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We study the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory without and with mass deforma-
tion. It is shown that maximally supersymmetry preserving, D-term, and F-term mass deformations of
single mass parameter are equivalent. We obtain vortex-type half-BPS equations and the corresponding
energy bound. For the undeformed ABJM theory, the resulting half-BPS equation is the same as that in
supersymmetric Yang-Mills theory and no finite energy regular BPS solution is found. For the mass-
deformed ABJM theory, the half-BPS equations for U(2) X U(2) case reduce to the vortex equation in
Maxwell-Higgs theory, which supports static regular multivortex solutions. In U(N) X U(N) case with
N > 2 the non-Abelian vortex equation of Yang-Mills-Higgs theory is obtained.
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L. INTRODUCTION

The low-energy limit of M-theory is 11-dimensional
supergravity and involves membranes and five-branes as
solitonic extended objects [1]. Recently, the Bagger-
Lambert-Gustavsson (BLG) theory [2,3] and the
Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [4]
have been proposed as the low-energy limit of world-
volume theory of multiple M2-branes. The ABJM theory
is given in the basis of brane constructions and is described
by (1 + 2)-dimensional Chern-Simons-matter theories
with U(N) X U(N) or SU(N) X SU(N) gauge group and
N = 6 supersymmetry (SUSY). In large N limit, the
ABJM theory is dual to M-theory on AdS, X S7/Z,, where
k is related with the discrete level of Chern-Simons term.

When the world-volume theory of the stacked M2-
branes is constructed, one of the main tests is to reproduce
Basu-Harvey fuzzy funnel [5] as a BPS configuration [2].
Along this line, the composite of M2-M5 and the domain
wall solutions are studied in the BLG theory [6-8] and the
ABJM theory [9] without and with mass-deformation.
When these codimension-one BPS objects are dealt, role
of the two Chern-Simons gauge fields is completely miss-
ing. Among diverse research directions in the world-
volume theory of M2-branes, it deserves to investigate
BPS solitons for which the gauge fields play a crucial
role. These are nothing but pointlike BPS Chern-Simons
vortices.

Relativistic Chern-Simons-Higgs theory with sextic sca-
lar potential is first introduced in order to saturate the BPS
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bound for the static multi-BPS vortex solutions [10], and
also arises in the supersymmetric Abelian Chern-Simons-
Higgs theories [11]. An attractive point of the BPS limit of
Chern-Simons-Higgs theories is rich soliton spectrum due
to coexistence of both the symmetric and broken vacua. In
addition to the topologically stable multi-BPS vortices and
domain walls, marginally stable nontopological solitons
(or Q-balls) and nontopological vortices (or Q-vortices)
exist [12]. Extension to U(1) X U(1) gauge group [13] and
non-Abelian gauge group [14] is also made. Therefore, in
the scheme of (1 + 2)-dimensional quantum field theories,
the mass-deformed BLG and ABJM theories are under-
stood as the complicated Chern-Simons-Higgs theories,
and the undeformed BLG and ABJM theories as their
superconformal limit.

In this paper, we first discuss relation among the pro-
posed mass deformations in the ABJM theory, with single
mass-deformation parameter. One is maximally supersym-
metric mass deformation in terms of N = 1 superfield
formalism [6] and in component fields [15]. Two other
types of mass deformation correspond to D-term and F-
term deformations in the basis of N = 2 superfield for-
malism [15]. Though they look different theories possess-
ing different manifest SUSY’s, we shall show that the
aforementioned three mass deformations are equivalent.
The main subject of our interest is to understand static
vortex-type half-BPS objects of the ABIM theory without
and with mass deformation. In BLG theory of SU(2) X
SU(2) gauge symmetry, possible BPS equations were clas-
sified and some vortex-type BPS configurations were ob-
tained [16-18]. In ABJM theory, some Chern-Simons
vortex-type %—BPS solitons were obtained, including
topological vortices, nontopological solitons, and nontopo-
logical vortices [19], and vortex loop operators were con-
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structed [20]. Here we examine half-BPS equations for
static vortex-type solitons in the U(N) X U(N) ABIM
theory both without and with mass deformation, and dis-
cuss in detail the possible singular and regular multi-BPS
vortex solutions. Though various pointlike solitons are
obtained in the world-volume theory of M2-branes as
singular solutions without mass deformation and regular
solutions with mass deformation, they await proper inter-
pretation in the context of M-theory.

The rest of this paper is organized as follows. We begin
Sec. II with introduction of the ABJM theory, and in
Sec. I A we discuss the relation among three proposed
mass deformations. In Sec. III vortex-type half-BPS equa-
tions and the corresponding energy bound are obtained. In
Sec. IV we reduce the general half-BPS equations in un-
deformed theory in a simple set of two coupled first-order
equations which is the same as that in supersymmetric
Yang-Mills theory with the Yang-Mills coupling identified
as what obtained in D2 limit of the theory [21,22]. There is
no static vortexlike half-BPS solution with finite energy. In
Sec. V, we examine half-BPS equations in mass-deformed
theory. We first consider U(2) X U(2) case, leading to the
vortex equation in Maxwell-Higgs theory, and find spinless
multi-BPS vortex vortices without or with constant back-
ground magnetic field. For U(N) X U(N) case with N > 2,
under a suitable ansatz, the BPS equations reduce to the
non-Abelian vortex equation in Yang-Mills-Higgs theory.
We also obtain other equations with different ansatz. We
conclude in Sec. VI with brief summary and discussion.

II. ABJM THEORY WITH AND WITHOUT MASS
DEFORMATION

The ABJM theory is an /N° = 6 superconformal U(N) X
U(N) Chern-Simons theory with level (k, —k) coupled to
four complex scalars and four Dirac fermions in the bifun-
damental representation,

k 2i
Sapiv = [ d%{E e tr(AlLa,,A L ?ZAMAVA N

—AL0,d, - %AMAVAA) — (D, ¥ DrYA)
FUWM YD) < Vi~ Voh @D
where A = 1,...,4 and
D, YA =9,YA +iA, YA — iY*A,. 2.2)

Vierm 15 the Yukawa-type quartic-interaction term,
2im
View = = (VYA T gy — YAY Ly gt
+2YAY BT = 2Y T YB AT g

- fABCDY); ‘PBY;E‘//D + eapcp YA Y BTYCyPt),
2.3)
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and V|, is the sextic scalar potential,

Vo= _ 472
0 3k2

+4yAyiyCylyByl — eyAvfyByiycyl).

a(YAYTYByfyeyl + vivayiyBylyc

(2.4)

We choose real gamma matrices with the convention y? =
¥°y'. An explicit representation would be

! ¥ =0’ (2.5)

vl =0l
The action (2.1) is known to be invariant under the /N =
6 supersymmetry transformation [4,6,9,23],

SYA = iw By,
oy = _’Y/.LwABD,U,YB
2
+ T”[—wAB(YCQYB — Y8Yty©)

+ 2wpeYPYIYC] (2.6)

= —y*wspD,Y? + wpc(BEC + 5,[43 LC)]D)r

2
84, = = (Y'Yl y ous + Py, 7)),

o 27
0A, = 7(1//ATYB7’M0’AB + ‘UABYMY:{ p),

where w,p are supersymmetry transformation parameters
with
WwAB =

1
(wap)" = — 5 e**Pycp, 2.7

and

4
BAB = 777 ylAyiysl (2.8)
The form of the potential (2.4) is manifestly SU(4)
invariant but is not manifestly positive-definite. It can be
written in a positive-definite form [24,25] using the com-
bination appearing in the second term of 6 ,,

2
Vo= 3185 + 87 B P, (2.9)

where, for convenience, we have introduced the notation
0> = trOt 0.

There exists a unique mass deformation of the ABJM
theory which respects the full N' = 6 supersymmetry [6].
For the mass-deformed theory, the supersymmetric trans-
formations (2.6) remain unchanged except the fermion
fields for which there is an additional transformation,

Sntha = uM,PwpcYC, (2.10)

where u is the mass-deformation parameter and M% =
diag(1, 1, —1, —1). This reduces the R-symmetry from
SU4) to SU(2) X SU(2) X U(1), and it leads to the follow-
ing additional terms to the Lagrangian,
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Aerrm = tr/'“erAME lpB!

4 4
AV, = tr(% yAY YBMSY) — %Y}YAYIEM@YC

- ;LZY}YA). (2.11)
Combined with (2.9), the potential V,, in the mass-
deformed theory can also be written in a manifestly
positive-definite form,

2
Vi = Vo + AVo = 1B5C + 8RR + uM YR
(2.12)

This form is suitable for obtaining the half-BPS equations
in the next section.

A. Other formulations of mass-deformed theory

The ABJM theory can be described in terms of either the
formalism of the component fields as above, N =1
superfields or N° = 2 superfields. Depending on the for-
malism used, part of the symmetry is hidden and the
resulting forms of the potential look quite different from
each other.

This is also true for the mass-deformed theory. The
maximally supersymmetric mass-deformed theory given
by (2.10) and (2.11) was first examined in terms of N =
1 superfield formalism [26] and in component fields [15].
In addition to this mass deformation, two other types of
mass deformation have been proposed in /N = 2 super-
field formalism in [15]. They correspond to a D-term
deformation and an F-term deformation, respectively, and
seem to produce different theories having only N = 2
supersymmetry. There is however a possibility that they
have hidden symmetries not manifest in N = 2 formalism
and may actually result in the same theory. Here we show
that this is indeed the case. In other words, mass-deformed
theories obtained by the deforming D-term or F-term in
N = 2 superfield formalism are the same as the one
considered above with maximal 2N = 6 supersymmetry.

Let us first start with 2" = 1 formalism. Introducing the
notation YA = (Z!, 72, Wt!, W12), 2N = 1 superpotential
of ABJM theory is given as

2

1 1
W) = - tr(EZ);Z“ZZZb — Ezaz;fzbz;r

1 1
+3 w, Wwhaw, wtb — EWT“WHW“’W,,

+ zeztwttw, — zizew, wtb

+ 278 zbw,wta — 2ZangTbWa), (2.13)

where a, b = 1, 2. The bosonic potential can be written in
the perfect square form

Vo = tu(NIN + mtem,) (2.14)
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with
R OW A
Ne=-=——2=
aZ1

2
= %(szgz“ — 7207} 7b — wthw,z¢ + zew, Wit

—27Pw,wte + 2wtew, zb), (2.15)
M = aW/Vj\le
“ gwta
27 b b bt
= T(wa Wa - WaW Wb + WaZ Zb
-zt 72w, + 278 20w, — 2w, 2P ZY).  (2.16)

The SUSY-preserving mass deformation is introduced by

the additional N* = 1 superpotential as
AW pey = —pte(Zhze — wheaw,) (2.17)

which corresponds to the following replacement in the
bosonic potential (2.14)

N — N+ pze, M,—M,+ uW,  (2.18)
Then the potential in the deformed theory is
vV, =N+ uZ? + M, + uWw,|? (2.19)

which can be shown to be the same as (2.9).

In terms of N = 2 superfield formalism, the bosonic
potential of ABJM theory is written as the sum of the D-
term potential V, and the F-term potential V5 [27]

V() = VD + VF: (220)
where
Vp = tu(NIN® + MTapm), (2.21)
2
Ne = %(zbzgza — zazt 70 — wibw, ze
+ Z°W,Wtb), (2.22)
_ 27 th th bt
Mu - T(th Wa - WaW Wh + WaZ Zb
-zt 7'w,), (2.23)
Vy = tw(F}Fe + G19G,), (2.24)
a 4m ac tb7tytd
F¢ = 76 Ede ZC w , (225)
4 bd7tyirte 7t
Gy =~ €ac€Z]WIZ]. (2.26)

The F-term potential V is obtained from the N =2
superpotential W ar_, as
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2
W oprey = 777 €00 €M U(ZW, ZW,),

1.
dWh_,
ozt

(2.27)

1.
_ Wy
gwta

¢ = (2.28)

a

In N = 2 superfield formalism, we can consider two
kinds of mass deformations, D-term deformation and F-
term deformation [15]. The D-term deformation is intro-
duced by a replacement in (2.20)

N¢— NO+ pzs, M, — M, + puW,  (229)

Nevertheless one can explicitly verify that the resulting
potential is the same as (2.19), viz.,

IN“ + uZ? + M, + uW,|* + |[F*|* + |G,

=N+ pZ? + |M, + uW,|~ (2.30)
Fermionic part can also be shown to be identical. Hence the
D-term deformation is the same as the maximally SUSY-
preserving mass deformation. We note that the D-term
deformation can be regarded as the Fayet-Illiopoulos
term deformation when the gauge group is U(N) X U(N)
(not SU(N) X SU(N)) [15].

The other mass deformation is an F-term deformation
which is introduced by the additional N = 2 superpoten-
tial

AW pry = utr(ZW,). (2.31)

The deformation of bosonic potential is the form of (2.11)
with the off-diagonal mass matrix

M,P =

0
(1) (2.32)
0

- o O O

1 0
0 1
0 0
00

By a field redefinition, this M,? can be diagonalized and
the F-term deformation is equivalent to the other deforma-
tions considered above. In particular, N = 6 supersym-
metry is still preserved in every case by deforming the
transformation law as (2.10). At first sight, the F-term
deformation looks different from the other deformations
since they have SU(2) X SU(2) X U(1), while in the case
of the F-term deformation only diagonal SU(2) can be
seen. However we can find the extra SU(2) and U(1)
symmetries in the F-term deformation. From the form of
the mass matrix (2.32), the generator of the extra SU(2) is

obtained as
1
| 0 ) aiT,»
2 a;T; 0

and also the U(1) symmetry is generated by (2.32) itself.
Here «;(i = 1,2, 3) are the parameters of the extra SU(2)
and 7; are the Pauli matrices. Since both symmetries are
generated by the off-diagonal matrices which mix Z and

(2.33)
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W14, their symmetries do not respect the structure of N =
2 superfield formalism (Recall that Z* is the lowest com-
ponent of the chiral superfield whereas W14 is the lowest
component of the anti-chiral superfield). That is the reason
why we can see only diagonal SU(2) in the F-term defor-
mation. The fermionic mass term is also invariant under
these extra SU(2) and U(1).

Now we briefly discuss the vacua of the mass-deformed
theory. From (2.12) the vacuum equation is given by

8C 1 5B 4+ uM, Byl =0, (2.34)

Contracting with 82 yields B3P = uM,BYP. Inserting
this into (2.34), we 0bta1n

BEC + w(8EM,ClyP + m,[ByC)) = o, (2.35)
More explicitly, we have

B + Y’ =0, (2.36)

B! — uY? =0, (2.37)

bP — Bl]fl — qu Bab =0, (2.38)

where a, b = 1, 2 and p, ¢ = 3, 4. Equations (2.36) and
(2.37) have been conjectured and analyzed in [15]. Since
(2.36) reduces to (2.37) with the substitution Y* — Y);, we
consider only (2.37) to which there is essentially a unique
irreducible solution,

k —) ’k
mn = amn M 1, Y;‘nn = 5m+l,n Z—MVN - n.
T
(2.39)

Then from (2.39) we see that Y' = Y2 = 0 identically as
claimed in [15]."

II1. HALF-BPS EQUATIONS

Here we will obtain vortex-type half-BPS equations in
ABJM theory with and without mass deformation. First we
consider the supersymmetric variation of the fermions
¢4 = 0 to obtain the BPS equations. Then we will get
the energy bound by rewriting the energy functional in the
form of complete squares.

We impose the supersymmetric condition of the form

Y wap = isap®ap Sap = Spa = *1, 3.1

which reduces the number of supersymmetries by half.
Because of the property (2.7) among w,p’s, we should
have S34 = — 812, Sp4 = —S13 and §723 = —S14. With the
help of y?> = —y'9?, the supersymmetric variation of the
fermion &4 can be reshuffled to

"We heard that the same result was also obtained by [28].
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YO8 ura =[85 DoY)+ (B + 817 B + M, YD)
X wpe = y*(D1YE = ¥'DyYP)w (3.2)
where mass-deformed term (2.10) has been included. Then
o, = 0 implies that
(Dl - iSABDz)YB = 0,
8Dy + ispe(BEC + 8P RSP + M 1BYCl) =0,

(no sum over B, C). (3.3)

For nontrivial configurations at least one of D;¥* should
be nonzero. Assume D, Y! # 0 for definiteness. Then from
the first equation with A = 1, it immediately follows that

S)p =S3 =S =5 (3.4
should be the same and
(Dl - iSDz)Yl = 0. (35)
For A # 1, since s,3 = §34 = S4p = —5,
(D, — isD,))YA =0 (A #1),
(3.6)
(Dl + iSDz)YA =0 (A # 1),

where the first equation comes from s4; = s and the sec-
ond from s, = —s for A, B # 1. Then

DY =0, (A#1), (3.7)

and hence only one field can be nontrivial in half-BPS
configurations. This has also been obtained in [20,29].
Similarly, from the second line of (3.3), we see that there
are three different equations for each DyY4. They will
produce various constraints for consistency. Eventually
we end up with following equations:
DoY!' +is(B3 + uY') =0,
DoY? — is(Bl2 + nY?) =0,
DyY? — isBi3 =0,
DyY* —isBl* =0,

B = B = B3 + Y,

By} = uY?,
B3t = uy*
BY = BP = 8D = B =0
BC — (A# B+ C#A)

(3.8)

Equations (3.5), (3.7), and (3.8), form the full set of half-
BPS equations. In addition, Gauss’ laws should also be
satisfied,
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k k ko k.

__~_ B=—F,= ;0 - _—_ B=—-——_F — %0

2w 2m 2T 2 2127
(3.9)

where ;0 and J° are, respectively, charge densities of the
conserved currents associated with U(1) rotations,

ju = i(YAD, Y} — D, vAv]),
\ (3.10)
Ju =YD, YA =D, YY"

The half-BPS equations can also be obtained from the
bosonic part of the energy,

E- fd2x(|DOYA|2 FIDYAP+V,), Gl

where the potential V,, is given by (2.12). With the original

form of the BPS Eq. (3.3) in mind, we can reshuffle the
energy as

1
E = g fd2x{2 Z |51[43D0YC] + iSBC(BEC + 81[43 g]D
AB,C

MY+ 3 I(D) — isapDa)VP)
A#+B

1 4
+ istr/dzxeijai(Y;rDle S YijYA)
A=2

- % wtr f d?x(j° + 2J9,), (3.12)

where

19, = i(Y'DyYT — DoY'y!) — i(Y2Do Y} — Do Y2Y])
(3.13)

is the charge density for an SU(4) rotation Y! — e~ /@y!,
Y? — ¢/®Y?. In obtaining this expression we have used the
Gauss’ laws (3.9). Note that, for each and every u and
index A, |D, Y* |2 is organized into three different complete
squares in accordance with different supersymmetries and
the factor 1/3 in front of the integral accounts for the
normalization.

The first two absolute-square terms in (3.12) precisely
reproduce the half-BPS equations obtained before in (3.5),
(3.7), and (3.8). The first term in the last line is a boundary
term” which vanishes for well-behaved configurations.
Then we get the energy bound

1
E=3 |w(Q + 2Rp,)l, (3.14)

where Q = tr [d?xj® and R, = tr [ d*xJ?,. The energy
bound which is saturated for any well-behaved half-BPS
configuration is proportional to the mass-deformation pa-
rameter w. Note that in the energy bound there is the

This bound can also be seen from the SUSY algebra obtained
in [30].
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overall U(1) charge Q in addition to the R-charge R,
which also exists in BLG case [6].

IV. SOLVING HALF-BPS EQUATIONS WITHOUT
MASS DEFORMATION

Here we would like to solve half-BPS equations in the
original ABJM theory n = 0. In this case the equations are
symmetric among Y2, Y3, Y*.

In the massless limit of u — 0, the energy for half-BPS
configurations is given by the total derivative term. From
(3.12), we have

1 &
. 2 t 1 _ T A
ltrfd xe,,@,(Y1 DjY § E YADjY )
A=2

which vanishes for every well-behaved field configuration.
Therefore we expect that there would be no finite energy
solution to the half-BPS equations other than vacuum
configurations. Nevertheless one can consider solutions
with infinite energy, which may be physically meaningful
in the context of string theory.

The simplest solution would be obtained by assuming
Y? = Y3 = Y* = 0 for which the only remaining equation
is (3.5). Magnetic fields vanish as Dy Y4 = 0. Then Y' is an
arbitrary (anti-) holomorphic function which can be singu-
lar as Y' ~ z!/k at the origin. This solution has been dis-
cussed in the context of BLG theory with an M-theory
interpretation [17].

To obtain more nontrivial solutions at least one of Y2,
Y3, Y* should be nonzero. Because of the symmetry of the
equations, we may assume Y2 # 0. Moreover with the help
of the U(N) X U(N) gauge symmetry we can bring ¥ to a
diagonal form with increasing nonnegative real compo-
nents,

.1

Ullnl
U21n2

4.2)
Ukl

ng

(05U1<‘U2<"'<Uk),
where 3%, n; = N and I, is the identity matrix of dimen-
sion n;.

We first concentrate on the constraint equations in (3.8).
From the equation 83* = B5* = 0, it is not difficult to see
that Y3 and Y* are block diagonal,

A
oo
Yo

(A=3,4). 43)

A
Yo

With these, B3* = B33 = B3 = B> = 0 gives

PHYSICAL REVIEW D 80, 045013 (2009)

4 — 3 47 —
1[ 3(iy ,')] =0 vi[Y(,')’ Y([)] =0,

z[ 3Gy L ] =0,

(no sum over i).

Note that all v;’s are positive possibly except v; which we
assume nonzero for the moment. Then (4.4) implies that Y3
and Y* are normal matrices and commute to each other and
their conjugates. Therefore, under a suitable unitary trans-
formation, Y* and Y* become completely diagonal. If v, =
0, we can utilize U(n;) X U(n;) symmetry to make Y(31)
diagonal and reach the same conclusion.

Now we apply the remaining constraints, namely S5 =
O where A, B=12,3,4and A # B. Since Y2, Y3, Y* are all
diagonal, this means [Y', Y] Y8]=0. If all YiY?’s are
nondegenerate, Y' must be diagonal. But then all scalar
fields are diagonal and we will have only trivial solutions
with vanishing magnetic field. To obtain nontrivial solu-
tions, there should be a common subspace where all
Y} Y5’s are degenerate. Moreover, it is not difficult to see
that such a degenerate subspace should entirely belong to
some degenerate subspace of Y? in (4.2). This in turn
means that Y! can be at most block diagonal and in each
block diagonal subspace Y2, Y3, Y* are all proportional to
the identity.

It is now sufficient to work within each subspace where
YA = vAI (A = 2, 3, 4). From (3.7), we find that v*’s are
constants and A; = A,-. DyY*’s are determined from (3.8),

D()Yl = 0,

4.5)
DyY* = —isBlA = UA[Y], Y] (A # 1)
Plugging this into the Gauss’ laws (3.9), we are left with
the following half-BPS equations without further con-

straint:

) 2
(D, — isD)Y' =0, B=8= ——( m’) (v, v

2\ &
(4.6)

where v2 = ¥4_, [v4]? is a positive constant. Note that
this result is completely general without any ansatz
employed.

The Eq. (4.6) is not entirely new. It can be obtained as
the half-BPS equation of the super Yang-Mills theory with
coupling constant

&ym = ——- “4.7)

This identification has already appeared in the context of
the compactification of BLG/ABJM theory (from M2 to
D2) [21,22]. For finite k, there are correction terms to
Yang-Mills Lagrangian. However here we do not need to
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take the limit v, k — oo as long as the half-BPS equation is
concerned.

Alternatively, if the sign of the second equation in (4.6)
is flipped, it is exactly the same as the half-BPS equation in
nonrelativistic Chern-Simons theory with an adjoint matter
[31,32] where the solutions have been studied extensively.
Here we briefly describe some simple solutions of (4.6)
with s = 1 for definiteness. Introducing complex notations
z=2x; +ix,and A = (A, — iA,)/2, we take the ansatz,

N-1
Y] = Z yaea + yMEiM’

N
a=1 a

-1
A= Zl A h4,

e (4.8)
A= Ane,
a=1

where h¢ and e® are SU(N) generators in the Chevalley
basis satisfying [e?, e 9] = 8,,,h%, [h%, €] = K, e? with
K, being the Cartan matrix, and E~M is the Hermitian
conjugate of the maximal ladder operator EM commuting
with e®’s. Plugging (4.8) into (4.6), we obtain (affine-)
Toda-type equation,

- 27\2 |G(2)I?
IR N (R L
Yy k hgl o\ 1Yo |Cb|21—[1c\/=11 |yC|2
G(2)
YM = /=1 (4.9)
a=1 Ya

where G(z) is an arbitrary holomorphic function. For
SU(2), this reduces to Liouville-type equation (with G =
0) or Sinh-Gordon-type equation (with G = const) consid-
ered in [17] in the context of BLG theory. The solutions
however all have to have infinite energy as we mentioned
before. This is also consistent with the fact that (4.6) is
obtained from super Yang-Mills theory without symmetry
breaking potential.

V. SOLVING HALF-BPS EQUATIONS IN THE
MASS-DEFORMED THEORY

In this section we solve half-BPS equations in (3.5),
(3.7), and (3.8) in the mass-deformed theory. In this case,
the constraint equations in (3.8) are more complicated and
we first consider U(2) X U(2) case, and then discuss gen-
eral U(N) X U(N) case.

A.U(2) X U(Q2)

From the constraint 85> = uY? and B3* = uY?, it is
clear that ¥ is nonzero if and only if ¥* is nonzero. Let us
first consider the case that both are nonzero. Utilizing the
gauge symmetry, we may assume without loss of generality
that Y2 is diagonal with nonnegative real entries,

k
PG O osess
v

S.D
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Suppose ¢ # d. Then solving the two constraints as well as
BC = 0, we find only a trivial solution that Y! = ¥? = 0
and’

ko 0 k(0 0
3 4
= 2_77(0 d)’ = 2_77(€i)( 0)’ (>-2)

where y is a real constant.

To obtain nontrivial solutions ¥3 must be proportional to
the identity. But then from the constraint uY* = B3*, we
see that Y* = 0 which in turn implies Y3 = 0. Therefore

we are left with only one constraint,

B3 + uy' =0. (5.3)

Note that this constraint with the first BPS equation in (3.8)
implies DyY' = 0 and hence only Y? is responsible for the
charge of which the U(1) current is given in (3.10), while
Y! satisfying (3.5) gives the vorticity. Nonzero charge due
to Y2 is then related to the magnetic field through the Gauss
laws (3.9) which are a characteristic nature of the Chern-
Simons gauge theory.

As before, we can assume that Y2 is a diagonal matrix
with nonnegative increasing real entries. Solving (5.3)

gives
v — k_,u a 0
V27T 0 Va>+1)

_ k(O S
Yl_\/;<o 0)’
(a = 0).

Inserting this into the equation for DyY? in (3.8) and
Gauss’s laws (3.9), we find that the magnetic fields are
given by

a1 [P 0
B=5B= 28ﬂ2< 0 (@ + DA = £ )
(5.5)

(5.4)

which means that the gauge fields are diagonal,

_f(ui O
Ai_<0 Ui>'

Note that A; is the same as A, up to a gauge degree which
can be put to zero. Then from D;Y? = 0, a in (5.4) must be
a constant.

Finally, from the equation (D, — isD,)Y' = 0 in (3.5),
we can express the gauge fields in terms of Y'. Explicitly,
with s = —1 for definiteness,

(5.6)

ii — v =1idInf. (5.7)

Comparing this with the magnetic field B = 2(dA — dA),
we obtain

*Hereafter we assume that > 0. Negative u case can be
analyzed in a similar manner and the same results are obtained
except that the first and the second components are exchanged.

045013-7



KIM, KIM, KWON, AND NAKAJIMA

aalnlfI? + i3 — 39)Q = p2[(2a% + VIf2 — 1]
(5.8)

where () is the phase of the scalar field, f = |f|e’®. This is
the celebrated vortex equation appearing in Maxwell-
Higgs theory and has been extensively studied [33]. The
same equation has also obtained in mass-deformed BLG
theory [18]. Note however that, although the final equation
is the same, U(1) part plays a nontrivial role in the present
case.

Let us now calculate the energy of the solution satisfying
(5.8). Since DyY' = 0, J9, = j° = £ B and hence

k
E= I—MtrdexB )
27

Therefore the energy is given by the trace part of the
magnetic field while the vorticity of the solution comes
from the relative part as seen in (5.7). Then the energy of a
vortex solution is not proportional to the vorticity in gen-
eral and can be infinite for some solutions. Using (5.5), we
can rewrite

(5.9)

E =

k

lid [d2x2,u,2(2a2 + 1= 1) (5.10)
2

This implies that, for finite energy solutions, f should
behave asymptotically as

|fI> — 2a% + 1, r— 00

, (5.11)

which is consistent with (5.8) only for a = 0. In other
words, to obtain finite energy solutions we should set a =
0. In this case, u; = 0 and using (5.7), we find that the
magnetic flux is given by

tr fdsz = 27rn, (n € 2), (5.12)
where 7 is the vorticity. Then the energy becomes
E = nkpu. (5.13)

A characteristic nature of configurations in Chern-
Simons gauge theory is that they usually carry nonzero
angular momentum. However in this case it vanishes. To
see this note that the linear momentum density is propor-
tional to the combination DyYD;Y. However for the
present case either DY vanishes or D;Y* vanishes be-
cause fields do not carry both charge and vorticity as
discussed above.

When a # 0, the solution may be interpreted as vortices
in the presence of a constant magnetic field with the energy
written as a sum of the vortex part and the constant part,

[dz 4k’ a*(a® +1)‘
2a +1

7(2a> + 1) (5-19)

It would be illuminating to examine the origin of the
Maxwell-Higgs vortex equation in the Chern-Simons
gauge theory which has a sextic potential having a mini-
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mum at the origin. For this purpose we consider the ansatz

Yl:\/g@ o) Yz:\/g@ Z) (5.15)

Y3i=Yv4=0,

and calculate the form of the potential as a function of f
and g. With g = 1 this reduces to (5.4) so we would like to
see how the potential changes as g changes. Plugging
(5.15) into (2.12), we have the following potential in the
mass-deformed theory,

Volf,g) = ( ) WIFRAgR — D2 + g2 — D]
(5.16)

Then V,, vanishes at f = g =0 and |f| = |g| = 1 as it
should be. From this potential we get the quartic potential
(I£1> = 1)* with g = 1 which is the potential appearing in
Maxwell-Higgs theory. Note that f =0, g =1 is not a
local maximum of the potential since V,,(f = 0, g) ~ |g|>.
One may wonder how the configuration does not roll down
to the origin. This is due to the special nature of the Gauss
law in Chern-Simons gauge theory, namely, the magnetic
field is proportional to the charge density (3.9). Replacing
D,Y? by the magnetic field in the energy expression, we
obtain an effective potential term |B/ g|? which acts as a
barrier at the origin (g — 0). This can be interpreted as a
centrifugal term inversely proportional to 1/g* due to the
rotation in Y2 plane.

Along the direction f = g, (5.16) becomes the sextic
potential |f|>(|f|> — 1)> which appears in U(1) self-dual
Chern-Simons matter system [10]. It turns out that this
direction corresponds to a less supersymmetric BPS case
and will be reported elsewhere [34].

B. U(N) X U(N)

As in the previous subsection we start with the constraint
B = pnY? and B3* = uY*. Solutions of these equations
have already been considered in the end of Sec. II. For the
irreducible solution (2.39), it is easy to show that the other
constraints produce only a trivial solution Y! = Y2 = 0.
Therefore to obtain nontrivial solutions we should consider
reducible cases. Since there are many different possibil-
ities, here we will analyze only some representative cases.

First note that the vorticity is carried by the field Y! and
the other scalars constrain the degrees of freedom of Y!
through constraint equations in (3.8). Then in order to find
nontrivial solutions it is desirable to assume that Y2, Y3, ¥*
take simple forms. However, we cannot put all of these to
be zero because the magnetic field would vanish in that
case. Furthermore, if one of Y3, Y* vanishes, the other
should also vanish from the last two constraints in the
third line of (3.8). Considering all these, it is natural to
set Y* = Y* = 0 while Y? # 0. Then we are left with only
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one constraint B3' + u¥Y!' =0 as in the previous
subsection.
An interesting nontrivial solution is obtained with the

ansatz which generalizes (5.4) with a = 0 to a block matrix

form,
yl = ’k_M(ON,le FNIXNZ)
2\ O O (5.17)
y2 — /k_//»( On,xn,  Onyxw, )
27\ Onyxn,  Gryx, /'

where N, N, are positive integers satisfying Ny + N, = N
and the subscript denotes the dimensionality of each block
which we omit from now on. We also only consider the
case N; = N, for simplicity. With the help of gauge sym-
metry, G can be chosen to be a diagonal matrix with real
nonnegative entries. Solving the constraint, we find F =
FG'G which implies G is the N,-dimensional identity
matrix. Then the magnetic field is given by

A 0 0
=B =— 2
B=BHB 25 (0 I FTF)’ (5.18)
and up to a gauge we can write
_~ (0 O

The only remaining equation is (3.5) and it becomes
(D, + isD,)FT =0, (5.20)

where D;Ft = 9,Ft + iA;Ft. Together with (5.18) this
forms the non-Abelian vortex equation in U(N,) Yang-
Mills theory with N; fundamental scalar fields and has
been studied extensively [35,36]. If N = 2and N; = N, =
1, it reduces to the Abelian vortex equation obtained in the
previous subsection. For this configuration, we have j* =
J9, = 5% B and obtain the energy as

k
oy [ d’xB
2
which is the generalization of (5.13).
The ansatz (5.17) with G = I may be considered as a

solution to B3' + wY! = 0 with maximal degeneracy. The
irreducible nondegenerate ansatz similar to (2.39) is

E= = nkp, (5.21)

kp

ke
lenn = 5m+1 n _fm’ ernn = 6mn A %o (522)
2 2
where
a,, = \[a% +m— 1. (5.23)
Here a, is a nonnegative constant and f1,..., fy_; are

functions to be determined. The irreducible vacuum would

be obtained for a; = 0 and f,, = +/N — n. With this ansatz
the magnetic field becomes a diagonal matrix given by

PHYSICAL REVIEW D 80, 045013 (2009)

an = émn = _zsﬂzagn(lfmlz - |fm—1|2 + 1)6mnr
(5.24)

where f, = fy = 0. Eliminating the gauge fields from
(3.5), we obtain N — 1 coupled differential equations,

_/J*Q[agnlfmfllz - (azm + a3n+1)|fm|2
+ “%1+1|f;n+1|2 + 1]

This type of coupled equations has appeared in U(1)¥ !
gauge theories with N — 1 Higgs fields which couple to the
gauge fields [37].

As in U(2) X U(2) case, the solutions of (5.25) do not
necessarily have finite energy. For the finite energy in
(3.14), the trace of the magnetic field should vanish in
the asymptotic limit » — oo. It is not difficult to find that
the condition is consistent with the asymptotic behavior
obtained from (5.25) only when the constant a; vanishes.
Otherwise we would have infinite energy configurations
with background of a constant magnetic field as discussed
in the previous subsection.

From now on we consider only the case a; = 0 for
which (5.25) reduces to

anlful? = —u2[(m — DIfy 1P = @m = DI,
+ ml s 2+ 11, (5.26)

90 In|f,|* =
(5.25)

The asymptotic value of |f,,|’s are determined by requiring
that the right hand side of (5.26) vanish,

|fm|_> VN_mr

Note that this is nothing but the irreducible vacuum values
as it should be. An obvious solution of (5.26) is obtained
with the ansatz

r— o0,

(5.27)

fm = VN —mf, (5.28)

which is consistent with (5.27). Then (5.26) reduces to a
single equation,

9 In|fI> = —p?(1 = |fP),

which is again the Maxwell-Higgs vortex equation which
generalizes the result of U(2) X U(2) case in the previous
subsection.

The ansatz (5.28) assumes that all the components f,,’s
have the same functional form and, in particular, the same
vorticity. There are however more general solutions for
which f,,’s carry different vorticities [37]. Let n,, be the
vorticity of f,. Then the energy can be calculated by
taking the trace of the magnetic field,

k/vL N -1
E= |==tr | d&’xB
|27T r[ ) I:Z2lenm

If n,, = n are the same for all m, the energy reduces to £ =
nkuN(N — 1)/2.

(5.29)

— ku (5.30)
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Other than the cases considered above, we have tried
some other ansatz on which we briefly comment here. For
U(3) X U(3), we worked out the equations in the most
general way including reducible cases. In most cases the
result is essentially some embedding of U(2) X U(2) case.
When Y2 = 0 while Y3, Y* are not zero, Liouville-type
equation can also be obtained as in the previous section.
For N > 3, we did not fully analyzed the constraints but it
seems that most cases fall into one of those considered
here.

VI. SUMMARY AND OUTLOOK

In this paper, we investigated vortex-type half-BPS
equations in the ABJM theory with or without mass de-
formation We obtained the energy bound (3.14) which is
proportional to the mass-deformation parameter. We also
showed that the D-term deformation and the F-term defor-
mation are the same as the mass deformation preserving
maximal /N = 6 supersymmetry.

For the undeformed ABJM theory, we solved all the
constraint equations in the BPS equations. The resulting
equation is shown to be the half-BPS equation in super-
symmetric Yang-Mills theory. It has no finite energy regu-
lar solution.

In the mass-deformed theory, we showed that the BPS
equations for U(2) X U(2) case reduce to the vortex equa-
tion appearing in Maxwell-Higgs theory which is known to
have multivortex solutions. We obtained pure vortex solu-
tions with the energy given by its vorticity as well as
vortices in the constant background of magnetic field. We
explored the origin of Maxwell-Higgs vortex in the Chern-
Simons gauge theory. For U(N) X U(N) case with N > 2,
we obtained the non-Abelian vortex equation of Yang-
Mills-Higgs theory and also more general equations. It
would be interesting to study the moduli space of these
solutions.

PHYSICAL REVIEW D 80, 045013 (2009)

There are many issues not addressed in this paper. It is
straightforward to extend our analysis to the cases with less
supersymmetry. A notable case among them is the N = 1
BPS equation which turns out to reduce to the vortex
equation in U(1) Chern-Simons-Higgs system [10]. This
has been also considered in [19] in the context of F-term
deformation.

Since the ABJM theory is defined on a Z,, orbifold with
the action YA — ¢27/kyA one may explore the possibility
of configurations having fractional vorticity with phase
dependence of the form Y4 ~ ¢?/k_ It can be shown that
this is possible in less supersymmetric solutions such as
N =1 case [34].

In this paper, we considered the theory purely from the
viewpoint of a field theory and did not attempt to interpret
the solutions in the context of M-theory. We would like to
investigate these issues in the forthcoming publication
[34].
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