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The chiral limit of the � and � masses and widths is discussed. We work within the inverse amplitude

method to one loop in SU(2) chiral perturbation theory and analyze the consequences that all chiral

logarithms cancel out in the � channel, while they do not cancel for the � case, and how they strongly

influence the properties of this latter resonance. Our results confirm and explain the different behavior of

the � and � poles for NC not far from 3, but we extend the analysis to very largeNC, where the behavior of

these two resonances is reanalyzed. We note that the rather natural requirement of consistency between

resonance saturation and unitarization imposes useful constraints. By looking only at the � channel, and

within the single resonance approximation, we find that the masses of the first vector and scalar meson

nonets, invoked in the single resonance approximation, turn out to be degenerated in the large NC limit.

On the contrary we show that, for sufficiently large NC, the scalar meson evolution lies beyond the

applicability reach of the one-loop inverse amplitude method and if the scalar channel is also incorporated

in the analysis, it may lead, in some cases, to phenomenologically inconsistent results.
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I. INTRODUCTION

The large NC-limit of QCD [1,2] makes quark-hadron
duality manifest at the expense of introducing an infinite
number of weakly interacting stable mesons and glueballs.
While the corresponding counting rules are deduced at the
quark-gluon level, internal consistency requires them to be
valid also at the hadron level. Moreover, large NC studies
might clarify several features of the nuclear force, in
particular, the role played by the ubiquitous scalar meson.
This is an essential ingredient which contributes to the
midrange nuclear attraction, which, with a mass of
�500 MeV, was originally proposed in the 1950s [3] to
provide saturation and binding in nuclei. During many
years, there has been some arbitrariness on the ‘‘effective’’
scalar meson mass and coupling constant to the nucleon,
partly stimulated by lack of other sources of information.
For instance, in the very successful nucleon-nucleon
charge dependent Bonn potential [4] any partial wave
2Sþ1LJ channel is fitted with noticeably different scalar

meson masses and couplings. The situation has steadily
changed during the last decade, and the scalar meson has
been finally resurrected [5], culminating with the inclusion
of the 0þþ resonance in the PDG [6] as the f0ð600Þ
resonance, also denoted as the �. The � resonance is
traditionally seen in �� scattering, with a wide spread of
values being displayed ranging from 400–1200 MeV for
the mass and a 600–1200 MeV for the width [7]. These
uncertainties have recently been sharpened by a bench-
mark prediction based on Roy equations and chiral sym-

metry [8] yielding the unprecedented accurate values

ffiffiffiffiffi
s�

p ¼ 441þ16
�8 � i272þ9

�12 MeV: (1)

Forward dispersion relations and Roy equations on the real
axis have also been used by the Madrid group in Ref. [9]
yielding a slightly heavier and narrower �-resonance
determination.
While the existence of this broad low lying state is by

now out of question, the debate on the nature of the
� meson is not completely over. Structures of the type
tetraquark or glueball, etc. have been proposed (see e.g.
Ref. [10] for a recent review and references therein).
Lattice determinations of the lightest scalar mesons are

challenging (for reviews see [11,12]). It has been found
that the mass of the lightest 0þþ meson is suppressed
relative to the mass of the 0þþ glueball in quenched
QCD at an equivalent lattice spacing [13]. In the quenched
approximation it has been claimed [14] that m� ¼
550 MeV for pion masses as low as m� ¼ 180 MeV. On
the other hand, a recent analysis of np scattering in the 1S0
channel yields m� ¼ 510ð10Þ MeV [15,16], when uncor-
related 2� exchange is disregarded (see however
Refs. [17,18]).
Chiral perturbation theory (ChPT) for �� scattering has

been introduced in Refs. [19,20]. We aim here to reanalyze
the nature of the ChPT scalar resonance, stressing its
differences and similarities with the � meson. Most of
the results will be obtained in the limit of massless pions,
which will allow us to work with almost analytical equa-
tions, hence simplifying and enlightening the discussion.
We will use a suitable generalization of the effective range
expansion [19] such as the inverse amplitude method
(IAM) [21–24] to unitarize the one-loop �� ChPT ampli-
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tudes. The method has been successfully used in the past
not only for �� (coupled channel meson-meson in gen-
eral) [25–29], but also for �N scattering [30,31]. Poles of
the unitarized amplitudes in unphysical sheets provide
masses and widths of the resonances, and the change of
the position of these poles determines their properties for
growing NC. To carry out such a program requires extend-
ing the chiral amplitudes for an arbitrary number of colors.
This is a delicate point because in any case one must insure
that all possible leading NC dependences should be con-
tained in this unphysical NC > 3 extrapolation. In our
study all QCD NC dependence appears through the low
energy constants (LEC’s), in which leading NC behavior
could be obtained within the resonance saturation approach
[32,33]. We will further simplify the problem and we will
work within the single resonance approximation (SRA)
scheme, where each infinite resonance sum is just approxi-
mated with the contribution from the lowest lying meson
nonet with the given quantum numbers. We will see how a
rather natural requirement of consistency between reso-

nance saturation and unitarization imposes useful con-
straints in the extreme NC ! 1 limit.
The previous works of Refs. [34,35] use a similar frame-

work, however with a different NC scaling strategy; the
NC ¼ 3 fitted results are simply rescaled to the unphysical
NC values. One of the major, but crucial, differences of the
present work with these other two is the use of the SRA to
estimate the leading NC behavior of the LEC’s. Though in
the vicinity ofNC ¼ 3we find similar results, we will show
that the requirement of consistency between resonance
saturation and unitarization, for very large values of NC,
imposes useful constraints.

II. ONE-LOOP �� CHPTAMPLITUDES IN THE
CHIRAL LIMIT

After projecting out in isospin and angular momentum
(IJ), the scalar-isoscalar and vector-isovector �� ampli-
tudes to one-loop accuracy and in the chiral limit read
[19,20] (in the center of mass frame)

T00ðsÞ ¼ � s

f2|{z}
T00
2

� s2

576�2f4
f28�l2 þ 22�l1 þ 51� 14 lnðs=m2Þ � 36 lnð�s=m2Þg

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T00
4

; (2)

T11ðsÞ ¼ � s

6f2|fflffl{zfflffl}
T11
2

� s2

576�2f4
f2�l2 � 2�l1 þ 2

3
þ lnðs=m2Þ � lnð�s=m2Þg

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T11
4

; (3)

where s is the square of the total energy of the two pions, f
is the pion decay constant in the chiral limit (� 88 MeV),
m is the pion mass (this apparent dependence on m is
fictitious, as we will see below), TIJ

2 and TIJ
4 are the tree

level and one-loop amplitudes, and the normalization of
the total amplitude is fixed by its relation with the elastic
phase shifts

TIJ ¼ �8�
ffiffiffi
s

p �
e2i�

IJ � 1

2ip

�
(4)

with p the center of mass pion momentum,
ffiffiffi
s

p
=2 for

massless pions. The logarithm in the above equations is
defined as (z 2 C)

lnz ¼ lnjzj þ i argðzÞ; argðzÞ 2 ½��;��: (5)

In Eqs. (2) and (3) the last logarithm [ lnð�s=m2Þ, with m
the pion mass] produces the unitarity right-hand cut and it
accounts for perturbative two particle elastic unitarity

ImTIJ
4 ðsþ i0þÞ ¼ � jTIJ

2 ðsÞj2
16�

þOð1=f4Þ; s > 0;

(6)

while the first logarithm in these two equations provides

the left-hand cut required by crossing symmetry, and it
leads to complex amplitudes for s < 0. Finally, �l1;2 are
scale independent LEC’s. Up to a numerical factor, the
quantity �li is the value of the renormalized coupling con-
stant lri ð�Þ at the scale � ¼ m,

�l1 ¼ 96�2lr1ð�Þ � lnðm2=�2Þ;
�l2 ¼ 48�2lr2ð�Þ � lnðm2=�2Þ:

(7)

The LEC’s �li do not exist in the chiral limit, m ! 0, but
contain a chiral logarithm with unit coefficient, i.e., in the
chiral limit �li tend to infinity like� lnm. Note however, all
dependence on the pion massm cancels out in Eqs. (2) and
(3), as expected, since T00 and T11 are well defined in the
chiral limit m ! 0. The one-loop amplitudes depend on a
certain scale � through the renormalized LEC’s lri ð�Þ and
the right- (unitarity) and left-hand cut logs lnð�s=�2Þ and
lnðs=�2Þ, respectively.
Already at this level we note here, the remarkable dif-

ference between the �- and �-meson channels which
becomes obvious from the effective range expansion in
the early work of Lehmann [19]. For s > 0, and besides the
imaginary part, left- and right-hand cut logs cancel out in
the �-meson channel, while these logs add up in the scalar-
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isoscalar sector. Moreover, at a scale of about 770MeV, the
contribution of the logs is comparable in size to that of the
renormalized LEC’s lri , being thus the �-channel dynamics
strongly influenced by these logarithms stemming from the
chiral loops.

Away from the chiral limit, some logs survive in the
� channel as well, but their contribution is suppressed by
powers of the pion of mass, i.e. terms of the type
m2 lnð�s=m2Þ (see for instance Appendix B of Ref. [36],
where analytical expressions for the left-hand cut integrals
can be found).

Finally, we recall here the relation among the SUð2Þ �
SUð2Þ and SUð3Þ � SUð3Þ LEC’s [37],
lr1ð�Þ ¼ 4Lr

1ð�Þ þ 2L3 � �K

24
; lr2ð�Þ ¼ 4Lr

2ð�Þ � �K

12
(8)

with 32�2�K ¼ ðlnð �m2
K=�

2Þ þ 1Þ, with �mK � 468 MeV
the kaon mass in the m ! 0 limit, which permits one to
rewrite the amplitudes in terms of Lr

1;2;3ð�Þ. The scale

dependence of the SUð3Þ � SUð3Þ LEC’s reads

Lr
i ð�2Þ ¼ Lr

i ð�1Þ þ �i

ð4�Þ2 lnð�1=�2Þ;

2�1 ¼ �2 ¼ 3

16
; �3 ¼ 0:

(9)

III. ONE-LOOP IAM � AND � POLES

Any unitarization method resums a perturbative expan-
sion of the scattering amplitude in such way that two-body
elastic unitarity

Im

�
1

TIJ

�
¼ p

8�
ffiffiffi
s

p ; s > 4m2 (10)

is implemented exactly. Let us pay attention to the one-
loop IAM, in which the TIJ matrix is approximated by [21–
24]

TIJðsÞ ¼ ðTIJ
2 Þ2ðsÞ

TIJ
2 ðsÞ � TIJ

4 ðsÞ ; (11)

which perturbatively reproduces ChPT to one loop.1

Resonances correspond to poles in the fourth quadrant of
the second Riemann sheet (SRS), defined by continuity on
the upper lip of the right unitarity cut with the physical first
Riemann sheet (FRS), TSRSðs� i0þÞ ¼ TFRSðs� i0þÞ.
Thus within this scheme, we find that mass and width of
the resonance (sR ¼ m2

R � imR�R) are determined from
the zeros of the denominator of Eq. (11) in the SRS,

TIJ
2 ðsRÞ ¼ TIJ

4 ðsRÞjSRS: (12)

The above condition leads to simple equations for the �
and � resonances:

s� ¼ 288�2f2

3i�þ 2þ 6�l2 � 6�l1
¼ 96�2f2

i�þ 2=3� 384�2ð2Lr
1ð�Þ � Lr

2ð�Þ þ L3Þ
; (13)

s� ¼ 288�2f2

18i�þ 25i arctanð��

m�
Þ � 25 lnjs�=m2j þ 51=2þ 14�l2 þ 11�l1

¼ 288�2f2

18i�þ 25i arctanð��

m�
Þ � 25 lnjs�=�2j þ 51=2þ 192�2ð22Lr

1ð�Þ þ 14Lr
2ð�Þ þ 11L3 � 25

48�KÞ
; (14)

where to compute the amplitude in the fourth quadrant of
the SRS at s ¼ sR, we have used

lnð�sRÞ ¼ lnð�m2
R þ imR�RÞ

¼ lnjsRj þ i

�
�� arctan

�
�R

mR

��
� 2�i; (15)

lnðsRÞ ¼ lnðm2
R � imR�RÞ ¼ lnjsRj � i arctan

�
�R

mR

�
:

(16)

We note that in Eqs. (13) and (14), large chiral logarithms

of the pion mass do not appear, which guaranties mild pion
mass dependences of the � and � masses and widths [38].
From Eq. (13), we trivially find

m2
� ¼ 48�2f2

�l2 � �l1 þ 1=3

ð�l2 � �l1 þ 1=3Þ2 þ �2=4
;

�� ¼ �

2

m�

�l2 � �l1 þ 1=3

(17)

[we express the � mass and width in terms of the combi-
nation �l2 � �l1 ¼ �192�2ð2Lr

1ð�Þ � Lr
2ð�Þ þ L3Þ, be-

cause in this difference the logarithm of the pion mass
cancels out]. The above expressions give reasonable esti-
mates of the pole position of the � resonance. Using, for
instance, at the scale � ¼ m� � 770 MeV, the set of

LEC’s determined in Ref. [39] from an Oðp6Þ study of
the K‘4 decays,

1Some problems associated with the exact position of the
Adler’s zeros and the reliability of the IAM predictions for scalar
waves have been recently discussed in Ref. [29].
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103Lr
1ðm�Þ ¼ 0:52� 0:23;

103Lr
2ðm�Þ ¼ 0:72� 0:24;

103L3 ¼ �2:70� 0:99;

(18)

and taking into account the strong correlations among the
Lr
i , we estimate [40] �l1 ¼ 0:3� 1:2 and �l2 ¼ 4:77� 0:45,

with a linear correlation coefficient rð�l1; �l2Þ ¼ �0:69, that
leads2 to m� ¼ 830þ120

�90 MeV and �� ¼ 270þ190
�90 MeV.

Similar results (m� � 815 MeV and �� � 254 MeV) are

obtained by using �l1 ¼ �0:4� 0:6 and �l2 ¼ 4:3� 0:1
obtained from an Oðp6Þ Roy equation analysis of ��
scattering [41].

Since the analysis carried out here involves only Oðp4Þ
amplitudes, one might think it would be more appropriate
to use values for the LEC’s determined from Oðp4Þ accu-
racy studies. If we had used for the central values of
Lr
1;2;3ðm�Þ, the results from the Oðp4Þ fit of Ref. [39],

103Lr
1ðm�Þ ¼ 0:46;

103Lr
2ðm�Þ ¼ 1:49;

103L3 ¼ �3:18;

(19)

while keeping the same errors and correlations as in
Eq. (18), we would have found �l1 ¼ �0:9� 1:2, �l2 ¼
6:23� 0:45 with rð�l1; �l2Þ ¼ �0:69. Those values will
lead to m� ¼ 690þ80

�60 MeV and �� ¼ 150þ60
�40 MeV, in bet-

ter agreement with data. Of course, there will be finite pion
mass corrections, though we expect them to be quite small
for the � mass, while its width will be reduced by about
25% [38]. Note that if we fix ð�l2 � �l1 þ 1=3Þ to ð1:25�
ð��=m�Þexp � 2=�Þ�1 � 6:45, as deduced from the second

relation of Eq. (17) and the hypothesis that the ��=m� ratio

increases by about 25% for massless pions, the first relation
of Eq. (17) leads to m� � 8:33f, in excellent agreement

with the experimental value.
Let us now pay attention to the case of the � resonance.

Solving numerically Eq. (14), with the set of parameters of
Eqs. (18) and (19), we find

ffiffiffiffiffi
s�

p ¼ ð401þ12
�16 � i277þ23

�26Þ MeV;

LEC0s from Oðp6ÞK‘4 ½Eq: ð18Þ�;
(20)

ffiffiffiffiffi
s�

p ¼ ð410þ8
�13 � i257þ25

�27Þ MeV;

LEC0s from Oðp4ÞK‘4 ½Eq: ð19Þ�;
(21)

which are in fair agreement with the benchmark determi-
nation based on the Roy equation and chiral symmetry [8]
given in Eq. (1). Finite pion mass corrections produce a
moderate enhancement (around 10%) of the resonance
mass, while its width is reduced by a similar amount [38].
In sharp contrast with the case of the � meson, the

properties of the � meson [f0ð600Þ] turn out to be strongly
influenced by the chiral logarithm lnjs�=�2j. Actually,
there exist large cancellations in the combination of
LEC’s 192�2ð22Lr

1ð�Þ þ 14Lr
2ð�Þ þ 11L3 � 25

48�KÞ ap-

pearing in Eq. (14), and this contribution plays a role
much less important than in the case of the � meson, for
which the LEC’s and the discontinuity through the unitar-
ity cut determine mostly its properties. Indeed, if for the
� resonance, the LEC’s contribution is neglected, one will
find

ffiffiffiffiffi
s�

p ¼ 417� i236 MeV. The comparison of this lat-

ter result with those displayed in Eqs. (20) and (21) shows
that the bulk of the dynamics of the � resonance is not
determined3 by the LEC’s, but rather by unitarity (18i�),
the constant term 51=2 and the chiral logarithm
�25 lnðs�=�2Þ. This chiral log, due to both the left- and
right-hand cut contributions, favors smaller (larger) values

of the ��=m� ratio for js�j1=2 smaller (larger) than the
renormalization scale �. When this contribution is ne-
glected, we find with the set of parameters of Eq. (18)
[Eq. (19)], that the ��=m� ratio comes out to be around a
factor 2.2 (1.6) greater than if the chiral log was consid-
ered. Actually, the pole exists as long as the real part of the
denominator in Eq. (14) remains positive, and it imposes a
constraint to js�=�2j

��

m�

¼ 18�þ 25 arctanð��

m�
Þ

192�2ð22Lr
1ð�Þ þ 14Lr

2ð�Þ þ 11L3 � 25
48�KÞ þ 51

2 � 25 lnjs�=�2j> 0 (22)

) 25 lnjs�=�2j< 192�2

�
22Lr

1ð�Þ þ 14Lr
2ð�Þ þ 11L3 � 25

48
�K

�
þ 51

2
: (23)

2For narrow resonances, their mass and width are related to the pole position as
ffiffiffiffiffi
sR

p � mR � i�R=2, and it is also usual to use this
notation for broader resonances. The use of

ffiffiffiffiffi
sR

p
to determine the resonance mass and width leads to heavier and narrower states. As a

matter of example, with the parameters of Eq. (18), we find
ffiffiffiffiffi
s�

p ¼ ð840þ140
�100 � i133þ89

�43Þ MeV. Variations are much more drastic for
the case of the � resonance, because it is significantly broader than the � meson.

3On the contrary, for the case of the � meson neglecting the LEC’s contribution leads to unrealistic results: s� ¼ 288�2f2=ð2þ
3i�Þ, which gives m� ¼ 689 MeV and �� ¼ 3245 MeV, or equivalently

ffiffiffiffiffi
s�

p ¼ 1175� i951 MeV.

J. NIEVES AND E. RUIZ ARRIOLA PHYSICAL REVIEW D 80, 045023 (2009)

045023-4



After this discussion, it is easy to understand the no-
menclature commonly used in the literature of dynamically
generated referring to the � resonance. Actually, it is
possible to describe the scalar channel with the leading
order plus a cutoff (or another regularization parameter)
playing the role of some combination of higher order
parameters, while for the case of the � resonance the
Oðp4Þ LEC’s are needed [26,36,42,43].

IV. LARGE NC LIMIT OF THE ONE-LOOP IAM �
AND � POLES

The large NC extension of the � and � pole positions
obtained in the previous section is straightforward. We
should just consider that the pion weak decay constant
scales as Oð ffiffiffiffiffiffiffi

NC

p Þ, while the LEC’s L1;2;3 behave as

OðNCÞ, with L2 � 2L1 ¼ OðN0
CÞ [1,2]. The chiral logs,

as well as the renormalization scale dependence of the
LEC’s [Eq. (9)], are subleading in 1=NC. Thus, we trivially
find for NC � 3 and massless pions

m̂ 2
� ¼ � f̂2

4L̂3

; �̂� ¼ m̂3
�

96�f̂2
; (24)

m̂ 2
� ¼ 3f̂2

50L̂2 þ 22L̂3

; �̂� ¼ m̂3
�

16�f̂2
; (25)

where the hat over a symbol (Ô) implies its value in the
NC � 3 limit. Although we expect that the NC behavior
close to the physical value NC ¼ 3 of the � is non-q �q due
to the chiral logs, for a sufficiently large NC, the above

equations, provided that�L̂3 and ð25L̂2 þ 11L̂3Þ are posi-
tive quantities, show that for both resonances, the mass
scales asOðN0

CÞ, while the width decreases as 1=NC. Thus,

in this NC regime both resonances would follow a q �q
pattern in the nomenclature of Refs. [34,35]. Never-
theless, the very large NC pole in (25) could be located at
a rather different position from that of NC ¼ 3, as we will
discuss below. This largeNC pole might then be interpreted
as a subdominant q �q component of the � resonance. From
a sufficiently large value of NC on, such a component may
become dominant, and beyond that NC the associated pole
would behave as a q �q state, although the original state only
had a small admixture of q �q [44]. Something similar was
found at two loops in [35], but we are showing here that it

is possible also at one loop. On the other hand, if either L̂3

or ð25L̂2 þ 11L̂3Þ were exactly zero, the pole position (sR)
of the associated resonance would grow with NC as f̂2, for
sufficiently large NC.

In any case, we face here the fundamental problem of
determining the values of f, L2, and L3 for unphysical
NC � 3 values. The separation between the large NC lead-

ing and subleading parts of the measured Li is not trivial.
4

In general, one has the scale independent combination

Lr
i ðm�Þ ¼ Lr

i ð�Þ þ �i

ð4�Þ2 lnð�=m�Þ ¼ AiNC þ Bi; (26)

where Ai and Bi are NC independent. Note that only the
NC ¼ 3 combination is experimentally accessible.
However a meaningful extension of the chiral amplitudes
to an arbitrary number of colors requires some knowledge
of the different Ai and Bi coefficients, and of course of
those appearing in a similar decomposition of the pion
decay constant. This is of particular importance in the
scalar channel due to the large cancellation5 existing in
the combination ð25Lr

2ðm�Þ þ 11L3Þ.
In Ref. [34], the prescription of scaling f ! f

ffiffiffiffiffiffiffiffiffiffiffiffi
NC=3

p
,

and Lr
i ðm�Þ ! Lr

i ðm�ÞðNC=3Þ for i ¼ 2, 3 is adopted.

There, 2Lr
1ðm�Þ � Lr

2ðm�Þ is kept constant and an uncer-

tainty on the scale � ¼ 0:5–1 GeV is also taken into
account. However, as NC starts significantly deviating
from the physical value NC ¼ 3, such prescription might
not be accurate enough. For example, let us consider the
case of the� resonance. As mentioned above, there exists a
large cancellation in the LEC’s contribution to the scalar
channel, and it plays a minor role for NC ¼ 3. As a result,
not only the absolute value, but also the sign of
ð25Lr

2ðm�Þ þ 11L3Þ is subject to sizable uncertainties.

Depending on the set of values used, one finds different
signs for this combination of LEC’s, which induces totally
different behaviors when the number of colors grows.
Thus, with the Oðp6Þ values of Eq. (18), this combination
is negative, while it turns out to be positive when theOðp4Þ
set of Eq. (19) is considered.6

(i) When ð25Lr
2ðm�Þ þ 11L3Þ is negative, the real part

of the denominator of Eq. (14) approaches zero for
increasing NC, which implies that m� also ap-

4There exists in principle the possibility of using partially
quenched QCD to extract the LEC’s [45,46]. Actually quenched
QCD, partially quenched QCD, and (unquenched) QCD have the
same large NC limit [47]. From that point of view such an
analysis would assist one to disentangle between the leading
and subleading NC contributions, with Oð1=NCÞ accuracy. Note
that the fermion determinant is suppressed for NC ! 1 and also
in the heavy quark limit, mQ ! 1. However, the determinant
does not contain the totality of 1=NC corrections or 1=mQ
corrections and for this reason quenched calculations still con-
tain a piece of pion loops. It remains to be seen if such consid-
erations help in fixing the fine-tuning problem described below.

5For instance, the Oðp4Þ values of Eq. (19) lead to
jð25Lr

2ðm�Þ þ 11L3Þ=ð11L3Þj ¼ 0:06þ0:29
�0:03.

6Even more worrying, if we made use of L2 � 2L1 ¼ OðN0
CÞ

and replaced ð25Lr
2ðm�Þ þ 11L3Þ by ð50Lr

1ðm�Þ þ 11L3Þ, within
the same accuracy in the NC expansion, this LEC’s combination
would come out now negative with the set of parameters of
Eq. (19), and substantially closer to zero than before, when the
parameters of Eq. (18) are used.
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proaches zero, while the width grows even faster that
m�1

� . From a given value of NC on, such that the real
part of the denominator of Eq. (14) becomes nega-
tive, Eq. (14) does not admit solution in the fourth
quadrant. In this scenario, the � resonance disap-
pears, in the NC � 3 limit, from this quadrant of the
SRS, and the pole appears in the third quadrant,7

though
ffiffiffiffiffi
s�

p
still lies in the fourth quadrant. This is

precisely the variable used in Refs. [34,35]. To illus-
trate this point, in Fig. 1 we show results for the
� pole, as a function of NC. We have fixed Lr

1;2;3ðm�Þ
to the values labeled as IAM in Table I of Ref. [34].
From NC ¼ 11 on, the pole moves to the third quad-
rant, while

ffiffiffiffiffi
s�

p
is still placed in the fourth quadrant.

These massless pion
ffiffiffiffiffi
s�

p
results compare nicely to

those displayed in the middle panels of Fig. 2 of
Ref. [34], indicating that neglecting pion mass and
coupled channel effects constitute also a good ap-

proximation to analyze the large NC behavior of this
resonance. The behavior at small values of NC close
to 3 support the conclusions of Refs. [34,35] on the
nondominant q �q nature of the � in the real world,
while the results for larger values of NC would
indicate that there does not exist a subdominant q �q
component in the � wave function. Nevertheless,
these predictions are subject to sizable uncertainties
beyond let us say NC ¼ 10, since j ffiffiffiffiffi

s�
p j is already

0.9 GeV for NC ¼ 10, and it reaches values close to
1.35 GeV for NC ¼ 30. The applicability of the one-
loop IAM is, at least, doubtful for these large values
of j ffiffiffi

s
p j. Although the one-loop IAM amplitude in-

corporates contributions to all orders in the chiral
expansion (increasing powers of 1=f2n), it only ac-
curately accounts for those needed to exactly restore
two-body elastic unitarity. Therefore, a more precise
knowledge of the leading NC terms of the Oðp6Þ,
Oðp8Þ, etc. amplitudes seems to be required. In this
context the two-loop IAM analysis carried out in
Ref. [35] is better founded.

(ii) On the contrary, when the combination
ð25Lr

2ðm�Þ þ 11L3Þ is positive, the large NC limit

of the � meson is qualitatively identical to that of

the � meson, with m̂� �OðN0
CÞ and �̂� �OðN�1

C Þ.
There will exist a q �q component in the�meson that
would become dominant in the NC � 3 limit.
However, if it happens that for NC ¼ 3, the magni-
tude 192�2ð25Lr

2ðm�Þ þ 11L3Þ, though positive, is

close to zero and significantly smaller than 51=2,
there exists a transient region of low and intermedi-
ate values of NC where the expected scaling rules
are not satisfied and the chiral log �25 lnðs�=�2Þ
induces nontrivial and unexpected dependences on
NC. This indicates that the q �q component of the � is
subdominant when NC ¼ 3. Once NC is sufficiently
large, the real part becomes rather constant, while
the imaginary part starts decreasing, as predicted by
Eq. (25). However, this asymptotic value for the
mass would be out of the range of applicability of
one-loop ChPT, and the caveats mentioned above on
the need of some detailed leadingNC Oðp6Þ,Oðp8Þ,
. . . input will apply also here.

Thus, theNC � 3 behavior of the�meson within the IAM
method to one loop depends critically on the sign and size
of a parameter combination in which the value cannot be
pinned down reliably with the needed accuracy. This cru-
cial role played by the critical LEC’s combination
ð25Lr

2ðm�Þ þ 11L3Þ to determine the NC ! 1 limit of

the � resonance was first pointed out in [48]. Here, we
provide in addition an error analysis, address the relevance
of identifying the leading NC term in the decomposition of
Eq. (26), analyze the relation between � and � channels
(see below also), and discuss the transition to a region

FIG. 1 (color online). �-pole results, as a function of the
number of colors, obtained with Lr

1;2;3ðm�Þ fixed to the values

labeled as IAM in Table I of Ref. [34] and extended to arbitrary
NC as in that reference. Up to NC ¼ 10 we solve Eq. (14);
beyond this number of colors, the pole lies in the third
quadrant [we solve Eq. (14) with the modifications mentioned
in footnote 7]. All results are normalized by the NC ¼ 3 results:
m� ¼ 328:1 MeV, �� ¼ 629:6 MeV, and

ffiffiffiffiffi
s�

p ¼ ð412:6�
i250:3Þ MeV.

7To compute the SRS amplitude at s ¼ �a� ib, with a > 0,
b > 0 (third quadrant), Eqs. (15) and (16) should be replaced by

lnð�sÞ ¼ lnjsj þ i arctan

�
b

a

�
� 2�i; (27)

lnðsÞ ¼ lnjsj þ i arctan

�
b

a

�
� i�; (28)
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where the pole is located in Res < 0 half-plane.8 The
above discussion clearly illustrates the need of having
some reliable and independent insight9 into the NC leading
and subleading terms of Eq. (26). To this end, we will next
make use of the resonance saturation approach [32,33].

V. LEC’S: RESONANCE SATURATION APPROACH
AND LARGE NC LIMIT

In the resonance saturation approach one writes down a
Lagrangian including the resonance fields and integrate
them out [32,33], yielding values for the LEC’s at some
scale not too far away from the resonance region. It is
common practice to adopt � ¼ m� as a reasonable choice.

The generalization of this approach to the large NC limit
requires, in addition to including infinitely many reso-
nances, the use of short distance constraints [49], which
are conditions stemming from the analysis of Green’s
functions in QCD at high momentum. In the SRA, each
infinite resonance sum is approximated with the contribu-
tion from the first meson nonet with the given quantum
numbers. This is meaningful at low energies where the
contributions from higher mass states are suppressed by
their corresponding propagators. Within SRA one finds
(see Refs. [32,33] for notation),

½Lr
1ðm�Þ�SRA ¼ G2

V

8M2
V

� c2d
6M2

S

þ ~c2d
2M2

S1

; (29)

½Lr
2ðm�Þ�SRA ¼ G2

V

4M2
V

; (30)

LSRA
3 ¼ � 3G2

V

4M2
V

þ c2d
2M2

S

; (31)

where MS1 and MS are the singlet and octet scalar masses,

respectively, and MV that of the nonet of vector mesons.
In the NC � 3 limit, octet and singlet mesons become

degenerate and thus MS1 ¼ MS, while GV , cd, and ~cd are

all OðN1=2
C Þ. The large NC condition L2 � 2L1 ¼ OðN0

CÞ
can then be achieved by taking c2d ¼ 3~c2d, while the short

distance constraints can be used to determine the resonance
couplings at leading order in the NC expansion [32,33,49],

ffiffiffi
2

p
GV ¼ 2cd ¼ f: (32)

Altogether this allows one to estimate the leadingNC terms
[A0

is coefficients in Eq. (26)] of L
r
2ðm�Þ and L3 LEC’s [49],

½Lr
2ðm�Þ�SRA ¼ f2

8M2
V

þOðN0
CÞ;

LSRA
3 ¼ � 3f2

8M2
V

þ f2

8M2
S

þOðN0
CÞ:

(33)

The subleading NC corrections to the SRA predictions of
the LEC’s are difficult to estimate in a model independent
way (see however [50,51]). The last column of Table 2 in
Ref. [49] shows10 the estimates for Lr

2ðm�Þ and L3 obtained

with MV ¼ 0:77 GeV and MS ¼ 1:0 GeV, and those, by

simply scaling with NC=3, can be used to determine L̂2;3,

10 3L̂SRA
2 ¼ 1:8� NC

3
; 103L̂SRA

3 ¼ �4:3� NC

3
:

(34)

The above value for LSRA
3 provides an estimate for the

� mass, in the NC � 3 limit, of around 700 MeV, while
its width decreases as 1=NC [Eq. (24)]. This result is in
good agreement with the findings of Ref. [34], also ob-
tained within the one-loop IAM scheme, but including both
finite pion mass and coupled channel effects. The results
for the � resonance are robust, and since the mass is
moderately small, we expect they would not be much
affected by leading NC contributions showing up at order
Oðp6Þ or higher, as confirmed by the two-loop results of
Ref. [35]. Under these circumstances, if we identify m̂�

with MV (mass of the nonet of vector mesons that is
introduced in the SRA), and require consistency between
Eqs. (24) and (33), we find

LSRA
3 ¼ � 3f2

8M2
V

þ f2

8M2
S

þOðN0
CÞ

¼ � f2

4M2
V

ð1þOðm2=M2
VÞÞ þOðN0

CÞ; (35)

where we have used that f̂2=L̂3 ¼ f2=L3 þOð1=NCÞ.
From the above equation, it trivially follows

MS ¼ MV þOð1=NCÞ þOðmN0
CÞ; (36)

which is based on the relation GV ¼ ffiffiffi
2

p
cd þOðN0

CÞ
[Eq. (33)] and the assumed scheme, namely, SRA-one-
loop IAM. It is worth noting that the large Nc identity of
scalar and vector meson masses, Eq. (36), has also been
derived within the context of mended symmetries [52] as
well as chiral quark models [53]. Computing finite pion
mass corrections to Eq. (36) is straightforward. Indeed, in
the large NC limit, the only relevant pion mass corrections
to the amplitude are those proportional to �l1 � �l2 and �l4
[see for instance Eq. (B7) in Ref. [36]]. Taking into account
that �l4 is determined by the combination 2Lr

4ð�Þ þ Lr
5ð�Þ

and that L5 dominates in theNC � 3 limit, one easily finds

8Note that in this case, the path integral for the resonance field
would not be well defined.

9Though desirable, the knowledge of such a decomposition for
f is less relevant, since it will not affect the existence of the �
state in the NC � 3 limit. 10Note that in this reference, f is fixed to 92 MeV.
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m̂ 2
� ¼ � f̂2

4L̂3

�
1� 8m2

f̂2
L̂5

�
; (37)

and by using [49]

½Lr
5ðm�Þ�SRA ¼ f2

4M2
S

þOðN0
CÞ; (38)

the SRA-one-loop IAM consistency requirement now
leads to

M2
S ¼ M2

V � 4m2 þOð1=NCÞ; (39)

which constitutes one of the main results of this work.
The situation, however, is totally different in the scalar

sector. From the estimates given in Eq. (34), we find that

the combination ð25L̂SRA
2 þ 11L̂SRA

3 Þ turns out to be small
compared to the log contribution and negative. Thus, for
NC sufficiently large the � pole disappears from the fourth
quadrant of the SRS, and one finds a similar behavior to
that depicted in Fig. 1. This might hint at a definite non-q �q
nature of the � resonance, as suggested in Ref. [34], since
there is no trace even of the existence of a subdominant q �q
component. Finite pion mass corrections can be easily
taken into account, but they do not modify the discussion.
Note however, once more, the large cancellation that oc-

curs in this combination of LEC’s, since jð25L̂SRA
2 þ

11L̂SRA
3 Þ=ð11L̂SRA

3 Þj ¼ 0:05. As a consequence, it is diffi-
cult to draw any robust conclusion on the nature (existence
or not of the q �q component) of the lightest spin-isospin
scalar meson in the NC ! 1 limit. Actually, a small varia-
tion of the short distance constraint relations of Eq. (32),
increasing slightly the ratio cd=GV , or approximating MS

by MV � 770 MeV, as suggested by Eq. (36), would re-
duce jLSRA

3 j and lead to positive values for the LEC’s

combination ð25L̂SRA
2 þ 11L̂SRA

3 Þ.
Under these circumstances, we will consider a different

scenario. Let us assume that ð25L̂SRA
2 þ 11L̂SRA

3 Þ is posi-
tive, leading then to a stable � resonance in the NC � 3
limit. Its mass then could be identified to that of the first
nonet of scalar mesons introduced in the SRA. If we take
MS ¼ m̂� and MV ¼ m̂�, and requiring consistency, be-

tween Eqs. (30) and (31) and the mass of the � and
� mesons in the large NC limit, given in Eqs. (24) and
(25), we find

MS ¼ 2MV þOð1=NCÞ; cd ¼ fþOð1=NCÞ (40)

for massless pions. The second condition (cd � f) is phe-
nomenologically strongly disfavored [49], while the first
one contradicts the more robust result of Eq. (36) [or (39)]
based only in the vector channel. There are different ways
to circumvent this apparent contradiction: not identifying
MS ¼ m̂� and assuming that, in the large NC limit, the �
meson becomes heavier than the scalar meson nonet, in-
voked in the SRA, or correcting the SRA estimates of the
LEC’s by considering, for instance, contributions of tensor

resonances [54], etc. Nevertheless, one should bear in mind
that for this large value of the mass (� 2MV), IAM results,
based on the first two orders of the chiral expansion, should
not be very reliable because of the limited control on the
leading NC terms appearing beyond 1=f4.

VI. CONCLUSIONS

We have started looking at the chiral limit of the one-
loop SU(2) ChPT amplitudes. We have shown how in the
chiral limit, a major source of distinction between the �
and � channels is due to the role played by chiral loga-
rithms; while for the � channel the logs add up into sizable
contributions, in the � channel they cancel exactly. Next,
we have used the IAM to unitarize the amplitudes and have
looked for poles in the SRS of the amplitudes. We have
found a fair description of the established properties of the
� and � resonances, showing the little effect of finite pion
mass and coupled channel corrections.
The properties of these resonances for a growing number

of colors have been also discussed. Our results confirm and
explain the different behavior, in agreement with
Refs. [34,35], of the � and � for NC not far from 3, but,
when extending the analysis to the largeNC limit, no robust
conclusion of the � pole behavior can be inferred from the
one-loop IAM only. This is due to the large cancellation
existing in the combination of LEC’s that govern the scalar
channel; there exists a critical value for a combination of
LEC’s which cannot be pinned down with the needed
accuracy at any value of NC.
Finally, we have discussed further constraints deduced

by requiring consistency between resonance saturation and
unitarization. By looking only at the � channel, we have
found that the masses of the first vector and scalar meson
nonets, invoked in the SRA, turn out to be degenerated in
the large NC limit [see Eq. (36) or Eq. (39) that incorpo-
rates finite pion mass corrections]. The two-loop calcula-
tion of Ref. [35] supports this latter result. If we look at the
right top panel of Fig. 1 of this reference, we observe that
above the NC ¼ 6� 10 region, the �mass becomes rather
constant, while its width rapidly decreases. Moreover, this
large NC asymptotic value of the mass is around 2 or
3 times bigger than Re

ffiffiffiffiffi
s�

p jNC¼3, and thus it lies in the

1 GeV region, quite close then to the � mass.
Within the restricted IAM unitarization approach as-

sumed here, we would find a scenario where the � reso-
nance would become degenerate with the � and stable, for
a sufficiently large number of colors. This complies with
the consequences of mended symmetries [52] as well as
with chiral quark model calculations [53]. However, the
nature of the� resonance in the real world (NC ¼ 3) would
be totally different to that of the �meson, being it is mostly
governed by chiral logarithms stemming from unitarity and
crossing symmetry, justifying the widely accepted nature
of the � as a dynamically generated meson.
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