
Radion clouds around evaporating black holes

J. R. Morris*

Physics Department, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408, USA
(Received 7 April 2009; revised manuscript received 30 June 2009; published 13 August 2009)

A Kaluza-Klein model, with a matter source associated with Hawking radiation from an evaporating

black hole, is used to obtain a simple form for the radion effective potential. The environmental effect

generally causes a matter-induced shift of the radion vacuum, resulting in the formation of a radion cloud

around the hole. There is an albedo due to the radion cloud, with an energy-dependent reflection

coefficient that depends upon the size of the extra dimensions and the temperature of the hole.
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I. INTRODUCTION

Kaluza-Klein–type models involving compactified extra
dimensions produce effective four-dimensional (4D) theo-
ries containing moduli fields (radions) that are associated
with scale factors of the compact dimensions. Particle
masses typically exhibit a radion dependence, and local
matter sources contribute to an effective potential for these
scalar fields. If the compactification is inhomogeneous,
particle masses and charges can have spatial and temporal
variations. Solitonlike structures associated with these sca-
lars may result (see, for example, [1–5]) with possibly
observable consequences. An extreme condition is consid-
ered here, where the matter density from an evaporating
microscopic black hole (MBH) may become large enough
to give rise to an inhomogeneous compactification, result-
ing in a radionic cloud around the black hole. The reflective
properties of this cloud endow the near-horizon region with
a radion induced albedo.

Scenarios of this type, involving a radion coupled to the
radiative field around an evaporating black hole, have been
studied previously in Refs. [6,7]. In [6] rather general
conditions were considered, and in [7] attention was fo-
cused on finite temperature, one-loop quantum corrections
due to a partially thermalized medium surrounding an
evaporating black hole. The resulting effective potential
is quite complicated and difficult to represent in a simple
closed form. Here, however, I take a more classical ap-
proach and consider a simple, but explicit, class of poten-
tials Vð’Þ for the radion field ’. This type of radion
potential was studied first by Davidson and Guendelman
(DG) in [1,2] in the context of a Freund-Rubin compacti-
fication and later by Carroll, Geddes, Hoffman, and Wald
(CGHW) in [8], using an extra dimensional 2-form mag-
netic field. Both treatments result in the same radion po-
tential for the case of two extra dimensions, but the former
treatment also holds for an arbitrary number n of extra
dimensions. In either case, the resulting potential has a
rather simple form for an assumed set of parameter rela-
tions. For simplicity and concreteness, I specialize to the

case of two extra dimensions, and refer to the radion
potential Vð’Þ as the DG-CGHW radion potential,
although its generalization for arbitrary n, given by [1,2],
is also given below. In addition to functional simplicity, the
potential allows the extra dimensions to be stabilized clas-
sically, without explicit quantum corrections.
Using this simple DG-CGHW model, the full effective

radion potential Uð’Þ can be developed which includes a
matter-sourced correction due to the Hawking radiation
matter field. The matter source contribution to the radion
effective potentialUð’Þ depends, in a simple way, upon the
local matter density �ðr; tÞ and radion mass m’. A knowl-

edge of these parameters then allows, in principle, a deter-
mination of the spatial and temporal variation of the radion
field in the vicinity of the evaporating hole. The matter
contribution can induce a shift, or complete destabilization,
of the radion vacuum near the horizon, resulting in a
‘‘radion cloud’’ around the MBH. This cloud has an asso-
ciated energy-dependent reflectivity, which can result in a
distortion of the infrared portion of the Hawking radiation
spectrum, as well as a partial reflection of low energy
particles incident upon the MBH from the outside. By
looking at the forms of the effective potential U near the
hole’s horizon and at asymptotic distances, it is suggested
that the radion cloud has an evolving size R & m�1

’ and a

maximal reflection coefficientRmax that depends upon the
matter density �hor near the horizon through the ratio

�hor=ðm2
’M

2
0Þ, where M0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
8�G

p
is the reduced

Planck mass.

II. RADION EFFECTIVE POTENTIAL

A. Effective 4D action

We start by considering a D ¼ ð4þ nÞ-dimensional
spacetime, having n compact extra spatial dimensions
endowed with a metric given by

ds2D ¼ ~gMNdx
MdxN

¼ ~g��ðxÞdx�dx� þ b2ðx�Þ�mnðyÞdymdyn; (2.1)

where xM ¼ ðx�; ymÞ. Here M, N ¼ 0; 1; 2; 3; . . . ; D� 1
label all the spacetime coordinates, while �, � ¼ 0, 1, 2,*jmorris@iun.edu
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3, label the 4D coordinates, and m, n label those of the
compact extra space dimensions. The extra dimensional
scale factor bðx�Þ is assumed to be independent of the y
coordinates and takes the form of a scalar field in the 4D
effective theory. The extra dimensional metric �mnðyÞ de-
pends upon the geometry of the extra dimensional space
and is related to ~gmnðx; yÞ by ~gmn ¼ b2�mn. As in
Refs. [1,2,8], consideration is restricted to extra dimen-
sional compact spaces with constant curvature, with a
curvature parameter k defined by

k ¼ ~R½�mn�
nðn� 1Þ : (2.2)

The action for the D-dimensional theory is

SD ¼
Z

dDx
ffiffiffiffiffiffiffiffiffi
j~gDj

q �
1

2�2
D

½ ~RD½~gMN� � 2�� þ ~LD

�
; (2.3)

where ~gD ¼ det~gMN , ~RD is the Ricci scalar built from ~gMN ,
� is a cosmological constant for the D-dimensional space-

time, ~LD is a Lagrangian for the fields in theD dimensions,
�2
D ¼ 8�GD ¼ Vy�

2 ¼ Vy8�G, where GðGDÞ is the 4D

ðDÞ-dimensional gravitational constant, and Vy ¼R
dny

ffiffiffiffiffiffiffij�jp
is the coordinate ‘‘volume’’ of the extra dimen-

sional space. A mostly negative metric signature
ðþ;�;�; . . . ;�Þ is used here.

The action can be expressed in terms of an effective 4D
action (see, for example, [8,9] for details), which takes the
form

S ¼
Z

d4x
ffiffiffiffiffiffiffi�~g

p �
1

2�2
½bn ~R½~g��� � 2nbn�1~g�� ~r�

~r�b

� nðn� 1Þbn�2~g��ð~r�bÞð~r�bÞ þ nðn� 1Þkbn�2�
þ bn

�
LD � �

�2

��
(2.4)

in the 4D Jordan frame (with metric ~g��), and I have

defined a normalized field Lagrangian, LD ¼ Vy
~LD. A

4D Einstein frame metric g�� can be defined as

~g �� ¼ b�ng��; ~g�� ¼ bng��;ffiffiffiffiffiffiffi�~g
p ¼ b�2n ffiffiffiffiffiffiffi�g

p
:

(2.5)

The action S in (2.4), in terms of the 4D Einstein metric,
takes the form

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2

�
R½g��� þ nðnþ 2Þ

2
b�2g��ðr�bÞ

� ðr�bÞ þ nðn� 1Þkb�ðnþ2Þ
�
þ b�n

�
LD � �

�2

��
;

(2.6)

where the total derivative terms have been dropped.
Furthermore, an effective 4D source, or matter,
Lagrangian Lm can be defined in terms of the

D-dimensional source Lagrangian LD ¼ Vy
~LD and the

scale factor b:

L m ¼ b�nLD: (2.7)

A scalar radion field ’ with a canonical kinetic term is
now defined byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðnþ 2Þ
2�2

s
ln
b

b0
¼ ’; b ¼ b0 exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

nðnþ 2Þ

s
�’

�
;

(2.8)

where b0 is some constant, which will be set equal to unity,

and � ¼ ffiffiffiffiffiffiffiffiffiffi
8�G

p ¼ ffiffiffiffiffiffiffi
8�

p
=MP ¼ M�1

0 is the inverse of the

reduced Planck mass.

B. Radion potential V

For a simple and concrete example, I use the radion
potential studied in Refs. [1,2,8] for the case of n ¼ 2
extra dimensions having a constant positive curvature pa-
rameter k. I also adopt the same choices of parameter
relations to obtain a simple functional form. The potential
V has contributions from the curvature term in (2.6), the
cosmological constant term �, and either (1) an extra

dimensional magnetic field due to F45 ¼
ffiffiffiffiffiffiffij�jp

F0, where
F0 is a constant, in LD (see [8]), or (2) a Freund-Rubin
term (see [1,2]) of the form

~L D ¼ � 1

48
F2; FMNPQ ¼ @½MANPQ�;

F���� ¼ ffiffiffiffi
�

p ffiffiffiffiffiffij~gjp
3bn

"����:

(2.9)

The potential V obtained by CGHW for the case of n ¼ 2
extra dimensions and an extra dimensional magnetic field
F45 leads to a simple potential (written here in terms of the
scale factor b, rather than in terms of the radion field ’)
given by

VðbÞ ¼ �ðb�6 � 2b�4 þ b�2Þ ðCGHW potentialÞ
(2.10)

with the following relations and parameter choices: (see
Eqs. (36) and (37) in Ref. [8])

’ ¼ 2

�
lnb; b ¼ eð1=2Þ�’;

� ¼ k

2�2
¼ m2

’M
2
P

16�
¼ 1

2
m2

’M
2
0;

(2.11)

where k ¼ @2Vð’Þ
@’2 j’¼0 ¼ m2

’ is the mass2 of the radion field

[8], MP is the Planck mass, and M0 ¼ 1=� ¼ MP=
ffiffiffiffiffiffiffi
8�

p
is

the reduced Planck mass. The form of V (see Fig. 1; V is
also sketched in Refs. [1,8]) has one local minimum, which
for the case n ¼ 2 is located at b ¼ 1 (or ’ ¼ 0) with
Vðb ¼ 1Þ ¼ 0, followed by a barrier for b > 1, then an
asymptotic decrease with V ! 0 as b ! 1.
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For the more general case of n extra dimensions given by
[1,2], the Davidson-Guendelman potential arising from the
Freund-Rubin term above is given by (with factors of �
reinstated here)

VðbÞ ¼ �

b3n
� 1

2

k

�2
nðn� 1Þ 1

bnþ2
þ�=�2

bn

ðDG potentialÞ: (2.12)

For the case of n ¼ 2, requiring the potential to vanish at
its minimum leads to the condition

� ¼ k2=�2

4�
: (2.13)

Imposing the parameter choice � ¼ k=2�2 as in (2.11),
then gives the same potential as in (2.10) with a local
minimum at b ¼ 1, where V ¼ 0. For simplicity and con-
creteness, attention is restricted here to this simple form of
the potential V for the particular case of n ¼ 2 extra
dimensions. For our case of n ¼ 2, the potential V, given
by (2.10) and (2.11), has a local minimum at b ¼ 1 (’ ¼
0), where V ¼ 0, a local maximum located at b > 1, and
the potential falls off exponentially, V ! 0 as b ! 1.

An equation of motion (EOM) is obtained from (2.6) for
the radion field ’,

h’þ @V

@’
�

�
@Lm

@’

	
¼ 0; (2.14)

where Lm is the matter Lagrangian, which depends upon
scalar, spinor, and vector matter fields, as well as the radion
field. Using field redefinitions, the ’ dependence of Lm

appears in particle masses mAð’Þ and in gauge coupling
constants (see, e.g., [10]). The matter Lagrangian will
therefore contribute to an effective potential Uð’Þ for the
radion.

C. Matter contribution–Hawking radiation

The matter contribution to the EOM for ’ (or b) comes
from the Hawking radiation [11] from an evaporating black

hole with surface temperature T (as seen asymptotically).

Denote this matter contribution to (2.14) by � ¼ h@Lm

@’ i.
The Lagrangian Lm contains the matter and gauge fields,
such as fermionic terms like [9,10] Lc ¼ �c ði� � @�
mð’ÞÞc with mð’Þ ¼ b�ðn=2Þð’Þm0, (m0 ¼ const) and
gauge field terms, such as that for the photon, LF ¼
� 1

4b
nð’ÞF��F

��. For a freely propagating electromag-

netic field with F��F
�� ¼ 0, we have no contribution to

� from LF. However, particle modes with nonzero rest
mass do contribute to � through terms like �	hm �c c i,
where

	A ¼ @ lnmAð’Þ
@’

(2.15)

with A labeling the particle species. (In the nonrelativistic
flat space limit, this � term is proportional to the fermionic
energy density, �	hm �c c i � �	�. However, we want to
consider � terms beyond the nonrelativistic flat space
limit. We will conclude that ���	g��T

��
cl ¼ �	T cl

for the more general case, where T ��
cl is a classical stress-

energy tensor, and that, classically, 	A ¼ 	 ¼ const is
independent of particle species.)
Now, for simplicity, rather than using the field theoretic

version of the matter Lagrangian Lm, let us follow the
approach used by Damour and Polyakov [10] and treat the
matter with a classical description, replacing the field
theoretic action with a classical particle action Scl. We
consider particle modes having a nonzero rest mass
mAð’Þ with @’LA � 0 and write a classical action

Scl ¼ �X
A

Z
dsAmA

¼ �X
A

Z
mA½g��ðxAÞdx�Adx�A�1=2

¼ �X
A

Z
d4x

Z
mA½g��ðxAÞdx�Adx�A�1=2

� 
ð4Þðx� xAÞ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
Lcl (2.16)

and identify
ffiffiffiffiffiffiffi�g

p
Lcl ¼ �P

A

R
mA½g��ðxAÞdx�Adx�A�1=2�


ð4Þðx� xAÞ. A field theoretic energy-momentum tensor

for the matter fields, defined by T �� ¼ 2ffiffiffiffiffi�g
p @ð ffiffiffiffiffi�g

p
LmÞ

@g��
, is

replaced by an energy-momentum tensor T ��
cl for the

classical particles, with1

T ��
cl ¼ � 2ffiffiffiffiffiffiffi�g

p @ð ffiffiffiffiffiffiffi�g
p

LclÞ
@g��

¼ 1ffiffiffiffiffiffiffi�g
p

X
A

Z
mAu

�
Au

�
A


ð4Þðx� xAÞd�A; (2.17)

FIG. 1. A plot is shown of VðbÞ=� vs b. The local minimum
occurs at b ¼ 1 (’ ¼ 0) where V ¼ 0. The local maximum
occurs at b � 1:75 where V=� � 0:15. As b ! 1, V ! 0.

1With this set of definitions, we have T 00 > 0 for both fields
and classical particles.
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where u� ¼ dx�=d� satisfies an ‘‘on shell’’ constraint
g��u

�u� ¼ 1. Taking the trace gives

T cl ¼ g��T
��
cl ¼ 1ffiffiffiffiffiffiffi�g

p
X
A

Z
mA


ð4Þðx� xAÞd�A

¼ �Lcl: (2.18)

We, therefore, find

� ¼ @Lcl

@’
¼ X

A

	ALcl;A ¼ �X
A

	AT cl;A (2.19)

for 	A ¼ const. The constant 	A takes a value 	A ¼ 	 ¼
�

ffiffiffiffiffiffiffiffiffiffiffi
n

2ðnþ2Þ
q

�, which for our n ¼ 2 model becomes 	 ¼
��=2. This can be seen [12] by considering the matter
action

S ¼ �X
A

Z
m0;A d~sA; (2.20)

where m0;A is the constant Jordan frame particle mass for

species A, and d~s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~g��dx

�dx�
p

is the Jordan frame line

element, which by (2.5), is related to the Einstein frame

line element ds ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��dx

�dx�
p

by d~s ¼ b�ðn=2Þds. The
matter action rewritten in the Einstein frame is

S ¼ �X
A

Z
m0;A ðb�ðn=2ÞdsAÞ ¼ �X

A

Z
mAdsA; (2.21)

where the Einstein frame mass is

mA ¼ b�ðn=2Þm0;A ¼ exp

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

2ðnþ 2Þ
s

�’

�
m0;A : (2.22)

Equations (2.15) and (2.22) then give

	A ¼ @ lnmAð’Þ
@’

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

2ðnþ 2Þ
s

� ! ��

2
for n ¼ 2:

(2.23)

From (2.19) we therefore have � ¼ �	T cl ¼ �
2T cl for

our n ¼ 2 model.
The Hawking radiation (for a neutral nonrotating black

hole) is assumed to be a fluid with energy density � ¼ T 0
0

and a normal radial pressure component pr ¼ �T r
r, and

tangential pressure2 pT ¼ �T �
� ¼ �T 

 in the center of

momentum frame, i.e., the rest frame of the black hole. We
also assume the energy density and pressures to be related
by the equations of state

pr ¼ wr�; pT ¼ wT�;

0 � wr � 1; 0 � wT � 1;
(2.24)

where wr;T are constants. For an isotropic perfect fluid

pT ¼ pr ¼ p and wr ¼ wT ¼ w with 0 � w � 1. Let us
define an effective pressure p and a parameter w by

p ¼ 1
3ðpr þ 2pTÞ; w ¼ 1

3ðwr þ 2wTÞ; 0 � w � 1

(2.25)

so that an effective equation of state can be written in the
form p ¼ w�, as assumed by Zurek and Page [13] and by
’t Hooft [14], where the Hawking radiation is regarded as a
perfect fluid with the constant w ¼ p=� 2 ½0; 1�.
The trace of the stress-energy tensor becomes

T cl ¼ �� ðpr þ 2pTÞ ¼ ½1� ðwr þ 2wTÞ��
¼ ð1� 3wÞ�: (2.26)

For an ideal gas of noninteracting massless particles in
thermal equilibrium, w ¼ 1=3. However, we proceed by
leaving w as a free parameter, subject to 0 � w � 1 as
assumed in [13,14]. This allows for a value of T cl that can
be positive, negative, or zero. With (2.19) and (2.26), we
obtain our approximate result

� ¼ @Lcl

@’
¼ �	T cl ¼ �	ð1� 3wÞ�; (2.27)

with the energy density � being dominated by relativistic
particle modes.
A couple of remarks are in order here. First, we note that

T cl and therefore � in (2.27) are generated by the particle
modes with nonzero rest mass and do not include the
energy density �0 and pressure p0 that is due to the mass-
less (e.g. photon) components of the radiation. The total
energy density and pressure of the entire fluid would be
�tot ¼ �þ �0 and ptot ¼ pþ p0, respectively. Second, it
may be that there are multiple components of the fluid
corresponding to various particle species, with � ¼ P

A�A,
and each species may have an equation of state pA ¼
pAð�Þ, which, in principle, could be complicated.
However, in order to study the effects of the radiation,
these difficulties are avoided here by our simple assump-
tion that p=� ¼ w ¼ const, the same assumption made in
the Hawking radiation fluid models of Refs. [13,14]. This
seems palatable for a case where there are very few rela-
tivistic massive modes, at least on time scales sufficiently
small compared to the black hole evaporation time scale
M= _M.
The EOM h’þ @’V � � ¼ 0 for the radion field ’

becomes

h’þ @V

@’
þ 	ð1� 3wÞ� ¼ 0: (2.28)

An effective potential Uð’Þ is now defined by U ¼ V �
�’ ¼ V þUmatter or

2The spacetime is assumed to have spherical symmetry.

J. R. MORRIS PHYSICAL REVIEW D 80, 045014 (2009)

045014-4



Uð’Þ ¼ Vð’Þ þ 	ð1� 3wÞ�’
¼ Vð’Þ þ 2

�
	ð1� 3wÞ� lnb

ðeffective potentialÞ; (2.29)

where lnb ¼ 1
2�’ for our model with two extra dimensions

and we set Uð’ ¼ 0Þ ¼ 0. The matter contribution to the
radion effective potential is

Umatter ¼ ��’ ¼ � 2

�
� lnb ¼ 2	

�
T cl lnb

¼ �T cl lnb ¼ �ð1� 3wÞ� lnb; (2.30)

where the result 2	=� ¼ �1 from (2.23) has been used.
The sign of this matter term is controlled by the parameter
w, and in the special case w ¼ 1=3 then � ! 0 and the
matter term does not contribute to the radion effective
potential. We note that for w< 1=3 then Umatter is a de-
creasing function for b > 1, while for w> 1=3 we have
that Umatter is an increasing function for b > 1.

D. Radion effective potential, U

With (2.10), (2.11), (2.29), and (2.30) we can now write
an explicit, but simple, effective potential in the form
UðbÞ ¼ VðbÞ �T cl lnb or

1

�
UðbÞ ¼ ðb�6 � 2b�4 þ b�2Þ �T cl

�
lnb; (2.31a)

¼ ðb�6 � 2b�4 þ b�2Þ � � lnb; (2.31b)

where

� � T cl

�
¼ 2T cl

m2
’M

2
0

¼ ð1� 3wÞ�
�

: (2.32)

Here, the parameter � is dimensionless and � ¼ �ðr; tÞ is a
function of radial distance r from the black hole since � ¼
�ðr; tÞ. The assumed range of w allows a value of � in the
range �2�=� � � � �=�.

Figure 2 gives a representation of UðbÞ=� for various
positive values of � (p � �=3). The asymptotic vacuum
value of b occurs at b0 ¼ 1 for � ¼ 0, but for values of 0<
� & :5 the vacuum value of b is shifted to larger values,
b > 1, and the minimum of U becomes more negative. For
values � * :5, the local minimum disappears, the vacuum
state is completely destabilized, and Uð’Þ is a monotoni-
cally decreasing function whose slope depends on � .

Figure 3 gives a representation of UðbÞ=� for various
negative values of � (p 	 �=3). The asymptotic vacuum
value of b occurs at b0 ¼ 1 for � ¼ 0, but for larger values
of j�j the vacuum value of b is shifted to smaller values,
b < 1, and the minimum of U becomes more negative.

Thus, the vacuum values bvac and ’vac become r depen-
dent in general. Far from the hole, � ! 0 and ’vac ! 0,

bvac ! 1. Near the hole, where � � 0, then’ � 0 and b �
1. Therefore ’ interpolates between a positive or negative
value ’ � 0 near the horizon to ’ ¼ 0 at asymptotic
distances. As the hole evaporates and j�j increases, any
vacuum state near the horizon gets further shifted to
smaller or larger values, depending on the sign of � . For
� > 0 a stable vacuum eventually disappears and the radion
rolls to larger values until the hole’s explosive end.

FIG. 2 (color online). Plots of UðbÞ=� vs b are shown for
positive values of � . The dotted curve, with a minimum at U ¼ 0
and b ¼ 1, has � ¼ 0 and corresponds to the radion potential
VðbÞ=�. The solid curves have � ¼ 0:3, 0.5, 1, 2, with the more
negatively sloped curves corresponding to bigger � . The vacuum
value of b occurs at b0 ¼ 1 for � ¼ 0, but for 0< � & 0:5 the
vacuum value of b is shifted to larger values, bvac > 1, and the
minimum of U completely disappears for � * 0:5.

FIG. 3 (color online). Plots of UðbÞ=� vs b are shown for
negative values of � . The dotted curve, with a minimum at U ¼
0 and b ¼ 1, has � ¼ 0 and corresponds to the radion potential
VðbÞ=�. The solid curves have � ¼ �0:5, �1, �2, �3, with the
lower minimum curves corresponding to bigger j�j. The vacuum
value of b occurs at b0 ¼ 1 for � ¼ 0, but for larger values of j�j
the vacuum value of b is shifted to smaller values, bvac < 1, and
the minimum of U becomes more negative.
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III. RADION CLOUD AND BLACK HOLE ALBEDO

A. Radion cloud

An energy-momentum tensor T �� has been defined for

the matter portion Lm of the effective 4D Lagrangian

L ¼ L’ð’Þ þLmð’;�; c ; . . .Þ

¼ 1

2
ð@’Þ2 � Vð’Þ þLmð’;�; c ; . . .Þ (3.1)

and an energy-momentum tensor S�� can be written for the

pure radion part L’:

S�� ¼ @�’@�’� g��L’

¼ @�’@�’� g��

�
1

2
@	’@	’� Vð’Þ

�
: (3.2)

The energy density part for the radion field,

S00 ¼ 1
2ð@0’Þ2 � 1

2g00g
rrð@r’Þ2 þ g00Vð’Þ (3.3)

vanishes asymptotically, but becomes nonzero near the
evaporating black hole where ’ develops a nonzero vac-
uum value ’vac due to the environmental effects of a non-
zero � in the effective potential U.

For a nonradiating black hole (i.e., a matter-vacuum
solution with Lm ¼ 0, T�� ¼ 0, � ¼ 0), we have the

Einstein equation R�� � 1
2 g��R ¼ ��2S�� along with

the radion EOM h’þ V 0ð’Þ � � ¼ 0. The minimal en-
ergy radion solution (S�� ¼ 0) is given by the trivial

solution ’ ¼ 0 (b ¼ 1). Therefore the gravitational field
alone of the black hole has no effect on the radion and there
is no radion cloud in this case. However, for a radiating
black hole with nonzero values of � and � outside the
horizon, ’ ¼ 0 is not a solution of the radion EOM and the
radion field ’ðr; tÞ must interpolate between a value of
’hor � 0 near the horizon and’ ¼ 0 asymptotically. Since
’ � 0 is not at the minimum of Vð’Þ, then Vð’Þ> 0,
contributing a positive contribution to S00. There are non-
negative gradient terms contributing to S00 as well. So near
the horizon, S00 > 0, and asymptotically S00 ! 0.

The energy density of the scalar field ’ is concentrated
near the MBH, where the gradient terms are large, and the
radion field forms a cloud around it. The exact structure of
this cloud requires a knowledge of the solution ’ðr; tÞ to
the EOMh’þU0ð’Þ ¼ 0. A crude estimate of the extent
of this cloud of energy can be obtained by considering a
thin shell of Hawking radiation at a radius r 
 rS, where
rS ¼ 2GM is the radius of a Schwarzschild black hole.
(Relativistic radiation with speed v� 1 is assumed, as a
higher energy density is carried by relativistic modes.) At
this asymptotic distance, the mass 
M in the spherical shell
is approximately constant as it propagates outward, so that

M � 4�r2�ðr; tÞ
r� PðtÞ
t, where PðtÞ ¼ � _MðtÞ> 0
is the power output of the radiation from the evaporating
MBH and for the sake of simplicity I have neglected any
time retardation effects in PðtÞ. This gives a crude estimate

for the matter density

�ðr; tÞ � PðtÞ
4�r2

: (3.4)

At a fixed instant t, the matter density drops off as r�2,
while at a fixed distance r the density increases with time
as described by the power output PðtÞ. An outer ‘‘edge’’ of
the evolving radion cloud, i.e., the cloud radius RðtÞ, can be
defined as a radial distance where the density � assumes a
sufficiently small constant value, i.e., � � �=� � 1 is a
small constant, so that � � 0 outside this radius. From
(3.4) this cloud radius, where � is a constant, is given by

R2ðtÞ � PðtÞ
4��

¼ PðtÞ
4���

¼ PðtÞ
2��m2

’M
2
0

: (3.5)

The ordinary Steffan-Boltzmann (SB) law for a perfect
blackbody (no gravitational greybody effects assumed, for
simplicity) with emitting surface area 4�r2S gives PðtÞ ¼
4�r2S�SBT

4ðg=2Þ where g ¼ ðNB þ 7
8NFÞ is the effective

number of degrees of freedom of relativistic particles and
�SB ¼ �2=60 is the Steffan-Boltzmann constant. Using

rS ¼ 2GM ¼ M
4�M2

0

and T ¼ 1
8�GM ¼ M2

0

M (where M0 ¼
1=� ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
8�G

p
is the reduced Planck mass) leads to

PðtÞ ¼ ðg=2Þ�
240

M4
0

M2ðtÞ : (3.6)

From this, the cloud radius is given by

RðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi
g=2

480�

s �
M0

MðtÞ
�
m�1

’ �
�
M0

MðtÞ
�
m�1

’ ; (3.7)

where, for simplicity, I have set 480�=ðg=2Þ � 1, andMðtÞ
is the black hole mass. The radion cloud grows in size as
the hole shrinks, with _R=R�� _M=M. From (3.7), R ap-
proaches an upper limit Rmax �m�1

’ near the explosive end

of the MBH as M ! M0. The requirement that rS=R � 1

implies that m’ � 4�M3
0

M2 & M0. Provided that the rather

natural condition m’ � M0 is satisfied, then so is the

requirement that R 
 rS.
The energy-dependent reflection coefficient (see below)

Rð!Þ and transmission coefficientT ð!Þ ¼ 1�Rð!Þ for
a particle of energy ! will depend upon the variation in ’
(or b) from the near-horizon region to the asymptotic
region, along with the radius R of the cloud. The reflection
coefficient approaches a maximal value Rmax as particle
energy ! approaches a minimal value [9].

B. Radion reflectivity and black hole albedo

Basic features expected of particle reflectivity by the
radion field—a radion induced black hole albedo—can be
obtained from the (flat space) results of [9] and other
studies of particle reflection from ordinary (nonradionic)
scalar field domain walls (see, for example, [15–18]). In
the case of photons, the radion cloud, treated as a scalar
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modulus domain wall of thickness �R, has a maximal
reflection coefficient given by [9]

R max ¼ ðb21 � b22Þ2
ðb21 þ b22Þ2

¼ ðb2hor � 1Þ2
ðb2hor þ 1Þ2 ; (3.8)

where b1, b2 are the values of the scale factor b on the two
different sides of a modulus wall. The two ‘‘sides’’ of our
domain wall are the black hole horizon where b ¼ bhor and
the asymptotic region approximately a distance R away
where b ! 1. The transmission coefficient isT ð!Þ ¼ 1�
Rð!Þ and for photons of energy ! we have the thin wall
limit with Rð!Þ ! Rð0Þ ¼ Rmax in the infrared limit
! ! 0, where the photon wavelength �� 
 R. From [9],

it was found from numerical calculations thatRð!Þ=Rmax

typically begins to become significant for energies ! &
1=R, i.e., the thin wall limit. Note that Rmax � 1 when
bhor 
 1, or bhor � 1. We may have bhor 
 1 for �hor *
:5, at which point the near-horizon vacuum of UðbÞ com-
pletely destabilizes. For a near-horizon value of 0< �hor <
:5, one expectsRmax � 1, as there is a minimum ofU that
is not far removed from b ¼ 1. On the other hand, for
negative � with j�j 
 1 we have bhor ! 0 as � ! �1, in
which caseRmax ! 1 again. Since j�j increases with black
hole temperature T, one expects Rmax to increase with
increasing T. These considerations lead us to expect a
possible alteration of the infrared portion of the transmitted
Hawking radiation, as well as a partial reflection from near-
horizon regions of low energy particles incident upon the
black hole from outside. (The details of the spectral dis-
tortion, however, will depend upon the structure of the
radion cloud.) On the other hand, for high energy photons
with ! 
 1=R, the cloud becomes transparent (thick-wall
limit) [9] with R ! 0. Similar qualitative statements are
expected for massive particle modes. The black hole there-
fore has an energy-dependent albedo associated with the
radion cloud, which, in turn, is due to an inhomogeneous
compactification of the extra dimensions near the horizon.

The above deductions are based upon reflection and
transmission characteristics in flat space. The effects of
curved space would alter the gradient terms appearing in
the h’ portion of the radion EOM, and therefore the
gradient nature of the solution ’ðr; tÞ. The exact expres-
sions for Rð!Þ and T ð!Þ would depend on the exact
solution ’, but the basic qualitative features mentioned
above for Rð!Þ are not expected to be significantly
affected.

C. � near the horizon

In the limit of a static, ideal fluid in thermodynamic

equilibrium, the local total energy density3 is [13] �tot �

T�ðwþ1Þ=w, where T�ðrÞ ¼ T=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrÞ

p ¼ ð ffiffiffiffiffiffiffi
g00

p
8�GMÞ�1 is

the blueshifted Hawking temperature. In this limit, � ¼
ð1� 3wÞ�=�� ð1� 3wÞT�ðwþ1Þ=w=� can become quite
large or divergent near the horizon (or the would-be hori-
zon). (There can be significant backreactions on the metric,
and the studies [13,14] suggest that the horizon could be
removed by a (static) Hawking ‘‘atmosphere,’’ with �
remaining finite.) If the horizon is not removed by back-
reactions, the local energy density can diverge on the
horizon, due to the diverging blueshifted local temperature
[19]. Furthermore, quantum field effects, such as vacuum
polarization, [20–22] are expected to play important roles
and may contribute to the � ¼ h@Lm=@’i term in the
effective potential. In any case, whether � diverges or
remains finite near the black hole, the local value of j�j
and � may become extremely large in the near-horizon
region, possibly leading to either bhor 
 1 or bhor � 1. In
either of these cases Rmax ! 1, indicating an infrared
radionic reflectivity.

IV. SUMMARY

A Kaluza-Klein model with two spherically compacti-
fied extra dimensions, studied previously by Davidson and
Guendelmann [1,2] and Carroll, Geddes, Hoffman, and
Wald [8], is examined here with attention focusing on the
development of a radion cloud around an evaporating
neutral, nonrotating MBH. The cloud owes its existence
not to the gravitational field alone (a Schwarzschild solu-
tion is accompanied by a trivial radion solution’ ¼ 0), but
arises in response to the environmental effect of the
Hawking radiation. The radiation is modeled as a fluid
with an effective energy density �ðr; tÞ, contributing to
the radion equation of motion. An effective pressure p is
assumed to be related to � through an equation of state
p=� ¼ w ¼ const with 0 � w � 1, resembling the perfect
fluid Hawking atmosphere models of Refs. [13,14]. For the
particular case w ¼ 1=3, as is expected for a fluid of non-
interacting masseless particles in thermal equilibrium,
there is no environmental effect on ’. However, it is not
assumed here that the fluid is in equilibrium, and the
particle modes contributing to the energy density � ¼
�tot � �0 (where �0 is due to massless particle modes)
are those associated with particles of nonzero rest mass.
The matter contribution to the radion effective potential is
Umatter ¼ �T cl lnb ¼ ��� lnb, which can be positive,
negative, or zero, depending on the sign of � ¼
ð1� 3wÞ�=�. A classical description has been used to
estimate the � ¼ h@Lm=@’i term in the radion equation
of motion, but near the horizon quantum field effects such
as vacuum polarization [20–22] are expected to be impor-
tant and may contribute to a shift in the radion vacuum.
The radion ’ approaches a normal vacuum value ’ ! 0

(b ! 1) asymptotically, where the Hawking radiation en-
ergy density vanishes, but near the MBH the radion is
shifted to a value ’ � 0 (b � 1) for any � � 0.

3Recall that �tot ¼ �þ �0, or � ¼ f�tot, where f ¼ �=�tot ¼
1� �0=�tot is the fraction of energy carried by nonmassless
particles.
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Gradients of ’ and a nonzero radion potential Vð’Þ then
give rise to a radion cloud with nonvanishing energy
density around the MBH. This radion cloud has an esti-

mated size RðtÞ � ð M0

MðtÞÞm�1
’ and an energy-dependent re-

flection coefficient Rð!Þ as studied in [9]. This reflection
coefficient has a maximum value Rmax (given by (3.8) for
the case of electromagnetic radiation in the flat space
limit), which depends upon the parameter � near the hori-
zon.Rð!Þ=Rmax begins to become significant for particle
energies ! & R�1ðtÞ. Since the asymptotic compactifica-
tion radius for the extra dimensions is �m�1

’ , the size of

the cloud compared to that of the extra dimensions in
asymptotic space is RðtÞ=m�1

’ �M0=MðtÞ, which is ini-

tially small, but becomes of order unity at the end stages of
the evaporation. An infrared portion of the Hawking spec-
trum detected by an external observer will be suppressed if
Rmax ! 1, and some low energy particles incident upon
the MBH from the outside will be reflected back. The
amount of reflectivity depends upon the temperature T of
the MBH (and therefore the parameter � near the horizon)
and particle energy !. For high energy particles (! 


R�1), the radion cloud is transparent. The Hawking radia-
tion contributes heavily to the effective potential Uð’Þ for
large j�j, in which caseRmax may approach unity. For � <
0 one may have a vacuum with bhor � 1, while for positive
values � * :5, the effective potential Uð’Þ is completely
destabilized, i.e., a local minimum disappears. In this case,
the slope of U is negative, and the radion rolls outward in
time with bðtÞ increasing. In either case, when � � 0, a
radion cloud must develop, since ’ ¼ 0 and b ¼ 1 is not a
solution of the radion EOM. For � � 0, the radion infrared
albedo effect increases as the MBH evaporates. Since
transparency begins to set in at particle energies ! *

R�1 � ðMM0
Þm’ * m’, the energy range of observable al-

bedo effects (! & m’) will be very sensitive to the radion

mass m’ and therefore the size of the extra dimensions.
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