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We study the deconfinement transition of hadronic matter into quark matter under neutron star

conditions assuming color and flavor conservation during the transition. We use a two-phase description.

For the hadronic phase we use different parametrizations of a nonlinear Walecka model which includes the

whole baryon octet. For the quark-matter phase we use an SUð3Þf Nambu–Jona-Lasinio effective model

including color superconductivity. Deconfinement is considered to be a first order phase transition that

conserves color and flavor. It gives a short-lived transitory colorless-quark phase that is not in �

equilibrium, and decays to a stable configuration in �� �weak � 10�8 s. However, in spite of being

very short lived, the transition to this intermediate phase determines the onset of the transition inside

neutron stars. We find the transition free-energy density for temperatures typical of neutron star interiors.

We also find the critical mass above which compact stars should contain a quark core and below which

they are safe with respect to a sudden transition to quark matter. Rather independently on the stiffness of

the hadronic equation of state (EOS) we find that the critical mass of hadronic stars (without trapped

neutrinos) is in the range of �1:5–1:8 solar masses. This is in coincidence with previous results obtained

within the MIT bag model.

DOI: 10.1103/PhysRevD.80.045017 PACS numbers: 12.39.Fe, 25.75.Nq, 26.60.Kp

I. INTRODUCTION

The core of compact stars can reach densities that are
several times larger than the saturation density of nuclear
matter. In such extreme conditions the baryons get so
compressed that they start to overlap and can produce a
deconfined gas of quark matter. An important character-
istic of the deconfinement transition in neutron stars is that
just deconfined quark matter is transitorily out of equilib-
rium with respect to weak interactions. In fact, depending
on the temperature, the transition should begin with the
quantum or thermal nucleation of a small quark-matter
drop near the center of the star. On the other hand, the
flavor composition of hadronic matter in � equilibrium is
different from that of �-stable quark-matter drop. Roughly
speaking, the direct formation of a �-stable quark drop
with N quarks will need the almost simultaneous conver-
sion of �N=3 up and down quarks into strange quarks, a
process which is strongly suppressed with respect to the

formation of a non-�-stable drop by a factor �G2N=3
Fermi. For

typical values of the critical-size �-stable drop (N �
100–1000 [1]), the suppression factor is actually tiny.
Thus, quark flavor must be conserved during the deconfine-
ment transition [1–7]. The main consequence of this con-
dition is that the density of the transition is higher than it
would be if the direct formation of �-stable quark drops
were possible. This is easy to understand, since the Gibbs
free energy per baryon of �-equilibrated quark matter is
always smaller of that of the non-�-equilibrated state [6].

Because of the uncertainties in the knowledge of the
state of matter at the densities of interest, studies of the
deconfinement transition are usually based on the extrapo-
lation to higher densities of an hadronic model valid
around the nuclear saturation density �0, and the extrapo-
lation to ��0 of a quark model that is expected to be valid
only for high densities. Within this kind of analysis the (in
general) different functional form of both equations of state
(EOSs) induces the phase transition to be first order. Notice
that from lattice QCD calculations there are indications
that the transition is actually first order in the high-density
and low-temperature regime, although these calculations
involve temperatures that are still larger than those in
neutron stars, and do not include the effect of color super-
conductivity [8]. In a previous work [6], the deconfinement
transition has been analyzed within the frame of the MIT
bag model paying special attention to the role of color
superconductivity. In the present paper we shall analyze
the deconfinement transition employing the Nambu–Jona-
Lasinio model in the description of quark matter. For the
hadronic phase, we shall use a model based on a relativistic
Lagrangian of hadrons interacting via the exchange of �,
�, and ! mesons [9]. For simplicity, the analysis will be
made in bulk, i.e. without taking into account the energy
cost due to finite size effects in creating a drop of decon-
fined quark matter in the hadronic environment.
This article is organized as follows. In Sec. II we briefly

outline the nonlinear Walecka model used to describe the
hadronic phase. In Sec. III we provide some details of the
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Nambu–Jona-Lasinio model we employ to describe the
quark-matter phase paying special attention to the condi-
tions of color and flavor conservation. In Sec. IV we
present and discuss our numerical results. Finally, in
Sec. V a summary with some conclusions is given.

II. THE HADRONIC PHASE

For the hadronic phase we shall use a nonlinear Walecka
model [9–11] which includes the whole baryon octet. The
Lagrangian of the model is given by

L ¼ LB þLM þLL; (1)

where the indices B, M, and L refer to baryons, mesons,
and leptons, respectively. For the baryons we have

LB ¼ X
B

�c B½��ði@� � g!B!� � g�B ~� � ~��Þ

� ðmB � g�B�Þ�c B; (2)

with B extending over the nucleons N ¼ n; p and the
following hyperons H ¼ �;�þ;�0;��;��, and �0.
The contribution of the mesons �, !, and � is given by

LM ¼ 1

2
ð@��@���m2

��
2Þ � b

3
mNðg��Þ3 � c

4
ðg��Þ4

� 1

4
!��!

�� þ 1

2
m2

!!�!
� � 1

4
~��� � ~���

þ 1

2
m2

� ~�� � ~��; (3)

where the coupling constants are

g�B ¼ x�Bg�; g!B ¼ x!Bg!; g�B ¼ x�Bg�;

(4)

where x�B, x!B, and x�B are equal to 1 for the nucleons and

acquire different values for the other baryons depending on
the parametrization (see below). The leptonic sector is
included as a free Fermi gas which does not interact with
the hadrons, i.e.,

L L ¼ X
l

�c lði@6 �mlÞc l: (5)

There are five constants in the model that are determined
by the properties of nuclear matter, three that determine the
nucleon couplings to the scalar, vector, and vector-
isovector mesons g�=m�, g!=m!, g�=m�, and two that

determine the scalar self-interactions b and c. It is assumed

that all hyperons in the octet have the same coupling as the
�. These couplings are expressed as a ratio to the nucleon
couplings mentioned above, that we thus simply denote x�,
x!, and x�. In the present work we use three parametriza-

tions for the constants. One of them is the standard pa-
rametrization GM1 given by Glendenning-Moszkowski
[9], as shown in Table I. This parametrization employs
‘‘low’’ values for x�, x!, and x�. Larger values of these

couplings make the EOS stiffer and increase the value of
the maximum mass of hadronic stars to values above than
2M�, see Table I.

III. THE QUARK PHASE

In order to study the just deconfined quark-matter phase,
we use an SUð3Þf Nambu–Jona-Lasinio (NJL) effective

model which also includes color superconducting quark-
quark interactions. The corresponding Lagrangian is given
by

L ¼ �c ði@6 � m̂Þc þG
X8
a¼0

½ð �c �ac Þ2 þ ð �c i�5�ac Þ2�

þ 2H
X

A;A0¼2;5;7

½ð �c i�5�A�A0c CÞð �c Ci�5�A�A0c Þ�;

(6)

where m̂ ¼ diagðmu;md;msÞ is the current mass matrix in
flavor space. The matrices �i and �i with i ¼ 1; . . . ; 8 are
the Gell-Mann matrices corresponding to the flavor and

color groups, respectively, and �0 ¼
ffiffiffiffiffiffiffiffi
2=3

p
1f. Finally, the

charge conjugate spinors are defined as follows: c C ¼
C �c T and �c C ¼ c TC, where �c ¼ c y�0 is the Dirac con-
jugate spinor and C ¼ i�2�0.
The Lagrangian in Eq. (6) leads to local chirally invari-

ant current-current interactions in the quark-antiquark and
quark-quark channels. The latter is expected to be respon-
sible for the presence of a color-superconducting phase in
the region of low temperatures and moderate chemical
potentials. Here for simplicity we do not include flavor
mixing effects. The values of the quark masses and the
coupling constant G can be obtained from the meson
properties in the vacuum. On the other hand, an estimate
of H=G can be obtained from Fierz transformation of the
one-gluon-exchange interactions in which case one gets
H=G ¼ 0:75, which is the value we will use hereafter.
To be able to determine the relevant thermodynamical

quantities, we have to obtain the grand canonical thermo-

TABLE I. Parameters of the hadronic equation of state. For each parametrization we give the maximum mass Mmax of a hadronic
star.

Label Composition x� ¼ x� x! ðg�=m�Þ2 [fm2] ðg!=m!Þ2 [fm2] ðg�=m�Þ2 [fm2] b c Mmax

GM1 Baryon octetþ e� 0.6 0.653 11.79 7.149 4.411 0.002 947 �0:001 070 1:78M�
GM4 Baryon octetþ e� 0.9 0.9 11.79 7.149 4.411 0.002 947 �0:001 070 2:2M�
GM5 Nucleonsþ e� 0.6 0.653 11.79 7.149 4.411 0.002 947 �0:001 070 2:35M�
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dynamical potential �ðT;�fcÞ at finite temperature T and

chemical potentials �fc. Here, f ¼ ðu; d; sÞ and c ¼
ðr; g; bÞ denote flavor and color indices, respectively. For
this purpose we start from Eq. (6) and perform the usual
bosonization of the theory. This can be done by introducing
scalar and pseudoscalar meson fields �a and 	a, respec-
tively, together with the bosonic diquark field �A. In this
work we consider the quantities obtained within the mean
field approximation. Thus, we only keep the nonvanishing
vacuum expectation values of these fields and drop the
corresponding fluctuations. For the meson fields this im-
plies �̂ ¼ �a�a ¼ diagð�u; �d; �sÞ and 	a ¼ 0.
Concerning the diquark mean field, we will assume that
in the density region of interest only the 2SC phase might
be relevant. Thus, we adopt the ansatz�5 ¼ �7 ¼ 0,�2 ¼
�. Integrating out the quark fields and working in the
framework of the Matsubara and Nambu-Gorkov formal-
ism we obtain

�MFAðT;�fc; �f; j�jÞ ¼ �T

2

X1
n¼�1

Z d3k

ð2	Þ3

� ln det

�
S�1ðkÞ

T

�

þ 1

4G
ð�2

u þ �2
d þ �2

sÞ þ j�j2
2H

;

(7)

where

S�1 ¼ k6 � M̂þ �0�̂ ���5�2�2

���5�2�2 k6 � M̂� �0�̂

 !
: (8)

Here, we have used k ¼ ðð2nþ 1Þ	T; ~kÞ, M̂ ¼
diagðMu;Md;MsÞ with Mf ¼ mf þ �f, and �̂ ¼
diagðf�fcgÞ in flavor � color space. The determinant of

this 72� 72 matrix can be calculated analytically ifMu ¼
Md. Thus, in what follows we will use the approximation
mu ¼ md 	 m and �u ¼ �d 	 � which implies Mu ¼
Md 	 M. A detailed procedure for the calculation of the
determinant can be found in Refs. [12–14]. The resulting
contribution to the thermodynamical potential is

� T

2

X
n

Z d3k

ð2	Þ3 ln det½S�1ðkÞ=T�

¼ 2
Z � d3k

ð2	Þ3
X9

¼1

!ðxi; yiÞ þ constant; (9)

where� is the cutoff of the theory and!ðx; yÞ is defined by
!ðx; yÞ ¼ �½xþ T ln½1þ e�ðx�yÞ=T� þ T ln½1þ e�ðxþyÞ=T��;

(10)

with

x1;2 ¼ E; x3;4;5 ¼ Es;

x6;7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Eþ ð�ur 
�dgÞ

2

�
2 þ �2

s
;

x8;9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Eþ ð�ug 
�drÞ

2

�
2 þ �2

s

y1 ¼ �ub; y2 ¼ �db; y3 ¼ �sr;

y4 ¼ �sg; y5 ¼ �sb;

y6;7 ¼
�ur ��dg

2
; y8;9 ¼

�ug ��dr

2
;

(11)

where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þM2

p
, Es ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þM2

s

q
.

Finally, we include the thermodynamical potential for
noninteracting ultrarelativistic electrons

�e ¼ � �4
e

12	2
��2

eT
2

6
� 7	2T4

180
; (12)

where �e is the electron chemical potential. Therefore, the
total potential for the quark-matter electron system is

�ðT; f�fcg; �e; �; �sÞ ¼ 1

	2

Z �

0
dkk2

X
i

!ðxi; yiÞ

þ 1

4G
ð�2

u þ �2
d þ �2

sÞ

þ j�j2
2H

��vac þ�e: (13)

Here we have subtracted the constant�vac in order to have
a vanishing pressure at vanishing temperature and chemi-
cal potentials. From the grand thermodynamic potential �
we can readily obtain the pressure P ¼ ��, the number
density of quarks of each flavor and color

nfc ¼ � @�

@�fc

¼ � 1

	2

Z �

0
dkk2

@

@�fc

�X
i

!ðxi; yiÞ
�
;

(14)

and the number density of electrons

ne ¼ � @�

@�e

: (15)

The corresponding number densities of each flavor nf and

of each color nc in the quark phase are given by

nf ¼X
c

nfc; nc ¼
X
f

nfc: (16)

Finally, the baryon number density nB reads

nB ¼ 1

3

X
fc

nfc ¼ 1

3
ðnu þ nd þ nsÞ (17)

and the Gibbs free energy per baryon is
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gquark ¼ 1

nB

�X
fc

�fcnfc þ�ene

�
: (18)

For the NJL model we use two sets of parameters. They
have been derived from those used in Refs. [15,16] by
neglecting the ’t Hooft interaction. To do that we have
followed the procedure proposed in [17]. Namely, keeping
� and m fixed we have varied G and ms in order to obtain
M ¼ 367:6 MeV and Ms ¼ 549:5 MeV at zero tempera-
ture and density. The resulting parameter sets are given in
Table II.

In order to derive a quark-matter EOS from the above
formulas, it is necessary to impose a suitable number of
conditions on the variables f�fcg, �e, �, �s, and �. Three

of these conditions are consequences from the fact that the
thermodynamically consistent solutions correspond to the
stationary points of � with respect to �, �s, and �. Thus,
we have

@�=@� ¼ 0; @�=@�s ¼ 0; @�=@j�j ¼ 0:

(19)

To obtain the remaining conditions, one must specify the
physical situation in which one is interested in. In many
astrophysical applications considered in the literature
quark matter in � equilibrium was analyzed. In such a
case chemical equilibrium is maintained by weak interac-
tions among quarks, e.g. d $ uþ e� þ ��e, s $
uþ e� þ ��e, uþ d $ uþ s. Moreover, for neutron stars
older than a few minutes, neutrinos can leave the system.
Thus, lepton number is not conserved and we have four
independent conserved charges, namely, the electric charge
nQ ¼ 2

3nu � 1
3nd � 1

3ns � ne and the three color charges

nr, ng, and nb. Instead of nr, ng, and nb, the linear combi-

nations n ¼ nr þ ng þ nb, n3 ¼ nr � ng, and n8 ¼ 1ffiffi
3

p �
ðnr þ ng � 2nbÞ are often used. Here n is the total quark

number density (i.e. n ¼ 3nB) and n3 and n8 describe color
asymmetries. The four conserved charges fnjg ¼
fn; n3; n8; nQg are related to four independent chemical

potentials f�jg ¼ f�;�3; �8; �Qg such that nj ¼
�@�=@�j. The individual quark chemical potentials �fc

are given by

�fc ¼ �þ�Q

�
1

2
ð�3Þff þ 1

2
ffiffiffi
3

p ð�8Þff
�

þ�3ð�3Þcc þ�8ð�8Þcc; (20)

where, as before, �i and �i are the Gell-Mann matrices in
flavor and color space, respectively. The electron chemical

potential is �e ¼ ��Q, thus we have

�dc ¼ �sc ¼ �uc þ�e (21)

for all colors c, which are the �-equilibrium conditions.
For electrically and color neutral matter we have also the
conditions:

nQ 	� @�

@�Q

¼ 0; n3 	� @�

@�3

¼ 0; n8 	� @�

@�8

¼ 0:

(22)

Employing the above conditions, the system can be char-
acterized by two independent variables, e.g. ðT; nBÞ or
ðT; PÞ.
The conditions given in Eqs. (21) and (22) are exten-

sively employed to describe quark matter in � equilibrium.
However, in this paper we deal with just deconfined quark
matter which is temporarily out of � equilibrium. As al-
ready emphasized in [1–7], the appropriate condition in
this case is flavor conservation between hadronic and
deconfined quark matter. This can be written as

YH
f ¼ YQ

f f ¼ u; d; s; L (23)

being YH
f 	 nHf =n

H
B and YQ

i 	 nQf =n
Q
B the abundances of

each particle in the hadron and quark phase, respectively.
In other words, the just deconfined quark phase must have
the same ‘‘flavor’’ composition than the �-stable hadronic
phase from which it has been originated. Notice that, since
the hadronic phase is assumed to be electrically neutral,
flavor conservation ensures automatically the charge neu-
trality of the just deconfined quark phase.
The conditions given in Eq. (23) can be rewritten as

follows:

nd ¼ �nu; (24)

ns ¼ �nu; (25)

3ne ¼ 2nu � nd � ns; (26)

where ni is the particle number density of the i species in
the quark phase. The quantities � 	 YH

d =Y
H
u and � 	

YH
s =Y

H
u are functions of the pressure and temperature,

and they characterize the composition of the hadronic
phase. These expressions are valid for any hadronic EOS.
For hadronic matter containing n, p, �, �þ, �0, ��, ��,
and �0, we have

� ¼ np þ 2nn þ n� þ n�0 þ 2n�� þ n��

2np þ nn þ n� þ 2n�þ þ n�0 þ n�0

; (27)

� ¼ n� þ n�þ þ n�0 þ n�� þ 2n�0 þ 2n��

2np þ nn þ n� þ 2n�þ þ n�0 þ n�0

: (28)

Additionally, the deconfined phase must be locally color-
less; thus it must be composed by an equal number of red,
green, and blue quarks,

TABLE II. The two sets of NJL parameters.

mu;d [MeV] ms [MeV] � [MeV] G�2 H=G

Set 1 5.5 112.0 602.3 4.638 3=4
Set 2 5.5 110.05 631.4 4.370 3=4
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nr ¼ ng ¼ nb: (29)

Also, ur, ug, dr, and dg pairing will happen provided that
j�j is nonzero, leading to

nur ¼ ndg; nug ¼ ndr: (30)

In order to have all Fermi levels at the same value, we
consider [6]

nug ¼ nur (31)

nsb ¼ nsr: (32)

These two equations, together with Eqs. (29) and (30),
imply that nur ¼ nug ¼ ndr ¼ ndg and nsr ¼ nsg ¼ nsb.

Finally, including the conditions given in Eq. (19) we
have 12 equations involving the 13 unknowns (�, �s, j�j,
�e, and f�fcg). For a given value of one of the chemical

potentials (e.g. �ur), the set of equations can be solved
once the values of the parameters �, � and the temperature
T are given. Instead of �ur, we can provide a value of the
Gibbs free energy per baryon gquark or the pressure P and

solve simultaneously Eqs. (24)–(32) together with Eq. (19)
in order to obtain �, �s, j�j, �e, and f�fcg.

The above conditions represent a state that fulfills all the
physical requirements of the just deconfined phase, i.e. it is
color and electrically neutral, and it has a ‘‘flavor content’’
determined by the parameters � and � [both related to the
hadronic phase through Eqs. (27) and (28)].

The set of 12 equations can be summarized as follows
[6]:

nub ¼ 2
2� �

1þ �
nur; ndb ¼ 2

2�� 1

1þ �
nur;

nsr ¼ nsg ¼ nsb ¼ 2�

1þ �
nur;

nug ¼ ndr ¼ ndg ¼ nur; ne ¼ 2ð2� �� �Þ
1þ �

nur;

(33)

together with Eq. (19).

IV. DECONFINEMENT TRANSITION IN NEUTRON
STAR MATTER

For simplicity, the analysis that follows will be made in
bulk, i.e. without taking into account the energy cost due to
finite size effects in creating a drop of deconfined quark
matter in the hadronic environment. Finite size effects on
the nucleation of color superconducting quark bubbles in a
cold deleptonized hadronic medium have been recently
analyzed employing the MIT bag model in the description
of the quark phase [7]. As a consequence of the surface
effects, it is necessary to have an overpressure with respect
to the bulk transition point. However, since this effect is not
very large we leave its consideration for a future more
detailed work.

In order to determine the transition conditions, we apply
the Gibbs criteria, i.e. we assume that deconfinement will
occur when the pressure and Gibbs energy per baryon are
the same for both hadronic matter and quark matter at a
given common temperature. Thus, we have

gh ¼ gq; Ph ¼ Pq; Th ¼ Tq; (34)

where the index h refers to hadron matter and the index q to
quark matter. The results are displayed in Fig. 1 where we
show the Gibbs free energy per baryon g at the transition
point as a function of the temperature. The hadronic phase
is described by the three parametrizations of the EOS given
in Sec. II (see Table I). For the quark phase we adopt the
NJL model described above (using flavor conservation
conditions) with the two parametrizations given in
Table II. If hadronic matter has a temperature Th and a
Gibbs free energy per baryon gh lying to the left of a given
curve, then the deconfinement transition is not possible for
those parametrizations of the EOSs. In the right side region
of a given curve the preferred phase is deconfined quark
matter.
Let us now examine the consequences of the above

results on the structure of compact stars. Stars containing
quark phases fall into two main classes: hybrid stars (where
quark matter is restricted to the core) and strange stars
(made up completely by quark matter). It is expected that
both kinds of stars cannot exist simultaneously in nature,
but it is not known which one would be realized (if any).
This depends on whether the energy per baryon of
�-equilibrated quark matter at zero pressure and zero
temperature is less than the neutron mass (the so-called
‘‘absolute stability’’ condition [18]). Analysis made within
the MIT bag model shows that there is a room in the
parameter space for the existence of strange stars.
Moreover, pairing enlarges substantially the region of the
parameter space where �-stable quark matter has an en-
ergy per baryon smaller than the neutron mass [19,20].
Although the gap effect does not dominate the energetics,
being of the order ð�=�Þ2 � a few percent, the effect is
substantially large near the zero-pressure point (which
determines the stability and also the properties of the outer
layers and surface of the star). As a consequence, a ‘‘color-
flavor locked strange matter’’ is allowed for the same
parameters that would otherwise produce unbound strange
matter without pairing [19]. However, within the NJL
model, the strange matter hypothesis is not favored, at least
for the most accepted parametrizations of the EOS [17]. It
is worth mentioning that the stability of quark matter may
be affected by very strong magnetic fields. For magnetized
quark matter described by a NJL SU(2) model, the energy
per baryon has a minimum which is lower than the one
determined for magnetic free quark matter [21] allowing
for absolutely stable quark matter if the magnetic field is
strong enough. This effect is augmented in the NJL SU(3)
case (see Fig. 6 of [22]). However, the absolute stability
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condition is attained for magnetic fields around 1019 G
which is unrealistically high according to the present
understanding of neutron stars [23]. Thus, stars containing
quark phases are believed to be hybrid stars within the NJL
model.

At a given temperature there is a univocal relation
between the mass of a compact star and its central pressure
(or equivalently the Gibbs free energy per baryon at the

center of the star). Thus, we can employ the results given in
Fig. 1 to calculate the critical compact star massMcr above
which they should contain a quark core. With this purpose,
we integrate the Tolman-Oppenheimer-Volkoff equations
of relativistic stellar structure employing the hadronic
EOSs given in Table I, and identify the mass of the pure
hadronic star for which the Gibbs free energy per baryon
gh at the center is equal to the critical g given in Fig. 1.
This is called criticalmassMcr because pure hadronic stars
with Mh >Mcr are very unlikely to be observed, while
pure hadronic stars withMh <Mcr are safe with respect to
a sudden transition to quark matter. The results are shown
in Fig. 2 for neutron stars at zero temperature where we
show the mass-radius relationship for hadronic stars and
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FIG. 2. Mass-radius relationship for hadronic stars at zero
temperature with the GM1, GM4, and GM5 EOS. For a given
parametrization of the NJL model, stars with a mass above the
corresponding point given in the figure are hybrid stars contain-
ing quark cores. The mass-radius relationship for these hybrid
stars is not shown in this figure.

FIG. 1. For each temperature we show the Gibbs free energy
density per baryon g of the deconfinement phase transition. The
hadronic phase is described by the GM1, GM4, and GM5
parametrization of the EOS given in Sec. II (see Table I). For
the quark phase we adopt the two parametrizations of the NJL
model given in Table II. If hadronic matter has a temperature Th

and a Gibbs free energy density per baryon gh lying to the left of
a given curve, then the deconfinement transition is not possible
for that parametrizations of the EOSs. If the point ðgh; ThÞ lies to
the right of the curve the preferred phase is deconfined quark
matter.
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indicate the critical mass for the two selected parametri-
zations of the NJL model.

In the first seconds after their formation in a core col-
lapse supernova explosion, neutron stars may have tem-
peratures up to �50 MeV and a large amount of trapped
neutrinos. Thus, the results presented in Fig. 1 are not
appropriate for the analysis of the critical mass in proto-
neutron star conditions since they do not include the effect
of trapped neutrinos. However, trapped neutrinos increase
considerably the critical density �cr for the transition to
quark matter [3]. Thus, it is possible that the transition is
strongly inhibited in the initial moments of the evolution of
neutron stars [4]. About one minute after its birth, there are
almost no more trapped neutrinos in neutron star matter,
while the temperature is still high (up to �10 MeV [24]).
Thus, the results presented in Fig. 1 are valid for neutron
stars older than�1 minute. On the other hand, as apparent
from Fig. 1, there is little variation in the criticalGibbs free
energy per baryon for temperatures below �10 MeV.
Thus, the critical masses presented in Fig. 2 are also valid
for neutron stars older than �1 minute (in spite of being
calculated considering hadronic matter at zero tempera-
ture). Finally, we notice that according to the results given
in [21,22] we may expect that the magnetic field should
reduce somewhat the transition density �cr and the critical
mass Mcr. In fact, this effect has been explicitly calculated
in [25] employing a quark-mass density-dependent model
for quark matter. The transition density is reduced by a
factor of �2 for fields �1018 G, thus we do not expect
significant modifications of the here-presented results for
more realistic neutron star’s magnetic fields.

V. DISCUSSION AND CONCLUSIONS

In this paper we have analyzed the deconfinement tran-
sition from hadronic matter to quark matter and investi-
gated the role of color superconductivity within the
Nambu–Jona-Lasinio model. The study presented here is
relevant for neutron stars older than �1 minute, when
there are almost no more trapped neutrinos in neutron
star matter.

For the hadronic phase we have used three different
parametrizations of a nonlinear Walecka model which
includes the whole baryon octet and electrons. One of
them is the standard parametrization GM1 given by
Glendenning-Moszkowski [9]. This parametrization em-
ploys low values for the relative meson-hyperon couplings
x�, x!, and x�. Larger values of these couplings make the

EOS stiffer and, as shown in Table I, increase the value of
the maximum mass of hadronic stars to values above 2M�.
These large values may be relevant in connection with
recent measurements of highly massive neutron stars
which give one of the most stringent tests on the overall
stiffness of dense matter EOS. However, such measure-
ments still have to be taken with caution (see discussion
given in [26]). For example, the mass of the pulsar J0751

+1807 was corrected from M ¼ ð2:1
 0:1ÞM� [27] to
ð1:26
 0:14ÞM� as new data became available [28].
There is also a series of measurements of extremely mas-
sive pulsars in globular clusters, where just the periastron
advance has been determined but not the inclination angle
of the orbit [29–31]. For the pulsar PSR J1748-2021B a
mass of ð2:74
 0:21ÞM� is reported by using a statistical
analysis for the inclination angle [30]. Also, recent mea-
surements of post-Keplerian orbital parameters in relativ-
istic binary systems containing millisecond pulsars give
evidence for the existence of highly massive compact stars.
For example, the compact star associated to the millisec-
ond pulsar PSR B1516+02B in the globular cluster NGC
5904 (M5) has a mass M ¼ 1:94þ0:17

�0:19M� (1�) [31]. Other
constraints for the mass and radius have been obtained
studying redshifted spectral lines extracted in the aftermath
of an x-ray burst of the low mass x-ray binary EXO 0748-
676 in 2000 [32]. A model analysis of the x-ray burst led to
rather tight constraints for the mass and radius of the
compact star of M � ð2:10
 0:28ÞM� and R � ð13:8

1:8Þ km [33] which are based on the redshift measurement
of [32]. However, a detailed multiwavelength analysis
concluded that the mass of the compact star is more
compatible with 1:35M� than with 2:1M� [34]. More-
over, follow-up observations of another burst in 2003
[35] could not confirm the spectral features seen in the
burst spectra presented in [32]. While most of these mea-
surements would need further confirmation, it is worth also
exploring hadronic models that can produce stellar con-
figurations with masses above 2M� (see the parametriza-
tions GM4 and GM5 in Table I).
Employing the results of Fig. 1 and integrating the

Tolman-Oppenheimer-Volkoff equations of relativistic
stellar structure for the hadronic EOSs given in Table I,
we have calculated the critical compact star mass Mcr

above which they should contain a quark core. Pure had-
ronic stars with Mh>Mcr are very unlikely to exist, while
pure hadronic stars withMh<Mcr are safe with respect to a
sudden transition to quark matter. Notice that the critical
mass is defined here in a different way as in Refs. [5,7,36].
In the here-presented bulk analysis, the transition begins
when the Gibbs conditions�P	Ph�Pq¼0 and�g	gh�
gq¼0 are verified at a given temperature. However, for the

nucleation of finite size bubbles, it is necessary to have an
overpressure �P>0 with respect to the bulk transition
point due to surface and curvature effects. For a given
overpressure there is a probability (and a corresponding
nucleation time) to nucleate a quark bubble due to quantum
or thermal fluctuations. In [5,7] the critical mass was
defined as the value of the gravitational mass of a hadronic
star for which the nucleation time due to quantum fluctua-
tions is equal to one year. Calculations of the critical mass
done within the frame of the MIT bag model show that
surface effects are strong for values of the bag constant B
smaller than �100MeVfm�3 [7]. That is, within the MIT
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bag model, the effect of the surface tension � is strong for
strange stars but it is small if the parameters of the EOS
correspond to hybrid stars. For the parametrizations of the
NJL model employed in this work only hybrid stars are
allowed. Thus, finite size effects are not expected to in-
troduce qualitative modifications in our results.

Employing set 1 for the Nambu–Jona-Lasinio model
(see Table II) we find that there are not large variations
in the critical mass for the three different parametrizations
of the hadronic matter equation of state. As seen in Fig. 2
the critical mass is in the range 1:65–1:80M� for set 1,
which is not a large difference if we consider the larger
variation in the maximummass of hadronic stars within the
three parametrizations (Mmax between 1.78 and 2:35M�,
see Table I). A similar result is found employing set 2 for
the Nambu–Jona-Lasinio model, i.e. the critical mass is in
the range 1:45–1:60M� (see Fig. 2). This is in coincidence
with previous results obtained for hybrid stars within the
MIT bag model [7]. As mentioned above, in the case of the
MIT bag model stars containing quark phases are strange
stars for low values of the bag constant B, and hybrid stars

for sufficiently large values of B. For the values of B
corresponding to strange stars, the critical mass may vary
essentially from zero to near the maximum mass of had-
ronic stars, depending on the value of other parameters
such as the superconducting gap � and the surface tension
�. However, for the values of B corresponding to hybrid
stars, the critical mass is always close to (but smaller than)
the maximum mass of hadronic stars, rather independently
of the value of other parameters [7]. The parametrizations
employed here of the Nambu–Jona-Lasinio model allow
only for the existence of hybrid stars and show the same
characteristics of the critical mass, allowing the existence
of a mixed population of compact stars (pure hadronic up
to the critical mass and hybrid above the critical mass).
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J.W. T. Hessels, L. H. Frey, and F. Camilo, Astrophys. J.

675, 670 (2008).
[31] P. C. C. Freire, A. Wolszczan, M. van den Berg, and

J.W. T. Hessels, Astrophys. J. 679, 1433 (2008).
[32] J. Cottam, F. Paerels, and M. Mendez, Nature (London)

420, 51 (2002).

LUGONES et al. PHYSICAL REVIEW D 80, 045017 (2009)

045017-8
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