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We study the entanglement of closed strings degrees of freedom in order to investigate the microscopic

structure and statistics of objects as D-branes. By considering the macroscopic pure state limit, whenever

the entanglement entropy goes to zero (in such a way that the macroscopic properties of the state are

preserved), we show that boundary states may be recovered in this limit and, furthermore, the description

through closed string (perturbative) degrees of freedom collapses. We also show how the thermal

properties of branes and closed strings could be described by this model, and it requires that dissipative

effects be taken into account. Extensions of the macroscopic pure state analysis to more general systems at

finite temperature are finally emphasized.
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I. INTRODUCTION

Since the first microscopical description of the black
hole entropy [1], one of the most interesting problems
concerning D-branes is the development of a model where
their thermodynamical properties and microscopical struc-
ture may be clarified. One may study features of D-branes
at finite temperature by using dualities [2], however a
detailed statistical model should start from the understand-
ing of the true microscopical degrees of freedom that
describe the brane.

Closed strings are believed to describe the perturbative
degrees of freedom of a quantum theory that includes
gravity, and D-branes are macroscopical objects which
absorb or emit closed strings [3]; on the other hand, these
ones are identified with classical gravitational solitons that
can work as backgrounds in a perturbative scheme [4]. At
present, there is no known theory in which the D-branes are
described by vacuumlike states or by states created from a
vacuum. Apart from this, any satisfactory description in
this direction should include thermal effects, since generic
nontrivial background spacetimes carry thermodynamic
properties, such as temperature and entropy. A recent
approach realizes these properties [5], but it is based on
an open string description whose precise relation with the
graviton excitations is unknown. Other models to describe
D-branes at finite temperature, like boundary states of
thermal closed strings came up in Refs. [6], these states
have, however, nothing to do with vacuum configurations
in any sense.

This work is devoted to a twofold purpose: to shed light
on all these subjects by studying the general entanglement
of the right/left sectors of closed strings; and, by doing that,
to show how the boundary state that describes the D-brane
may be obtained from statistical analysis of the pure mac-
roscopic states without using any link to string boundary
conditions. We actually show that boundary states may be

recovered as macroscopic pure states in a vanishing en-
tropy limit, and we see furthermore that novel (nonpertur-
bative) degrees of freedom are needed to describe the
dynamics of these objects.
There are examples in which the entanglement of the

degrees of freedom of single closed strings is dynamically
generated in backgrounds with gravitational fields [7–9].
This is the main motivation to study more deeply this
behavior and to highlight the appearance of structures
like the D-branes.
The paper is organized as follows. In Sec. II, we briefly

review the boundary state formalism. In Sec. III, we study
the general entanglement of the internal closed string
modes and, by using the canonical symmetries, define
canonical variables adapted to the pþ 1 dimension of
the brane. The main results are found in Sec. IV, where
(coherent) macroscopical states, localized in the brane
surface, are built up as fundamental states in a closed string
Hilbert space. Furthermore, these states are proposed to
describe the statistical properties of the brane, the entropy
operator is canonically defined, and boundary states are
recovered as pure states. The finite temperature behavior of
branes (and closed strings being created in them) is also
discussed. In Sec. V, the pure state limit is analyzed and its
generalization to other thermodynamic systems is pointed
out. Finally, in Sec. VI, we summarize the main conclu-
sions of this approach.

II. CLOSED STRINGS AND BOUNDARY STATES

Let us consider a closed bosonic string in the Minkowski
space-time ðR26; ���Þ. The general solution with periodi-

cal boundary conditions reads:

X� ¼ x
�
0 � i�0p�tþ

ffiffiffiffiffi
�0

2

s X
n>0

1ffiffiffi
n

p ½ð��
n e�inðt��Þ

þ �
y�
n einðt��ÞÞ þ ð��

n e�inðtþ�Þ þ �
y�
n einðtþ�ÞÞ�;

(1)
*botta@fisica.unlp.edu.ar

botta@cbpf.br

PHYSICAL REVIEW D 80, 046001 (2009)

1550-7998=2009=80(4)=046001(8) 046001-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.046001


After its light-cone gauge quantization (LCG), Fourier
coefficients �I

n and �I
n (I; J; K ¼ 1; . . . 24 denote the co-

ordinates transverse to X� ¼ X0 � X25), for the left- and
right-moving modes, respectively, can be redefined in or-
der to obtain the physical creation and annihilation opera-
tors for each mode n in the different sectors. Namely,

AI
n ¼ 1ffiffiffi

n
p �I

n; AIy
n ¼ 1ffiffiffi

n
p �i�n; 8 n > 0; (2)

BI
n ¼ 1ffiffiffi

n
p �I

n; BIy
n ¼ 1ffiffiffi

n
p �I�n; 8 n > 0: (3)

These redefined operators satisfy the oscillatorlike canoni-
cal commutation relations (CCR):

½AI
n; A

Jy
m � ¼ ½B�I

n ; B�Jy
m � ¼ �nm�

IJ;

½AI
n; B

J
m� ¼ ½AI

n; B
Jy
m � ¼ . . . ¼ 0:

(4)

The fundamental state of the closed bosonic string is
defined by

AI
nj0i ¼ BI

nj0i ¼ 0; (5)

where j0i ¼ jpij0iAj0iB, as usual. The momentum of the
zero mode is often defined p � 0, however it is actually
arbitrary by virtue of the relativistic invariance of the string
vacuum. The Dp-brane states are given by the following

operatorial equations on states of the one-closed string
Hilbert space, built from the usual boundary state condi-
tions,

ðAa
n þ Bya

n ÞjBpi ¼ 0; a ¼ 0; 1; . . . ; p (6)

ðAi
n � Byi

n ÞjBpi ¼ 0; i ¼ pþ 1; . . . 25 (7)

and for the zero mode we get

pajBpi ¼ 0; (8)

ðxi0 � xiÞjBpi ¼ 0; (9)

where xi are the coordinates of the Dp-brane hyperplane.

The solution reads as

jBpi ¼ Cp�ðxi0 � xiÞ Y
I;n>0

e�ðSpÞIJAyI
n ByJ

n j0i; (10)

where we have defined ðSpÞIJ � ð�a
b;��i

jÞ, Cp is a normal-

izing factor related to the brane tension by Tp ¼ 2Cp.

The Hamiltonian operator writes

H ¼ X1
n>0

nðAy
n � An þ By

n � Bn þ tr�IJÞ � X1
n>0

nHn; (11)

where the dot represents an Euclidean scalar product in the
transverse space, a � b � �IJa

IbJ. The negative quantity

V � X1
n>0

n tr�IJ (12)

is the energy of the tachyon in the rest frame.
To construct the physical Fock space it is necessary to fix

the residual gauge symmetry generated by the world sheet
canonical momentum �. This imposes the level matching
condition (LMC) on a physical state j�i:

�j�i ¼ X1
n¼1

ðnAy
n � An � nBy

n � BnÞj�i

¼ X1
n¼1

nðNA
n � NB

n Þj�i ¼ 0; (13)

where we have defined the number operators NA
n � Ay

n �
An, N

B
n � By

n � Bn.

III. STRING ENTANGLEMENTAND
GENERALIZED VACUA

In what follows we study the internal quantum entangle-
ment of closed strings, which may be reduced to entangle-
ment between the right/left sectors. According to previous
evidence [7–9], this behavior is generally induced in non-
trivial backgrounds. Here, we will assume this generically,
in order to study the consistency with expected statistic
properties in gravitational backgrounds, so as other impli-
cations in the theory of D-branes.
The entanglement between two independent parts of a

system is often described by a Bogoliubov transformation
acting on the Hilbert space, which must be a tensor product
of the two states space of each subsystem [10]. In this case
we have

eiGð�Þ: H A �H B � H A �H B; (14)

where Gð�Þ is the generator of the transformation, called
the Bogoliubov operator, and � represents the set of pa-
rameters of the transformation, which shall depend on
external conditions that induce the entanglement [10].
The pure closed string vacuum j0i ¼ jpij0iAj0iB, is trans-
formed into a coherent mixed state

j0ð�Þi ¼ eiGð�Þj0i; (15)

which is annihilated by the transformed operators Anð�Þ
and Bnð�Þ. The zero mode jpi is independent of the en-
tangled sector.
In this framework one canonically quantizes the fields as

operators and the statistical average of an operator Q is
defined as its expectation value in the entangled vacuum
state (15). So this state encodes the quantum and statistical
information of the system on behalf of a density operator.
The most basic feature that characterizes a Bogoliubov

transformation is that it preserves the canonical commuta-
tion relations. This reflects the fact that the original nature
of the degrees of freedom is preserved, even if the effective
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dynamics is different. Thus, it shall be assumed that this
map preserves both the CCR and the level matching con-
dition in order to ensure that the transformed degrees of
freedom are also closed strings; thus, in particular, the
generator G commutes with the operator �. We will also
assume that this map is unitary in order to preserve the
amplitudes and probability measures.

The general form of the Bogoliubov transformation that
fix the form of the generator is given by the following
relation [11,12]

A0

By0

 !
¼ e�iG

A

By

 !
eiG ¼ B

A

By

 !
;

Ay0 �B0� � ¼ Ay �B
� �

B�1;
(16)

where G is Hermitian, and then B is a 2� 2 complex
matrix

B ¼ u v
v� u�

� �
; (17)

such that

juj2 � jvj2 ¼ 1; : (18)

The relation (18) encodes the preservation of the CCR and
it will be important for our interpretation of the results. The
operators that satisfy the relations (16) and (18) have the
following form [12]

G1n ¼ �1nðAn � Bn þ By
n � Ay

n Þ;
G2n ¼ i�2nðAn � Bn � By

n � Ay
n Þ;

G3n ¼ �3nðAy
n � An þ By

n � Bn þ �nntr�
��Þ ¼ �3nHn;

(19)

where Hn in the last line, generates the time evolution of
the modes labeled by n. The �’s are the real parameters
which, for convenience, have been included in the opera-
tors. It is easy to verify that the generators (19) satisfy the
SUð1; 1Þ algebra

½Gin ; Gjn� ¼ �i�ijkGkn ; (20)

where we have defined

�ijk � 2
�in�jn
�kn

: (21)

As we can see from (19), the most general entanglement
generator G ¼ P

nðGÞn takes the following form

Gn ¼ 	1nB
y
n � Ay

n � 	2nAn � Bn

þ 	3nðAy
n � An þ By

n � Bn þ �nn tr�
��Þ (22)

and the coefficients represent complex linear combinations
of �’s

	1n ¼ �1n � i�2n ; 	2n ¼ �	�
1n
; 	3n ¼ �3n :

(23)

These are called generalized Bogoliubov transformations
or simply G-transformations [11,12] which form a suð1; 1Þ
algebra. At this point we wish to point out that other
alternatives to unitary transformations may be considered,
although in general they lead to the same expressions for
the generators but a different relations between these pa-
rameters [11,12].
By applying the disentanglement theorem for suð1; 1Þ

[13], one can write the most general closed string vacuum
(15) under the following form

j0ð�Þi ¼ Y
n

e�1n ðBy
n �Ay

n Þelogð�3n ÞðAy
n �AnþBy

n �Bnþ�nn tr�
��Þ

� e�2n ðAn�BnÞj0i; (24)

where the coefficients of various generators are given by
the relations

�1n ¼
�	1n sinhði�nÞ

�n coshði�nÞ þ 	3n sinhði�nÞ ;

�2n ¼
	2n sinhði�nÞ

�n coshði�nÞ þ 	3n sinhði�nÞ ;
(25)

�3n ¼
�n

�n coshði�nÞ þ 	3n sinhði�nÞ ; (26)

and

�2
n � ð	2

3n
þ 	1n	2nÞ: (27)

Since the pure vacuum is annihilated by a
�
n and ~a

�
n , the

only contribution to the mixed vacuum is given by

j0ð�Þi ¼Y
n

ð�3nÞ2�nn tr�
��
e�1n ðBy

n �Ay
n Þj0i: (28)

The string operators are mapped to entangled ones by the
corresponding Bogoliubov generators

A
�
n ð�Þ ¼ e�iGnA

�
n eiGn ; B

�
n ð�Þ ¼ e�iGnB

�
n eiGn : (29)

Similar relations hold for the creation operators. The en-
tangled operators satisfy the same canonical commutation
relations as the pure operators at � ¼ 0 by construction.
Alternatively, one can organize the operators in doublets
[11,12] and represent the Bogoliubov transformation as

A�
n ð�Þ

B
�y
n ð�Þ

� �
¼ Bn

A�
n

B
�y
n

� �
; (30)

where the explicit form of the Bn matrices is given by

B n ¼ coshði�nÞIþ sinhði�nÞ
ði�nÞ

i	3n i	1n
i	2n �i	3n ;

� �
(31)

where I is the 2� 2 identity matrix.
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Symmetries and canonical p-coordinates

This general suð1; 1Þ algebra contains the subalgebra of
the canonical transformations, whose generators are those
that commute with the total Hamiltonian (11):

G3n ¼ �3nHn: (32)

These are the symmetries that may be thought of as the
gauge freedoms in the present construction. Thus, we may
use them to fix canonical coordinates encoding the infor-
mation on the brane dimension that consist in the original
fields multiplied by relative real phase factors. In particu-
lar, we may define this new set of annihilation operators as

An ! an; Bn ! �ðSpÞIJBJ
n � ~aIn; (33)

and the corresponding creation operators are defined by
their adjoints. One may easily verify that, in fact, these
transformations may be generated by operators (32). This
fixing will clarify the interpretation of our results on p
branes.

The operators above annihilate the corresponding
p-vacuum state,

aInj0pii ¼ ~aInj0pii ¼ 0; (34)

for n > 0 and j0pii ¼ j0pi � j~0pi as usual, which is

equivalent the direct product between the A and B vacua
(up to a phase factor). Once more, the entangled funda-
mental state is obtained from this through a Bogoliubov
transformation, e�iG, which mixes the two independent
right/left Hilbert spaces.

The normal modes redefined above, satisfy the canonical
algebra:

½aIn; ayJm � ¼ ½~aIn; ~ayJm � ¼ �n;m�
I;J;

½ayIn ; ~aJm� ¼ ½ayIn ; ~ayJm � ¼ ½aIn; ~aJm� ¼ ½aIn; ~ayJm � ¼ 0:
(35)

Let us notice finally that a transformation of this type
does not generate any contribution to the entanglement
entropy. In fact it does not mix between right- and left-
modes, by virtue of the separated structure of the gener-
ators G3n ¼ G3n;A þG3n;B (the corresponding matrices

Bð3Þn are indeed diagonal).

IV. COHERENT STATES: ENTROPYAND BRANE
THERMODYNAMICS

In order to keep the fixing above we shall consider a
subgroup which led the p-coordinates choice invariant. In
most of the systems, the thermal effects are described by
standard one-parameter Bogoliubov transformations, gen-
erated by g2n [14,15]. In what follows, we focus on these

type of transformations since one of our purposes is to
describe those effects.

A. Vacuum/boundary states

In terms of the new canonical variables, standard unitary
Bogoliubov transformations are generated by

Gð�Þ ¼ �i�IJ

X
n

�nðaIn~aJn � ~ayIn ayJn Þ; (36)

for finite volume systems. The creation and annihilation
are transformed according to

aInð�nÞ ¼ e�iGaIne
iG ¼ coshð�nÞaIn � sinhð�nÞ~ayIn (37)

~a I
nð�nÞ ¼ e�iG~aIne

iG ¼ coshð�nÞaIn � sinhð�nÞ~ayIn : (38)

These operators annihilate the states

aInð�nÞj0ð�Þi ¼ ~aInð�nÞj0ð�Þi ¼ 0; (39)

that, by virtue of this, must be referred to as (entangled)
vacuum states. By using the Bogoliubov transformation,
these relations give rise to the vacuum state conditions:

½aIn � tanhð�nÞ~ayIn �j0ð�Þi ¼ 0; (40)

½~aIn � tanhð�nÞayIn �j0ð�Þi ¼ 0; (41)

which are also generalizations of the boundary conditions
(8) and (9).1 So the present framework handles a consistent
twofold interpretation for these states: as ground states, and
also as (deformed) boundary states.
The solution of (40) and (41) is

j0pð�Þii ¼ e�iGj0pii

¼ �p

Y
n¼1

��
1

coshð�nÞ
�
D-2

etanhð�nÞ�IJa
yI
n ~ayJn

�
j0pii;

(42)

and in terms of the A=B modes, it expresses in the sugges-
tive form:

j0pð�Þi ¼ �p

Y
n>0

�
1

coshð�nÞ
�
D-2

e� tanhð�nÞðSpÞIJAyI
n ByJ

n j0i:

(43)

By considering an ensemble of closed strings in their
fundamental state (pi ¼ 0, pa ¼ 0) one may construct
coherent states localized (so as a wave packet) in a
p-dimensional surface xi ¼ const. These vacua are all
solutions of (40) and (41), and are determined by zero
mode conditions (8) and (9). This is expressed by the
prefactor �p � �ðxi0 � xiÞ in the expressions above [(42)

and (43)]. Notice then that these generalized p-vacua are
coherent states with macroscopic properties localized in
the brane hypersurface.

1These ones may naturally be associated to ð�Þ-deformed
closed string solutions XI

ð�Þðt; �Þ.
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Then, the Fock space of entangled string states is con-

structed by applying the mixed creation operators ayIn ð�Þ,
~ayIn ð�Þ, to the vacuum (42) that may properly be identified
with a brane state (because of the condensate structure in
itself) absorbing and emitting entangled closed strings. In
fact, if the modes corresponding to the ð�Þ-string leaving
the Dð�Þ-brane are created from this ground state (42), then

in absence of such excitations, the Dð�Þ-brane on its own

must be associated to the fundamental state.
Remarkably enough, (40) and (41) are a generalization

of the boundary conditions (6) and (7) (to be recovered in
the proper limit), and in this sense, this state is a natural
candidate to describe a statistical ensemble associated to
the Dp-brane, which handles its thermal properties. The

following part is devoted to the study of this issue, and it is
addressed to recover Dp-branes as ground states.

B. Statistic analysis

The entanglement entropy operator is defined such that
its average value be proportional to the thermodynamical
entropy of any free bosonic field divided by the
Boltzmann’s constant [14]. For a bosonic field, it can be
computed as the expectation value of the entropy operator
in the state that describes the system

S � 1

kB
hKi

¼ �
�X

k

½N k logN k � ð1þN kÞ logð1þN kÞ�
	
;

(44)

where N k is the number of particles in the state k. This
general expression is nothing but the expectation value of
the von Neumann entropy operator K � �N logN ,
where the second term has taken into account the counting
of antiparticles states [10]. Consequently, one defines the
entropy operator for the bosonic string through the number

operators NA=B
n for general SUð1; 1Þ transformations (22)

according to this formula. The LMC on physical states
[Eq. (13)] implies that KA

n ¼ KB
n , so the relevant quantity

for our analysis is the entropy associated with one of the
two (right/left) sectors. In the particular case of standard
transformations generated by (36), the number operator of
left-handed modes is proportional to sinh2�n; therefore, in
terms of canonical p-coordinates, the associated entropy
reduces to

K ¼ �X
n¼1

fayIn aJn�IJ lnðsinh2ð�nÞÞ

� aIna
yJ
n �IJ lnðcosh2ð�nÞÞg: (45)

A straightforward algebra leads to the following expres-
sion for the vacuum state

j0pð�Þii ¼ �pe
�Kð�Þ=2 Y

I;n>0

ea
yI
n ~ayIn j0pii

¼ �pe
� ~Kð�Þ=2 Y

I;n>0

ea
yI
n ~ayIn j0pii; (46)

in terms of the entropy operator.2 Then, according to (10),
it may be written as

j0pð�Þii ¼ 1

Cp

e�Kð�Þ=2jBpi ¼ 1

Cp

e� ~Kð�Þ=2jBpi: (47)

This expression shows how the ground state of a system of
self-entangled strings is related to the Dp-brane state

through the entropy operator, and they both coincide in
the formal limit K ! 0. This limit will be analyzed in the
next section, and may be seen as an alternative way to
construct the boundary state (10).
A very important remark has to be done at this point.

Recalling the generalized vacuum state conditions [(40)
and (41)], the boundary state (10) may be recovered as a
vacuum state or, more precisely, as a proper (vanishing
entropy) limit point of a many-string ground state.
Therefore, the generalized p-vacua [expressed by (43)]

may be seen as statistical or thermodynamical extensions
(parametrized by �) of the Dp-brane state, since this is a

coherent state of entangled string modes localized on the
D-brane surface. In this sense, the brane tension may be
promoted to an operator that acts on the pure brane state,
defined in terms of the brane entropy:

T̂ pð�Þ � 2e�Kð�Þ=2 (48)

then the state that represents the statistical brane expresses
as

j0pð�Þii ¼ 1

2
�pT̂pð�Þ

Y
I;n>0

ea
yI
n ~ayIn j0pii: (49)

D-branes are believed to be solitons in (super)-gravity
theories that work as the ground states for gravitons (car-
ried by closed strings). In agreement with this fact, the
calculation above confirm that D-branes configurations
indeed appear under general conditions of entanglement
of closed string fields; provided that these entanglement
effects arise in gravitational backgrounds [7–10]. Then as a
by-product, if one associates the entropy Kð�Þ with the
background, states as (43) actually describe solitons of the
geometry with thermodynamic properties like black
branes.

C. Temperature and dissipative effects

It is important to stress that this entropy may or may not
be associated to equilibrium states and temperature.

2A demonstration of this expression may be found in Ref. [10],
where the entanglement of quantum fields in the presence of
event horizons is studied.
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However, the construction above handles a model to de-
scribe the thermal properties of Dp-branes and closed

string states being created on them. Let us consider the
following potential,

F ¼ hHai � 1

�
S	 ð ~FÞ; (50)

and minimize it with respect to the transformation’s pa-
rameters �‘s [14]. Here hHai is given by computing the
matrix elements of the right-handed Hamiltonian operator
hHai in the state (42). The temperature is defined as the
positive definite parameter T � ðkB�Þ�1 considered inde-
pendent of the variations of the parameters �. The solution
for the angular parameters �n is given by the Bose-Einstein
distribution:

Nnð¼ ~NnÞ ¼ sinh2�n ¼ ðe�En � 1Þ�1: (51)

The vacuum state conditions (40) and (41), valued on these
parameters �nð�Þ, provide the generalization of the bound-
ary conditions at finite temperature. According to this
formalism, a physical one-string excitation at temperature
T, say n, ~n, may be created from this vacuum as usual:

j1; n; ~n; ð�Þii ¼ 1

n!
ayn ð�Þ~ayn ð�Þj0pð�Þii: (52)

When the system is in equilibrium, we see from (51) that
entropy of the bosonic brane goes to zero in the limit T !
0. This guarantees that the third principle of thermody-
namics is satisfied. Notice, however, that there is an appar-
ent paradox in this model for thermal branes since the state
(42) is not an eigenstate of the closed string Hamiltonian.
Provided that (11) indeed describes the dynamics of the
system, the state (42) evolves and (51) cannot then be
considered an equilibrium distribution. Therefore, as a
result, the present model for thermodynamic effects is
incomplete and deviations from equilibrium should be
included.

This may be seen as a notable coincidence with recent
perspectives on the hydrodynamic properties of thermal
(black) branes [16–18]. According to these references, the
infrared behavior of theories whose dual bulk-gravities
contain a black brane is governed by hydrodynamics, and
the main observation in this sense is the existence of a
universal value for the ratio of shear viscosity to entropy
density [19], which should be investigated in the context of
an appropriate microscopical model.

Observe that the temperature in this model might be
interpreted as due to the immersion of the brane in a
thermal bath measured by accelerated observers, according
to the Unruh effect [8]. So, by identifying the temperature
parameter with the relative acceleration of certain class of
observers a � ð2
kB�Þ�1, this approach may also be
viewed as describing accelerated branes [20]. In particular,
for inertial observers, such that a ¼ 0, the standard string
vacuum j0i in a Minkowski space-time is recovered, and

the coherent state (43) disappears, in agreement with the
membrane paradigm [21].
Let us finally mention that by virtue of the distribution

(51), the divergence associated with the Hagedorn tem-
perature is also present in this description, since the tension
operator (48) tends to zero for higher temperatures, and
thus the state j0pð�ð� ! 0ÞÞi is outside of the original

Hilbert space in this limit [22]; i.e., the unitarity of the
Bogoliubov transformation breaks down for sufficiently
high temperatures.3

V. MACROSCOPIC PURE STATES AND COLLAPSE
OF CLOSED STRING DEGREES OF FREEDOM

The state (42) describes a statistical state or ensemble;
however, one could be interested in a sort of nonthermody-
namic limit in order to get a description of the D-brane as a
macroscopic, but quantum-mechanical system.4 This is a
coherent state with vanishing entropy.
In order to recover a quantum-mechanical picture, one

usually studies the zero temperature limit, but there is a
certain ambiguity in doing this. In particular by taking
� ! 1 in (42) one obtains the microscopic vacuum, j0i
of one-closed string. However more generally, if one takes
the zero-entropy limit, the pure state that describes the
system is recovered, and Nerst’s theorem guarantees that
T ! 0 as a particular way of taking such a limit (through a
succession of equilibrium states). In this approach the
entropy is an operator defined not only for equilibrium
ensembles, and this limit may be realized preserving the
macroscopic character expressed in the structure of coher-
ent state. This is what we call the macroscopic pure state
(MPS) limit.
As argued before, the state (42) may be written in terms

of the von Neumann entropy operator as follows

j0pð�Þii ¼ 1

Cp

e�Kð�Þ=2jBpi; (53)

where

jBpi � Bpj0ii � Cp�p

Y
I;n>0

ea
yI
n ~ayIn j0ii: (54)

This describes the macroscopic system as a branelike
condensate, through the collective variables �, whose fun-
damental state corresponds to the fundamental equilibrium
configuration given by the Bose-Einstein distribution (51).
By projecting Eq. (46) in the number basis jn; ~ni we

have

hn; ~nj0pð�Þii ¼ e�ðSnð�nÞ=2kBÞhn; ~njBpi; (55)

3A consistent interpretation of this behavior was presented in
Ref. [8] by studying closed strings crossing event horizons.

4The simplest analogy is a perfect crystal, an entropyless
macroscopic system.
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where Snð�nÞ is the entropy of the nth level for an arbitrary
distribution (or collective state), f�ng � j0pð�Þii. Thus, we
may observe the state j0pð�Þii approaches jBpi in the zero-
entropy limit Snð�nÞ ! 0,5 which may be identified with
the coherent pure state that describes the D-brane as a
macroscopic quantum-mechanical object, such as we
aimed.

The microscopical (stringy) degrees of freedom de-
scribed by the string canonical variables collapse in this
limit. In fact, according to the expressions (42) and (46),
this limit may be expressed by tanh�n ! Spð¼ �1Þ, or
simply

jðvn=unÞj2 ¼ j tanh�nj2 ! 1; (56)

thus if the canonical transformation is demanded to be
unitary, the limit point cannot be reached unless the rela-
tion (18) is violated. By virtue of this, the canonical
structure of the variables characterized by their CCR
breaks down in this limit. This is not surprising since the
emerging macroscopic quantum-mechanical system must
have proper (few) canonical degrees of freedom, instead of
many stringy ones. Apart from this, as one also would
expect for solitonic objects, despite the state of the system,
may even be represented in the string Fock space in this
case [Eq. (46)], its dynamics can no longer be described by
perturbative degrees of freedom (strings).

Let us finally notice that the above macroscopic pure
states may be also recovered from equilibrium states, when
the temperature is analytically continued to purely imagi-
nary values. This may be directly verified from the Bose-

Einstein distribution: tanh�n ¼ en�=2; by taking � ! i�,
the MPS condition j tanh�nj2 ¼ 1 is fulfilled, or in other
words, purely phase factors tanh�n may be absorbed in the
creating operators of the state (42) through a canonical and
unitary transformation. This remarkable property will be
further explored elsewhere [23].

Canonical systems at finite temperature

To end this work, we wish to point out briefly the
implications of the ideas discussed above to very general
thermodynamic systems since the MPS limit may be a
supplementary ingredient to study the emergence of mac-
roscopic states like branes in more diverse contexts. In this
sense the so-called thermofield dynamcs (TFD) approach
is a privileged ground to do that.

Thermofield dynamics, developed by Takahashi and
Umezawa [11,14,15,24,25], is a real time approach to
quantum field theory at finite temperature [26,27] where
an identical but fictitious copy of the system is introduced.
In TFD the full statistical information of a quantum system
is encoded in the (thermal) vacuum state instead of the

density operator or partition function:

j0ð�Þii ¼ Z�1=2
X
n

e��En=2jnij~ni; (57)

where jn; ~ni denotes the nth energy eigenvalue of the two
systems, the physical one and its auxiliary copy denoted by
~. This may be alternatively expressed in terms of a
Bogoliubov transformation, which maps the Fock space

based on the initial vacuum j0i � j~0i (annihilated by an and
~an) to a new thermal vacuum state:

j0ð�Þii ¼ e�iGð�Þj0ij~0i: (58)

The equilibrium state (57) corresponds to the particular

distribution tanh�n ¼ en�=2, where the expectation value
of the free energy operator: A ¼ H � ��1K in the state
(58), is stationary. The canonical entropy operator is given
here by

K ¼ �X
n¼1

½aynan lnðsinh2�nÞ � ana
y
n lnðcosh2�nÞ�; (59)

where ayn , ~ayn refer to the canonical creation operators
corresponding to the physical system and its fictitious
copy, respectively.
Consequently the concept of MPS limit may also be

introduced in TFD, since one may write

j0ð�Þii ¼ e�Kð�Þ=2Y
n>0

ea
y
n ~a

y
n j0ii: (60)

Thus the macroscopic pure states are

jIii � I j0ii � Y
n>0

ea
y
n ~a

y
n j0ii; (61)

which may also be obtained from the equilibrium ones (57)
through analytic continuation of the temperature values.

VI. FINAL REMARKS

We built a statistical approach to a bosonic Dp-branes

which handles a model to describe their thermodynamic
properties, such that in the vanishing entropy limit the
boundary states are recovered. The picture is an ensemble
of closed strings, which in the thermodynamic limit may be
seen as a sort of medium extended on p spacial dimensions
filled with string excitations. The model includes the evi-
dence of dissipative behavior and the need for a hydro-
dynamic description [16–18]. This radically differs from
previous approaches to thermal D-branes using the TFD
formalism [6], which supposes a duplication of the closed
string degrees of freedom. In future works we will inves-
tigate that (in)stability of the thermal D-brane states and
furthermore the possibility of studying black branes using
these ideas.
A remarkable strength of this description is that the

Dp-branes are constructed as the fundamental states of a

5This limit may be taken by choosing some arbitrary series of
states f�ngM � �n;M with decreasing entropies, 0 
 Snð�n;MÞ<
Snð�n;M�1Þ, 8n, M.
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closed string Fock space, which is consistent with the view
of these objects as solitonic gravitational backgrounds.

This work may be considered as a previous step ad-
dressed to formulate an open/closed dictionary based in
the consistency with the description of thermal branes in
terms of open strings [5].
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