loss of resolution, in this

region the wave packet tail is of order
c fð0Þ ~Lð!�tÞ
ð!RÞ2hþ . Thus

these contributions are suppressed by additional powers of
R.
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