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Using dimensional regularization, we compute the one-loop quantum and thermal corrections to the

profile of the bosonic (1þ 1)-dimensional ’4 kink, the sine-Gordon kink, and the CP1 kink, and higher-

dimensional ’4 kink domain walls. Starting from the Heisenberg field equation in the presence of the

nontrivial kink background we derive analytically results for the temperature-dependent mean field which

display the onset of the melting of kinks as the system is heated towards a symmetry-restoring phase

transition. The result is shown to simplify significantly when expressed in terms of a self-consistently

defined thermal screening mass. In the case of domain walls, we find infrared singularities in the kink

profile, which corresponds to interface roughening depending on the system size. Finally we calculate the

energy density profile of ’4 kink domain walls and find that in contrast to the total surface tension the

local distribution requires composite operator renormalization in 3þ 1 dimensions.
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I. INTRODUCTION

Solitons [1] in scalar field theories in 1þ 1 dimensions,
which we call generically kinks, have played an important
role in increasing our understanding of various nontrivial
aspects of quantum field theories, ranging from exactly
solvable examples of strong-weak coupling dualities [2,3]
to the theory of topological defects generated at phase
transitions with applications in condensed matter physics
[4] as well as cosmology [5].

In a number of models one knows in closed form the
spectrum of fluctuations about the kink background which
allows one to perform complete calculations of one-loop
corrections to the mass of the kinks. However, these cal-
culations turn out to be full of subtleties, in particular (but
not only), in the presence of fermions. For example, for the
minimally supersymmetric kink a number of authors have
concluded from explicit calculations that there was a can-
cellation of the one-loop effects on mass and central charge
in a certain minimal renormalization scheme [6–8], a result
widely accepted since the mid 1980s. Only in 1997 two of
the present authors have reopened this issue by demon-
strating an incompatibility of the methods employed for
the supersymmetric kinks with known exact results for the
nonsupersymmetric sine-Gordon model [9], with correct
results for the mass eventually being established in
Refs. [10–12] and a resulting puzzle concerning BPS satu-
ration solved in Ref. [12] by the discovery of a new
anomaly in the central charge.1 More recently this has
led to a similar revision also in the case of four-

dimensional supersymmetric monopoles [14,15], where a
long-standing (20 years) but unnoticed discrepancy of
direct calculations [16,17] with newer developments (no-
tably Seiberg-Witten theory [18]) was eventually cleared
up.2

In the present paper we shall consider bosonic kinks at
finite temperature,3 applying and slightly generalizing the
method used in Refs. [12,21] to calculate the profile of kink
to one-loop order. Following Ref. [21] we start from the
Heisenberg field equation. Other authors have used the
method of the effective action with x-dependent back-
ground fields (see [4] and references therein). Both meth-
ods are of course completely equivalent but we found the
former to be simpler to implement.
Quantum and thermal corrections to kinks have been

considered in various approximations of self-consistent,
nonperturbative frameworks e.g. in Refs. [22–24]. Here
we shall restrict ourselves to one-loop effects in a regime
where perturbation theory is still reliable, refraining there-
fore from attempts to cover the physics of the symmetry
restoring phase transition itself and the corresponding
actual melting of kinks. However, we can reliably cover
the onset of the melting of kinks and in this way provide
benchmarks for more daring approximations and ap-
proaches. Systematic calculations of one-loop corrections
to kink profiles and domain walls at zero and finite tem-
perature have been carried out before by several authors
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1Actually the conformal central charge [13].

2For more extensive reviews see e.g. [19,20].
3Finite temperature breaks supersymmetry so that supersym-

metric kinks no longer display features that are not also found in
the bosonic case. Moreover, thermal contributions from fermions
provide no special difficulty and are easily added on to what
follows.
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[25–29]. Our results are in agreement with those once the
differences in the renormalization schemes are taken into
account.4 However, we find significant simplifications in
the corrections to the kink profile provided renormalization
conditions are formulated in terms of a self-consistent
thermal screening mass, which may be of practical impor-
tance in applications at noninfinitesimal coupling.

We shall in turn cover three different models in 1þ 1
dimensions: the well-known, exactly solvable, sine-
Gordon model with Z� Z2 symmetry, a closely related
massive CP1 model with Uð1Þ � Z2 symmetry, and the
familiar’4 model withZ2 symmetry. All the above models
have a discrete symmetry which is spontaneously broken at
zero temperature and which leads to topological solitons
(kinks). Since the ’4 model is renormalizable in higher
dimensions as well, we shall use it also to discuss domain
walls in 2þ 1 and 3þ 1 dimensions.

At sufficiently high temperature T one expects symme-
try restoration and the disappearance (‘‘melting’’) of the
kinks. In 3þ 1 dimensions it is well known that perturba-
tion theory allows one to derive the leading order result for
the phase transition temperature Tc, but in simple scalar
field theories next-to-leading order results for the transition
temperature as well as the order of the phase transition are
beyond perturbation theory [32,33].

Therefore, let us explain the validity and limitations of
perturbative methods in the various dimensions. In 3þ 1
dimensions, symmetry restoration in ’4 theory with cou-
pling constant � is brought about by a thermal mass term
�m2’2 � �T2’2 which outweighs the wrong-sign mass
term / ��2’2 in the classical potential for sufficiently

high temperature T > Tc ��=
ffiffiffiffi
�

p
. After a resummation of

the leading-order thermal mass, perturbation theory around
the minimum of the effective potential has a loop expan-
sion parameter ��T=m, where m is the (thermally cor-
rected) mass of the fluctuations around the minimum, with

m� ffiffiffi
2

p
� at low T in the broken phase, and m� �m for

large T in the restored phase. With � � 1, perturbation
theory works for all temperatures except very close to Tc

wherem gets parametrically small. (As long asm��, the

expansion parameter �T=m &
ffiffiffiffi
�

p
up to temperatures of

the order of Tc; for T � Tc, one has m� ffiffiffiffi
�

p
T and the

expansion parameter is of order
ffiffiffiffi
�

p
throughout the

symmetry-restored phase.)

In lower dimensions, the situation is much more dire. In
1þ 1 dimensions, the coupling constant of ’4 theory as
well as of the sine-Gordon model has scaling dimension
mass squared, and we have to assume that the loop expan-
sion parameter at zero temperature �=m2 � 1. (For the
CP1 kink we have a dimensionless coupling constant
replacing �=m2.) At finite temperature the expansion pa-
rameter is ð�=m2Þ � ðT=mÞ. High-temperature thermal
mass terms are however only linear in T, �m2 � �T=m.
For symmetry restoration we would need j�m2j * m2, but
this contradicts the requirement ð�=m2Þ � ðT=mÞ � 1.
Hence, in perturbation theory we can reliably study the
high-temperature limit T=m � 1 only as long as T=m �
m2=�, i.e. in the broken phase where j�m2j � m2. It is
therefore not mandatory to resum the thermal mass �m,
although we shall find that it will be natural to do so.
An important difference to the 3þ 1-dimensional case

is, however, that �m2 � �T=m in the 1þ 1-dimensional
theory is generated only by Matsubara zero modes,
whereas in the 3þ 1-dimensional case the leading terms
in �m2 are generated by ‘‘hard,’’ short-distance modes
with wavelength �T�1, which for T=m � 1 are insensi-
tive to the presence of a nontrivial kink background with
inherent length scale �m�1.
In 2þ 1-dimensional theory, the situation is not better

than in 1þ 1 dimensions. The loop expansion parameter at
zero temperature is �=m � 1. The thermal expansion
parameter �T=m2 � 1 equally implies that the thermal
mass squared �m2 � �T � m2, precluding a perturbative
analysis of a symmetry-restoring phase transition. When
going to high temperatures T=m � 1, perturbation theory
is reliable only as long as T=m � m=�, so again only the
broken phase is accessible.5

In order to study the actual melting of kinks, nonpertur-
bative methods are needed. (In the lower dimensional
cases, also the symmetry-restored phase with T � Tc is
nonperturbative.) In some cases, other systematic expan-
sions like large-N expansions [36,37] can be put to work,
but often (self-consistent) approximation schemes are em-
ployed which lack an expansion parameter controlling the
approximations. In order to have credibility, such approx-
imations should be able to reproduce our perturbative
results as limiting case.
In Sec. II we consider the sine-Gordon model and the

massive CP1 model, which have closely related fluctuation
spectra, and we calculate the one-loop corrections to the
field profile of the kinks in these models. In Sec. III we turn
to the familiar ’4 model, which has a more complicated
fluctuation spectrum and correspondingly more compli-
cated one-loop corrections. Since the latter model is re-

4In Ref. [30] two of us have previously stated that we dis-
agreed with Ref. [25] regarding results on the surface tension at
zero temperature in a zero-momentum renormalization scheme,
but agreed with Ref. [31]. As has been shown in Ref. [29], this
apparent discrepancy was due to having compared two versions
of a zero-momentum renormalization scheme. The zero-
momentum scheme considered in Refs. [30,31] renormalizes
the derivative of the two-point function with respect to momen-
tum to one, while the scheme in Refs. [25,29] does not introduce
nontrivial wave-function renormalization, which is possible at
one-loop order. Taking this difference into account resolves this
issue.

5The critical temperature of the 2þ 1-dimensional ’4 model
has been estimated by renormalization-group methods in
Ref. [34] to be given by a relation of the form Tc=� /
�=� logðc�=TcÞ and the constant c subsequently measured on
the lattice in Ref. [35].
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normalizable in higher dimensions, we shall use it to
discuss one-loop corrections to domain walls in 2þ 1
and 3þ 1 dimensions, with a detailed discussion of our
dimensional regularization and renormalization scheme,
and its appropriate generalization at finite temperature. In
particular, with the help of a remarkable identity for inte-
grals involving the Bose-Einstein distribution function, we
find that a self-consistent definition of the thermal screen-
ing mass removes certain artifacts in the one-loop kink
profile.

In the calculation of the profile of the higher-
dimensional domain walls, we encounter infrared singu-
larities associated with the massless modes that correspond
to the translational zero mode of the 1þ 1-dimensional
kink. In accordance with Refs. [26,27,29], these singular-
ities are interpreted as the field theoretic equivalent of
system-size dependent interfacial roughening [38–40].
Finally we calculate the energy profile of the ’4 kink
and the corresponding domain walls and show that in
contrast to the total mass (surface tension) the local energy
density profile is ambiguous, depending on improvement
terms to the stress tensor, and that in 3þ 1 dimensions
composite operator renormalization through improvement
terms is required.

II. SINE-GORDON AND CP1 KINKS

We begin by calculating the one-loop quantum and
thermal corrections to the field profile of the 1þ 1-
dimensional sine-Gordon model and a massive version of
the CP1 model, which both happen to have a simpler
fluctuation spectrum than the ’4 model (in particular, no
bound states). A full-fledged discussion of our method of
dimensional regularization will be introduced in Sec. III,
where we turn to the ’4 model in 1þ 1 and higher dimen-
sions, which also turns out to involve less trivial renormal-
ization conditions.

A. Sine-Gordon kink

The Lagrangian of the sine-Gordon model is

L ¼ � 1

2
@�’@

�’þm4

�

�
cos

� ffiffiffiffi
�

p
m

’

�
� 1

�
; (1)

with a real scalar field ’. We have a discrete Z2 � Z
symmetry, given by ’ ! �’ and ’ ! ’þ 2�n mffiffiffi

�
p with

n 2 Z. The field equation in 1þ 1 dimensions is

@�@
�’ � ð�@2t þ @2xÞ’ ¼ m3ffiffiffiffi

�
p sin

� ffiffiffiffi
�

p
m

’

�
: (2)

The constant solution of this equation yields the classical
vacua

’ ¼ 2�n
mffiffiffiffi
�

p ; (3)

which break the discrete symmetry spontaneously. The

kink solution interpolating between the vacua with n ¼ 0
(x ¼ �1) and n ¼ 1 (x ¼ þ1) is

’KðxÞ ¼ 4mffiffiffiffi
�

p arctanemðx�x0Þ: (4)

The energy of this configuration isM ¼ 8m3=�. The equa-
tion for the fluctuations �ðx; tÞ around the kink solution,

@�@
��ðx; tÞ �m2�ðx; tÞ cos

� ffiffiffiffi
�

p
m

’KðxÞ
�
¼ 0; (5)

becomes, using �ðx; tÞ ¼ e�i!t�ðxÞ and the kink profile
(4), �

�@2x þm2

�
1� 2

cosh2mx

��
�ðxÞ ¼ !2�ðxÞ; (6)

where we have set x0 ¼ 0. From this equation we obtain
the zero-mode with energy ! ¼ 0,

�0ðxÞ ¼
ffiffiffiffi
m

2

r
1

coshmx
; (7)

and the continuum with !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
,

�kðxÞ ¼ m

!k

eikx
�
tanhmx� i

k

m

�
: (8)

We note the useful relation between the continuum and the
zero-mode [Ref. [21], Eq. (12)]

j�kðxÞj2 ¼ 1� 2m

!2
k

�2
0: (9)

We can now compute the correction to the kink profile in
the presence of the fluctuations. To this end, following
Ref. [21], we interpret the equation of motion (2) as a
Heisenberg field equation and write ’ðx; tÞ ! ’KðxÞ þ
’ðx; tÞ ¼ ’KðxÞ þ�1ðxÞ þ �ðx; tÞ. Here, �1ðxÞ �
h’ðx; tÞi, and the quantum fluctuation field �ðx; tÞ �
’ðx; tÞ ��1ðxÞ obeys h�i ¼ 0.
The equation of motion for �1ðxÞ becomes�
@2x �m2 cos

� ffiffiffiffi
�

p
m

’K

��
�1 ¼ �m

ffiffiffiffi
�

p
2

sin

� ffiffiffiffi
�

p
m

’K

�
h�2iren;

(10)

where

h�2iren ¼ h�2i � h�2ijx!1 (11)

is the renormalized propagator. To obtain Eq. (10) from
Eq. (2) we have employed the following renormalization.
We have fixed �m2 and �� in the renormalization of the
mass m2 ! m2

0 ¼ m2 þ �m2 and the coupling constant

� ! �þ �� such that all one-loop (finite-temperature)
graphs with one vertex cancel [41]. This condition implies
that the ratio m2=� is unchanged under renormalization,
and

ONE-LOOP RESULTS FOR KINK AND DOMAIN WALL . . . PHYSICAL REVIEW D 80, 045012 (2009)

045012-3



�m2 ¼ m2 ��

�
¼ �

2
h�2ijx!1: (12)

The propagator at finite temperature is given by

h�2i ¼ T
X
n

Z 1

�1
dk

2�

j�kðxÞj2
!2

n þ!2
k

¼
Z 1

�1
dk

2�

1þ 2nð!kÞ
2!k

j�kðxÞj2; (13)

where !n ¼ 2n�T are the bosonic Matsubara frequencies
and nð!Þ ¼ ½expð!=TÞ � 1��1 is the Bose-Einstein distri-
bution. Here we have dropped the zero mode of Eq. (7),
which corresponds to the translational degree of freedom
of the kink and which can be taken care of by collective
quantization [42]. This expression is UV divergent and
thus requires regularization. In Sec. III we shall introduce
our method of dimensional regularization adapted to sol-
itons, but in this and the next section we shall suppress its
details, since the finite results for the kink profile below do
not depend on them. (If we were to calculate also local
energy densities, as we shall do for the model of Sec. III,
we would need to be more careful.) The treatment of the
zero mode in our way of dimensional regularization will
also be discussed more fully in Sec. III, where we cover the
more general case of domain walls.

Simply subtracting Eq. (13) according to Eq. (11), and
making use of Eq. (9) yields the renormalized propagator

h�2iren ¼ ��2
0ðxÞ

�
1

m�
þ 2m

Z 1

�1
dk

2�

nð!kÞ
!3

k

�
: (14)

Inserting this result into the differential Eq. (10) yields the
correction to the kink profile

�1ðxÞ ¼
ffiffiffiffi
�

p
4m

�
1

2�
þm2

Z 1

�1
dk

2�

nð!kÞ
!3

k

�
sinhmx

cosh2mx
: (15)

The total kink is then given by ’KðxÞ þ�1ðxÞ with ’K

from Eq. (4). We see that there is a zero-temperature and a
finite temperature correction, both being proportional to
the derivative of the zero mode. This is a consequence of
the renormalization (12) which subtracts the complete one-
loop (seagull) diagram of the trivial sector including ther-
mal contributions. Had we left out the latter (or any finite
part), this would have produced extra contributions to �1

proportional to m @
@m’K ¼ ’K þ 2mffiffiffi

�
p mx= coshðmxÞ.

With the large-temperature expansion

m2
Z 1

�1
dk

2�

nð!kÞ
!3

k

¼ T

2m
� 1

4�
þO

�
m

T

�
; (16)

we see that the finite-temperature part of �1 is suppressed
compared to ’K by one power of the expansion parameter
�T=m3 (while the zero-temperature part is suppressed by
�=m2). Since this expansion parameter cannot be small in
the case of symmetry restoration (see discussion in the
introduction), this perturbative result is only valid for

temperatures much smaller than the critical temperature
of symmetry restoration.
Identifying zero-temperature and thermal contributions

of the mass counterterm �m2 � �T¼0m
2 þ �Tm

2, we
note that our renormalized mass m2 � m2

0 � �m2 ¼
ðm2

0 � �T¼0m
2Þ � �Tm

2 ¼ m2
T¼0 þm2

T differs from the

renormalized mass at zero temperature by a negative ther-
mal correction

m2
T ¼ ��Tm

2 ¼ ��

2

Z 1

�1
dk

2�

nð!kÞ
!k

¼ ��

4

T

m
þ . . . for T � m: (17)

This means that thermal corrections tend to flatten out the
potential by reducing the difference between maxima and
minima of the potential, which is proportional tom2ðm2=�Þ
with m2=� invariant. However, the distance between the
minima and thus the value of’K at x ¼ �1 remains fixed.
In Fig. 1 we plot the kink profile for three different tem-
peratures as a function of mT¼0x, showing that with in-
creasing temperature the kink profile becomes flatter. (Had
we plotted the profile as a function of mx with m the
temperature-dependent mass, the kink would have ap-
peared to become steeper instead.)

B. CP1 kink

The discussion of the finite-temperature kink in the
mass-deformed CP1 model is very similar to the sine-
Gordon model of the previous subsection. The
Lagrangian of the massive CP1 model is

L ¼ � r

ð1þ�y�Þ2 ð@��
y@��þm2�y�Þ; (18)

with a dimensionless coupling r and a complex field �.

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1 (color online). Finite-temperature corrections to the
sine-Gordon kink ’KðxÞ þ�1ðxÞ according to the result (15)
for �=m2 ¼ 0:2 as a function of x times the zero-temperature
mass mT¼0 and for three different temperatures, T=mT¼0 ¼ 0,
10, 20. The zero-temperature result is given by the dashed line,
and with increasing temperature the kink becomes flatter.
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This model is renormalizable in 1þ 1 dimensions and
requires a coupling constant counterterm r ! rþ �r
which is equivalent to wave-function renormalization and
a mass counterterm m2 ! m2 þ �m2.

The Lagrangian (18) has a Uð1Þ symmetry, � ! ei��,
and a discrete Z2 symmetry, � ! 1=�y. Since we work in
1þ 1 dimensions, the continuous symmetry cannot be
spontaneously broken [43]. A vacuum expectation value
of the field � rather breaks the discrete Z2 symmetry
spontaneously. The classical potential

V ¼ rm2�y�
ð1þ�y�Þ2 (19)

is minimized at � ¼ 0 and j�j ¼ 1, i.e., by the south and
north poles of the 2-sphere representing the compactified
complex plane. [Both minima are invariant under Uð1Þ as
required].

For a static solution, we can rewrite the Hamiltonian as

H ¼ r

ð1þ�y�Þ2 ð@x�
y �m�yÞð@x��m�Þ

� rm@xð1þ�y�Þ�1 (20)

and read off the Bogomolnyi equation ð@x �mÞ� ¼ 0.
Thus the classical solution is

’KðxÞ ¼ emðx�x0Þ; (21)

and the classical energy is M ¼ rm. We again set x0 ¼ 0.
Next we determine the spectrum of the fluctuations in

the presence of the kink. From

�L

��y ¼ r

�3
½�ðh�m2Þ�� 2�yðð@��Þ2 �m2�2Þ�;

� � 1þ�y�; (22)

it is clear that the field equation of the fluctuations is
obtained by setting � ¼ �, keeping � fixed. This yields

�
@20 � @2x þ 4’2

K

1þ ’2
K

m@x þm2 1� 3’2
K

1þ ’2
K

�
�ðx; tÞ ¼ 0:

(23)

With the ansatz

�ðx; tÞ ¼ r�1=2ð1þ ’2
KÞgðxÞe�i!t (24)

the field equation for gðxÞ becomes Eq. (6) of the sine-
Gordon model. Consequently, as in the sine-Gordon
model, we have a zero-mode

g0ðxÞ ¼
ffiffiffiffi
m

2

r
1

coshmx
; (25)

and the continuous spectrum !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
with

gkðxÞ ¼ m

!k

eikx
�
tanhmx� i

k

m

�
: (26)

To obtain the corrections to the kink profile induced by
the fluctuations we write, analogous to above, �ðx; tÞ ¼
’KðxÞ þ�1ðxÞ þ �ðx; tÞ, and derive the equation for
�1ðxÞ. The terms with h�	�i are obtained by expanding
the term �2ð�	=�Þ½2@x’K@x�� 2m2’K�� in Eq. (22) to
first order in �	. It is obvious from (22) that the propagator
is diagonal: h��i ¼ 0. Hence we may set � ¼
’K þ�1ðxÞ þ �1ðx; tÞ with real �1ðxÞ and �1ðxÞ and re-
place h�	�i by h�1�1i. Taking into account also the mass
counterterm6 this yields�

@2x � 4’2
K

1þ ’2
K

m@x � 1� 3’2
K

1þ ’2
K

m2

�
�1

¼ 4’Km

ð1þ ’2
KÞ2

h�1ð@x �mÞ�1i þ �m2’K

1� ’2
K

1þ ’2
K

;

(27)

with

h�2
1i ¼ r�1ð1þ ’2

KÞ2
Z 1

�1
dk

2�

1þ 2nð!kÞ
2!k

jgkðxÞj2: (28)

Using that h�1ð@x �mÞ�1i ¼ ð12@x �mÞh�2
1i and ð12@x �

mÞð1þ ’2
KÞ2 ¼ mð’2

K � 1Þð1þ ’2
KÞ we find that a mass

counterterm of the form

�m2 ¼ 4r�1m2
Z 1

�1
dk

2�

1þ 2nð!kÞ
2!k

(29)

corresponds to a UV-subtracted quantity

h�2
1iren ¼ r�1ð1þ’2

KÞ2
Z 1

�1
dk

2�

1þ 2nð!kÞ
2!k

½jgkðxÞj2 � 1�

¼�r�1ð1þ’2
KÞ2g20ðxÞ

�
1

m�
þ 2m

Z dk

2�

nð!kÞ
!3

k

�
;

(30)

since the functions gkðxÞ and g0ðxÞ obey the same identity
(9) as in the sine-Gordon case. With the explicit form of
g0ðxÞ, Eq. (25), we finally obtain a vanishing result for the
right-hand side of Eq. (27),

h�1ð@x �mÞ�1iren ¼
�
1

2
@x �m

�
h�2

1iren ¼ 0; (31)

leading to the remarkably simple result

�1ðxÞ ¼ 0: (32)

This means that the kink profile remains unaltered at finite
temperature, provided the mass is renormalized according
to (29). The corresponding renormalization condition turns

6The coupling constant counterterm does not contribute be-
cause it amounts to wave-function renormalization and thus
multiplies the classical field equation.
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out to be an on-shell mass renormalization in the trivial
sector including all thermal contributions.7 The thermal
correction to the mass has the same form as in the sine-
Gordon model, with the replacement � ! 8r�1m2 in
Eq. (17). Since it is negative, this means that the kink
emx interpolating between the minima at � ¼ 0 and
� ¼ 1 becomes spread out with increasing temperature.
For the height of the potential between these minima, also
the coupling constant renormalization is required. Direct
calculation shows that the one-loop self-energy equals
(p2 þ 3m2) times a momentum independent expression,
which implies that wave-function renormalization gives
the counterterm �r=r ¼ 1

2�m
2=m2. Hence, the thermal

corrections of mass and wave function both work in the
direction of diminishing the potential, given in Eq. (19), as
the temperature is increased.

Once again we can only determine the onset of the
melting of the kink. The above discussion for the sine-
Gordon model applies with r�1 replacing the dimension-
less coupling parameter �=m2. The requirement of a small
expansion parameter at finite temperature, r�1T=m � 1,
precludes the consideration of symmetry restoration as this
would need �m2

T * m2.

III. ’4 KINK AND DOMAIN WALLS

The Lagrangian for the kink with �’4 interaction is

L ¼ � 1

2
@�’@

�’� �

4
ð’2 � v2Þ2; v2 � �2=�;

(33)

with Z2 symmetry ’ ! �’.
To one-loop order we introduce counterterms v2 !

v2 þ �v2 and � ! �þ �� and ��2 � �ð�v2Þ ¼ ��v2 þ
v2�� (leaving out wave-function renormalization which
would be needed only at two-loop order in 3þ 1 dimen-
sions). �v2 will be chosen such that in the topologically
trivial sector tadpole contributions are subtracted com-
pletely (including thermal contributions). In the absence
of wave-function renormalization, �� is fixed by a renor-
malization condition for the mass of fluctuations in the
trivial sector, which at tree level is m2 ¼ 2�2. (Note how-
ever that in the spontaneously broken model (33) the
counterterms �v2 and �� imply the mass counterterm
�m2 ¼ ���v2 þ 2v2�� 6�2��2.) At zero temperature,
the various possibilities have been discussed in detail in
Ref. [30]. Below we shall address this question at finite
temperature and single out one particularly natural renor-
malization condition.

The equation of motion in the ’4 model reads

@�@
�’þ�2’� �’3 ¼ 0: (34)

A kink at rest at x ¼ x0 which interpolates between the two
degenerate vacuum states

’ ¼ � �ffiffiffiffi
�

p � �v (35)

is classically given by [1]

’KðxÞ ¼ v tanhð�ðx� x0Þ=
ffiffiffi
2

p Þ; (36)

and its energy at tree level is M ¼ ð ffiffiffi
2

p
�Þ3=3�. From now

on we set x0 ¼ 0 without loss of generality.
The kink can be trivially embedded in dþ 1 spacetime

dimensions where it represents a domain wall separating
the two vacua of the model. In this case,M has the meaning
of a surface tension, i.e. energy per unit transverse volume.
In the following we shall make d continuous and use this
for dimensional regularization in our renormalization pro-
gram [30,44,45].
Fluctuations �ð ~x; tÞ about the classical kink solution

are simple plane waves in the transverse directions ~y with

transverse momentum ~‘, i.e., �ð ~x; tÞ ¼ R
�e�i!i‘tþi ~‘
 ~y�iðxÞ,

with !2
i‘ � !2

i þ ‘2, where the x-dependent part �iðxÞ is
then given by the 1þ 1-dimensional fluctuation equation

ð�@2x ��2 þ 3��2
KÞ�iðxÞ ¼ !2

i �iðxÞ: (37)

The spectrum of the 1þ 1-dimensional fluctuation
equation [1] has a zero-energy solution (!0 ¼ 0),

�0ðxÞ ¼
ffiffiffiffiffiffiffi
3m

8

s
1

cosh2 mx
2

; (38)

a bound state with energy !B ¼ ffiffiffi
3

p
m=2,

�BðxÞ ¼
ffiffiffiffiffiffiffi
3m

4

s
sinhmx

2

cosh2 mx
2

; (39)

and a continuous spectrum with energies !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
,

�kðxÞ ¼ m2eikx

4!k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

k �!2
B

q �
�3tanh2

mx

2
þ 1þ 4

k2

m2

þ 6i
k

m
tanh

mx

2

�
: (40)

Below we shall use the relation [21]

j�kðxÞj2 ¼ 1� 2m

!2
k

�2
0ðxÞ �

m

!2
k �!2

B

�2
BðxÞ: (41)

A. Kink profile

Interpreting (34) as a Heisenberg field equation and
writing ’ðx; tÞ ¼ ’KðxÞ þ�1ðxÞ þ �ðx; tÞ with the quan-
tum fluctuation field obeying h�i ¼ 0, we have the follow-

7In the CP1 model the one-loop self-energy diagram is
momentum-dependent, but it remains Lorentz-invariant at finite
temperature, so that one does not have to distinguish between
e.g. a screening mass or a plasmon mass.
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ing equation for the one-loop correction to the kink profile,

½@2x þ�2 � 3�’2
KðxÞ��1ðxÞ

¼ 3�’KðxÞ
�
h�2iðxÞ � 1

3
�v2 � ��

3�
ðv2 � ’2

KðxÞÞ
�

� 3�’KðxÞh�2irenðxÞ: (42)

This equation is formally unchanged in the presence of a
nonzero wave-function renormalization Z, although the
counterterms �v2 and �� will of course be different in
different renormalization schemes. However, if two renor-
malization schemes, one with Z ¼ 1 and one with Z � 1,
have the same renormalization condition for the mass m
(e.g. that it should be the pole mass in the trivial sector
without a kink), the one with nontrivial Z differs from the
other one only by an extra contribution8 ��1 ¼ � 1

2 ðZ�
1Þ’K.

Continuing with Z ¼ 1, we have

�v2 ¼ 3h�2ijtrivial sector ¼ 3
Z dd�1‘dk

ð2�Þd
1þ 2nð!k‘Þ

2!k‘

(43)

where we absorb the complete quantum and thermal con-
tribution of the tadpole diagram in the renormalization of v
[see Fig. 2(a)]. Writing everything out for dþ 1 dimen-
sions, this leaves us with

h�2irenðxÞ ¼
Z dd�1‘dk

ð2�Þd
1þ 2nð!k‘Þ

2!k‘

�
� 3m2=4

k2 þ m2

4

1

cosh2ðmx=2Þ þ
ð3m2=4Þ2

ðk2 þm2Þðk2 þ m2

4 Þ
1

cosh4ðmx=2Þ
�

þ
Z dd�1‘

ð2�Þd�1

1þ 2nð!B‘Þ
2!B‘

3m

4

�
1

cosh2ðmx=2Þ �
1

cosh4ðmx=2Þ
�
þNdðTÞ 3m8

1

cosh4ðmx=2Þ
� ��

m2

6�2

1

cosh2ðmx=2Þ ; (44)

where !k‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ‘2 þm2

p
and !B‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ 3m2=4

p
.

We have now also included the zero mode of the 1þ
1-dimensional fluctuation equation about the kink back-
ground, which in d > 1 spatial dimensions is a massless
mode (the Goldstone mode associated with the spontane-
ous breaking of translational invariance),

N d>1ðTÞ ¼
Z dd�1‘

ð2�Þd�1

1þ 2nð!0‘Þ
2!0‘

; !0‘ ¼
ffiffiffiffiffi
‘2

p
;

(45)

where the T ¼ 0 part vanishes since in dimensional regu-
larization scaleless integrals are identically zero. For d ¼
1þ 	 we discard the thermal part as well, since the latter is
finite and we can set 	 ¼ 0 and !0‘ ¼ 0 there, assuming
that this genuine zero mode is treated by collective quan-
tization [42]. Thus we have

Nd¼1þ	ðTÞ � 0; NdðT ¼ 0Þ ¼ 0: (46)

In keeping a nontrivial thermal contributionNd for d � 2
we differ from Ref. [46], and we shall later in Sec. III B
provide evidence for the necessity of this.
As mentioned above, in d ¼ 3, �� which appears in the

last term of Eq. (44) has to absorb a UV divergence of the
momentum integrals, whereas in lower dimensions one
could also be content with a minimal renormalization
scheme, where only tadpoles are renormalized. In
Refs. [12,21] it was observed (for d ¼ 1) that at zero
temperature the requirement of an on-shell mass sim-
plifies the result greatly—all terms proportional to
1=cosh2ðmx=2Þ then cancel.
At nonzero temperature, there is actually not just one on-

shell mass, but thermal masses are in general momentum
dependent: at zero momentum, the thermal mass gives the
plasma frequency above which propagating modes appear.
Because of the absence of manifest Lorentz invariance, the
effective mass of the propagating mode is generally not a
constant. Thermal masses at frequencies below the plasma

/

FIG. 2. Renormalization of the tadpole diagram (a) through the
counterterm �v2 and (b) of the self-energy diagrams through the
counterterm ��m2 ¼ ��v2 � 2v2��. Dashed lines correspond
to the propagator in the trivial sector.

8As one can check (cf. Sec. 2.2.2 of Ref. [30]), the net
difference of the right-hand side of (42) is then þ�ðZ� 1Þ’3

K ,
which leads to the extra contribution ��1 ¼ � 1

2 ðZ� 1Þ’K.
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frequency give inverse spatial screening lengths. As we
shall show now, it is the static screening mass which has to
be employed in the renormalization condition in order that
the above mentioned simplification occurs.

Requiring that the renormalized parameterm be equal to
the thermal static screening mass means that we have to
subtract the self-energy diagram at zero frequency and
imaginary spatial momentum9 ~q2 ¼ �m2. The mass coun-
terterm follows from (33) after substituting ’ ¼ vþ �,
and reads �m2 ¼ ���v2 þ 2v2��. As indicated in
Fig. 2(b), the seagull diagram is already canceled by the
counterterm ���v2, so the diagram with two propagators
in the loop evaluated at ~q2 ¼ �m2 defines 2v2��. Using
Feynman parametrization (which is straightforward to use
in finite-temperature integrals at zero frequency, albeit not
otherwise [48]) we find

�� ¼ 9�2

2

Z 1

0
dt

Z dd�1‘dk

ð2�Þd
�
1þ 2nð!tÞ

2!3
t

� n0ð!tÞ
!2

t

�
;

(47)

where

!t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ‘2 þm2½1� tð1� tÞ�

q
: (48)

In the T ¼ 0 part of ��, one can easily integrate over the
Feynman parameter to find

��ðT¼0Þ ¼ 9�2

4

Z dd�1‘dk

ð2�Þd

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ‘2 þm2

p
ðk2 þ ‘2 þ 3m2=4Þ : (49)

For later use we quote the closed-form result for this
counterterm from Ref. [30],

��ðT¼0Þ ¼ 9�2 md�3

ð4�Þðdþ1Þ=2 �
�
3� d

2

�

�
�
3

4

�ðd�3Þ=2
2F1

�
3� d

2
;
1

2
;
3

2
;� 1

3

�
: (50)

However, keeping the integral over transverse momenta ‘
unevaluated and using

Z 1

�1
dk

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2

p
ðk2 þ b2Þ ¼

2

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

� arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

b

�
(51)

one can verify that all zero-temperature terms proportional
to 1=cosh2ðmx=2Þ in (44) cancel already under the integral
over the transverse momentum ‘. Thus the cancellations
observed in Refs. [12,21] for zero temperature and d ¼ 1
also take place for arbitrary d.
Turning to the thermal contributions one finds that the

individual integrals involving the Bose-Einstein factor n
cannot be evaluated in closed form. By numerical integra-
tions one can however verify without difficulty the rather
abstruse identity

Z 1

0
dt

Z dk

2�

�
nð!tÞ
!3

t

� n0ð!tÞ
!2

t

�

þ
Z dk

2�

nð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ‘2 þm2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ‘2 þm2
p 1

k2 þ m2

4

¼ 1

m

nð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ 3

4m
2

q
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘2 þ 3
4m

2
q ; (52)

where!t was defined in Eq. (48). Using this to evaluate the
Feynman parameter integral in ��, Eq. (47), and inserting
the result into Eq. (44) shows that at finite temperature it is
the renormalization prescription of vanishing tadpoles and
m being the finite-temperature screening mass which ab-
sorbs all terms proportional to 1=cosh2ðmx=2Þ in (44). We
then have

h�2irenðxÞ ¼ �md�1AdðT=mÞ 1

cosh4ðmx=2Þ (53)

with

AdðT=mÞ ¼ 3m2�d

4

Z dd�1‘

ð2�Þd�1

1þ 2nð!B‘Þ
2!B‘

� 3m2�d

8
NdðTÞ � 9m5�d

16

Z dd�1‘dk

ð2�Þd

� 1þ 2nð!k‘Þ
2!k‘

1

ðk2 þm2Þðk2 þ m2

4 Þ
(54)

which when inserted into Eq. (42) yields

�1ðxÞ ¼ v�2md�1AdðT=mÞ 1

cosh2ðmx=2Þ’K

¼ v�1md�1AdðT=mÞ sinhðmx=2Þ
cosh3ðmx=2Þ (55)

9In a non-Abelian gauge theory, one finds that only this self-
consistent definition leads to a gauge-independent result for the
(Debye) screening mass [47]. In the present scalar theory, it will
be seen to remove certain artifacts in the kink profile.
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for the correction to the kink profile. In Fig. 3 the effect of
such a correction to the classical kink profile is shown for
(large) negative and positive coefficients.

In a generic renormalization scheme, where h�2irenðxÞ
has either uncanceled 1=cosh2ðmx=2Þ terms or uncanceled
constant terms (by incomplete tadpole subtraction), one
would find additional terms / mx=cosh2ðmx=2Þ in the kink
profile correction �1 [aside from a different function
AdðT=mÞ]. A posteriori, the ‘‘bare’’ mx figuring in the
latter term can be understood as an artifact of incomplete
renormalization since the particular on-shell renormaliza-
tion scheme considered above is evidently able to absorb
these terms such that all mx appear only in exponentiated
form.

So the simple result (55) depends on a renormalization
scheme where m is the thermal static screening mass. This
differs from the zero-temperature mass by the finite differ-
ence

m2 �m2
T¼0 ¼ 3�

Z dd�1‘dk

ð2�Þd
nð!k‘Þ
!k‘

�
1þ 3m2=2

k2 þ m2

4

�

� 9�m

2

Z dd�1‘

ð2�Þd�1

nð!B‘Þ
!B‘

; (56)

where we have again used the identity (52).

1. 1þ 1 dimensional kink

For d ¼ 1, NdðTÞ is absent and all integrals in (54) are
individually finite and the ‘ integration can in fact be
dropped. The T ¼ 0 part is readily found to be

A1ð0Þ ¼ 1

4
ffiffiffi
3

p þ 3

8�
; (57)

in agreement with Refs. [12,21]. The thermal part of A1ðTÞ
turns out to be strictly positive and growing linearly with
T=m for large T=m. The full function is plotted in Fig. 4.
This corresponds to a positive parameter a in Fig. 3 which
grows as the temperature is increased (with a having to
remain sufficiently small so that perturbation theory is still
valid). When plotted with fixed asymptotic values as in
Fig. 3, the one-loop corrected kink profile which is slightly
steeper than the classical one appears to become even
steeper with increasing temperature. However, the asymp-
totic amplitude of the kink diminishes, because v2 � v2

0 �
�v2 � ðv2

0 � �T¼0v
2Þ � �Tv

2, and �Tv
2, the thermal part

of Eq. (43), is positive and growing with temperature.
Including this effect, the slope of the kink profile decreases
at higher temperature. Moreover, also m has been renor-
malized such as to include thermal corrections and these
reduce m as the phase transition is approached. When
plotted in terms of a fixed zero-temperature mass mT¼0,
the kink profile flattens even more quickly. At any rate, in
perturbation theory we can only describe reliably the onset
of the melting of the kink.
The ’4 kink in 1þ 1 dimensions has been studied

extensively in nonperturbative self-consistent approxima-
tions to the two-particle irreducible effective action [22–
24]. Comparing our Fig. 3 with Figs. 2 and 3 of [24] we
find a somewhat different behavior even when the correc-
tions are still small. This can be traced to the fact that in
Refs. [22,24] a variational ansatz for the dressed two-
point function with coinciding arguments in the kink
background, a nonperturbative generalization of our
h�2irenðxÞ, has been employed which is proportional to
1=cosh2ðmx=2Þ. Our result (53) however suggests that a
more adequate ansatz would involve 1=cosh4ðmx=2Þ. In
Ref. [22] the choice of the former was motivated by an
analysis of the sine-Gordon model, where we have indeed

2 0 2

1.0

0.5

0.0

0.5

1.0

1

0

1

FIG. 3 (color online). The one-loop corrected ’4 kink profile
’KðxÞ þ�1ðxÞ / tanhðzÞ þ a sinhðzÞ=cosh3ðzÞ with z ¼ mx=2
for a ¼ �1 . . . 1, showing the effect of positive vs negative a /
Ad up to nonperturbatively large a. For d ¼ 1, Ad is positive and
increasing with temperature, as displayed in Fig. 4, seemingly
leading to a steeper kink at higher temperatures. However, this
plot does not yet take into account that at increasing temperature
the asymptotic values of the kink are reduced by the thermal part
of �v2 [see Eq. (43)]. Including this effect, the kink profile does
become flatter.

1.00.5 2.00.2 5.00.1 10.0

1.0

0.5

2.0

0.2

5.0

10.0

FIG. 4 (color online). The function AdðT=mÞ in a doubly
logarithmic plot for d ¼ 1. This function determines the tem-
perature dependence of the kink profile [see Eq. (55)].
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obtained a renormalized two-point function proportional to
1=cosh2ðmxÞ [see Eq. (14)]. But, as we have demonstrated,
the generalization to the ’4 model is not justified. In this
case, both the constant term in h�2i as well as the term
proportional to 1=cosh2ðmx=2Þ are removable by renor-
malization, whereas in the sine-Gordon model only the
constant term is. Note that in both cases the on-shell
renormalized h�2iren to one-loop order turns out to be

proportional to the zero mode of the respective model
squared.

2. Domain wall profiles

For d � 2, the zero-temperature contributions in
Eq. (54) are individually UV-divergent. Carrying out first
the ‘ integral in dimensional regularization we obtain
[using formula (3.259.3) of Ref. [49]]

Adð0Þ ¼ 9

16

1

ð4�Þd=2 �
�
2� d

2

���
3

4

�ðd�4Þ=2 � 1

�

Z 1

0
dx

ðx2 þ 1Þðd�4Þ=2

x2 þ 1
4

�

¼ 9

16

1

ð4�Þd=2 �
�
2� d

2

���
3

4

�ðd�4Þ=2 � 1ffiffiffiffi
�

p �ð5�d
2 Þ

�ð6�d
2 Þ 2F1

�
4� d

2
;
1

2
;
6� d

2
;
3

4

��
: (58)

In the limit d ! 1 this of course reproduces Eq. (57), but for d ! 2 we encounter a singularity, because the square bracket
in Eq. (58) does not vanish for d ! 2. However, this divergence should not be a UV divergence, since, as we have shown
above, mass, coupling constant, as well as wave-function renormalization can only modify constant terms and terms
proportional to 1=cosh2ðmx=2Þ in h�2i and therefore not Ad. Indeed, by taking into account N2ð0Þ, which is zero in
dimensional regularization, but whose integral representation is both UV and IR divergent, one finds that a small IR
regulator mass ‘2 ! ‘2 þ 
2 in (45) changes (58) to

Adð0;
=mÞ ¼ 9

16

1

ð4�Þd=2 �
�
2� d

2

���
3

4

�ðd�4Þ=2 � 2

3

�

2

m2

�ðd�2Þ=2 � 1

�

Z 1

0
dx

ðx2 þ 1Þðd�4Þ=2

x2 þ 1
4

�

¼ 9

16

1

ð4�Þd=2 �
�
2� d

2

��
4

3
� 2

3
� 2

3
þOðd� 2Þ

�
; (59)

which is finite for d ! 2 but now contains a term involving
lnð
=mÞ,

A2ð0Þ � � 3

16�
ln
m



; (60)

so that the IR regulator cannot be removed. [The finite-T
contributions in NdðTÞ have even more severe IR diver-
gences.] Such IR divergences have in fact been discussed
in the literature as being associated with the roughening of
interfaces, leading to a logarithmic sensitivity of the width
of interfacial profiles to the linear system size L. This
phenomenon has been described in terms of the so-called
capillary wave model [38–40], with the capillary waves
corresponding to the massless modes associated with the
kink zero mode [26]. In a field theoretic treatment similar
to ours, but with the interpretation of the Euclidean action
of the ’4 model as the Landau-Ginzburg Hamiltonian of
statistical field theory, interface roughening has been dis-
cussed using cutoff regularization in Ref. [29], and recently
in d ¼ 3þ 	 dimensions in Ref. [27]. Our results for the
one-loop profile, Eq. (55) and (60), agree with
Refs. [27,29], the latter upon identifying 
� 1=L.
(Ref. [27] used a finite system with quadratic interface as
IR regularization and also determined the resulting sub-
logarithmic contributions.)

The results for the profile given in Refs. [26,27] also
involve IR-finite contributions of the form

mx=cosh2ðmx=2Þ, which are due to the fact that there the
results are expressed in terms of a static correlation length
defined by a renormalization point q2 ¼ 0 instead of q2 ¼
�m2. As we have shown, the latter definition, which is
required to give m the meaning of an inverse exponential
screening length, quite generally eliminates such
contributions.
For d ¼ 3, i.e., in the 3þ 1-dimensional case, we find

that the T ¼ 0 part is finite, yielding the (to our knowledge
new) result

A3ð0Þ ¼ �
ffiffiffi
3

p
32�

: (61)

Now the thermal contributions are logarithmically IR di-
vergent, because of N3ðTÞ, which leads to

A3ðTÞ � � 3

16�

T

m
ln
m



; (62)

for an IR momentum cutoff 
� 1=L, which indicates
interfacial roughening effects also in the context of domain
walls of relativistic field theories at finite temperature.

B. Local energy density

We now turn to the local energy density 	ðxÞ, which,
following Ref. [21], we decompose as

	ðxÞ ¼ 	CasðxÞ þ �	CasðxÞ þ�	ð�1ÞðxÞ: (63)
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Here 	CasðxÞ represents the local energy density of a do-
main wall in dþ 1 dimensions (assuming dimensional
regularization) due to the sum over zero-point energies,
whereas the contributions �	CasðxÞ and �	ð�1ÞðxÞ are total
derivatives which do not contribute to the integrated total

energy (or surface tension) and which have been identified
in Ref. [21].
Subtracting off the energy density of the topologically

trivial sector (including thermal contributions), the local
energy density from the sum over zero-point energies is
given by

	CasðxÞ ¼
Z dd�1‘

ð2�Þd�1

!0‘

2
½1þ 2nð!0‘Þ��2

0ðxÞ þ
Z dd�1‘

ð2�Þd�1

!B‘

2
½1þ 2nð!B‘Þ��2

BðxÞ

�m
Z dd�1‘dk

ð2�Þd
!k‘

2
½1þ 2nð!k‘Þ�

�
2�2

0ðxÞ
k2 þm2

þ �2
BðxÞ

k2 þ m2

4

�
� �

2
�v2½’2

KðxÞ � v2� þ ��

4
½’2

KðxÞ � v2�2; (64)

where in the second line Eq. (41) has been used again to
rewrite j�kðxÞj2 � 1 in terms of �0ðxÞ and �BðxÞ, and
where we have included the contribution from the counter-
terms. (Recall that !k‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ‘2 þm2

p
, !B‘ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘2 þ 3m2=4
p

, and !0‘ ¼
ffiffiffiffiffi
‘2

p
.) The first term in Eq. (64)

is the contribution from the massless modes corresponding
to the zero mode of the 1þ 1-dimensional kink. Its zero-
temperature part is eliminated by dimensional regulariza-
tion, but its thermal contribution is that of blackbody
radiation in d� 1 spatial dimensions. It is to be omitted
for d ¼ 1, but contributes nontrivially in the case of do-
main walls. If it was not included (as done e.g. in
Ref. [46]), the total one-loop surface tension

R
dx	Cas

would not vanish in the limit m ! 0, i.e. at the second-
order phase transition where the kink has melted com-
pletely. To see this, note that for fixed ‘ � k, one has IR
singular limits m ! 0 of

R
dkð 2

k2þm2 þ 1
k2þm2=4

Þ in the sec-
ond line of Eq. (64) which cancel the explicit factor of m
there. This yields thermal contributions which indeed com-
pensate the m ! 0 limits of the thermal contributions of
the bound state modes and the massless modes.

In contrast to the case of the kink profile we observe that
in 	Cas the massless modes do not lead to IR problems in
either 2þ 1 or 3þ 1 dimensions, but we shall see that the
IR singular kink profile plays a role in the remaining two
(total derivative) contributions to 	ðxÞ. The total energy (or
surface tension)M is already determined by the above (IR-
safe) expression,

M ¼
Z

dx	CasðxÞ: (65)

(The integration over x is evaluated readily usingR
dx�2

BðxÞ ¼
R
dx�2

0ðxÞ ¼ 1.)
For the local distribution of the energy, however, the

total derivative terms �	CasðxÞ and �	ð�1ÞðxÞ are relevant.
The first of these comes from a surface term associated to a
partial integration of the spatial gradients in the kinetic
energy [21] and reads

�	Cas ¼ 1

4
@2xh�2iðxÞ

¼ 1

4
@2x

�
h�2irenðxÞ þ ��

m2

6�2

1

cosh2ðmx=2Þ
�
; (66)

with h�2iren defined in Eq. (42).
The second contribution to the local energy density

comes from the correction to the kink profile, �1, that
we considered above. This also does not contribute to the
total energy, because the classical kink corresponds to a
stationary point of the classical energy, but it gives a local
modification of the energy density according to

�	ð�1Þ ¼ @xð�1@x’KÞ: (67)

Inserting the results of Eq. (53) and (55) into these two
expressions, we find that the terms with the function Ad,
which appears in both, add with equal magnitude, yielding

�	Cas þ �	ð�1Þ ¼
1

2
mdþ1AdðTÞ

�
� 4

cosh4 mx
2

þ 5

cosh6 mx
2

�

� ��
m3

18�2
½�2

0ðxÞ ��2
BðxÞ�: (68)

This localized contribution with zero total energy is finite
in 1þ 1 dimensions, where it has been evaluated at zero
temperature in Ref. [21], but in 2þ 1 and 3þ 1 dimen-
sions it inherits the IR divergences found in the prefactor
Ad of the one-loop kink profile discussed in the previous
section. In 3þ 1 dimensions it is moreover UV divergent
because of the appearance of �� in �	Cas.
Let us now check for UV divergences in Eq. (64), which

was evaluated in [12,21] for the 1þ 1-dimensional kink,
but only in integrated form for dþ 1-dimensional
domain walls in Ref. [30]. We shall now show that in the
2þ 1-dimensional case also the local energy density is
rendered finite by on-shell renormalization (defined in
the trivial sector). However, we shall find that in 3þ 1
dimensions there are uncanceled UV divergences in

	ðT¼0Þ
Cas ðxÞ which require additional composite operator

renormalization.
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Potential UV divergences can only come from the T ¼ 0 part (terms without n) in Eq. (64). Using that ’2
KðxÞ � v2 ¼

� 2m
3� ð�2

B þ 2�2
0Þ and ½’2

KðxÞ � v2�2 ¼ 2m3

3�2 �
2
0 we obtain

	ðT¼0Þ
Cas ðxÞ ¼ �2

BðxÞ
1

2

Z dd�1‘

ð2�Þd�1

�
!B‘ þm

Z dk

2�

�
1

!k‘

� !k‘

k2 þ m2

4

��

þ�2
0ðxÞm

Z dd�1‘dk

ð2�Þd
�

1

!k‘

� !k‘

k2 þm2
þ 3

8

m2

!k‘ð!2
k‘ � m2

4 Þ
�
: (69)

Integration over ‘ yields after some rearrangements

	ðT¼0Þ
Cas ðxÞ ¼ �2

BðxÞ
�ð� d

2Þ
ð4�Þd=2

1

2

�
�
�
3

4
m2

�
d=2 þmð1� dÞ

Z dk

2�
ðk2 þm2Þd=2�1 þm

Z dk

2�
ðk2 þm2Þd=2�1 3m2=4

k2 þm2=4

�

þ�2
0ðxÞ

�
�ð� d

2Þ
ð4�Þd=2 mð1� dÞ

Z dk

2�
ðk2 þm2Þd=2�1 þ ��ðT¼0Þ m

3

6�2

�
; (70)

with ��ðT¼0Þ given in (50). This expression is finite for
d ! 1, and includes an ‘‘anomalous’’ term proportional to
ð1� dÞRdkðk2 þm2Þd=2�1, which would be missed in a
naive momentum cutoff regularization. With it one recov-
ers Eq. (18) of Ref. [21], except for the last term, which is
due to �� and which is finite by itself.10 For d ! 2 the
result is also finite [the divergent �ð� d

2Þwhich is present in
all terms except �� is canceled after combining the UV
finite expressions and using that

R
dkðk2 þm2Þd=2�1 is

proportional to 1=�ð1� d=2Þ], but for d ¼ 3� 2	 one
finds divergent terms 1=	. All remaining finite integrals
over k can be evaluated separately for d ¼ 1, 2, 3 by using
the substitution k=m ¼ tant, but using the formulas given
in Ref. [30], the following comparatively compact result
can be derived,

	ðT¼0Þ
Cas ðxÞ ¼ md

ð4�Þðdþ1Þ=2
2�ð3�d

2 Þ
d

� f�2
BðxÞ½ð3=4Þðd�1Þ=2fðdÞ � 1�

þ�2
0ðxÞ½dð3=4Þðd�1Þ=2fðdÞ � 2�g (71)

where

fðdÞ ¼ 2F1

�
3� d

2
;
1

2
;
3

2
;� 1

3

�
(72)

with the special cases

fð1Þ ¼ �

2
ffiffiffi
3

p ; fð2Þ ¼ 1

2

ffiffiffi
3

p
ln3;

fð3� 2"Þ ¼ 1þ "

�
2� �ffiffiffi

3
p � ln

�
4

3

��
:

(73)

These can be used to write out closed-form results for
the local Casimir energy density in 1þ 1 dimensions
(calculated previously in Ref. [21]) and for the

2þ 1-dimensional domain wall. With
R
dx�2

0 ¼R
dx�2

B ¼ 1 one can readily verify that the total energy
obtained from

R
dx	ðT¼0Þ

Cas ðxÞ agrees with the result given in
Eq. (19) of Ref. [30], which is finite for all d � 4.
But for the local energy density we have UV divergent

contributions for d ¼ 3� 2",

	divCasðxÞjd¼3�2" ¼ 1

6"

m3

ð4�Þ2 ½�
2
0ðxÞ ��2

BðxÞ�; (74)

which turns out to cancel incompletely with the UV diver-
gence found above in Eq. (68),

�	divCasðxÞjd¼3�2" ¼ � 1

2"

m3

ð4�Þ2 ½�
2
0ðxÞ ��2

BðxÞ�: (75)

However, it is well known that the local energy density is
ambiguous up to improvement terms to the energy-
momentum tensor, and that an unimproved energy-
momentum tensor in general needs composite operator
renormalization [50–54]. This ambiguity signals that the
local energy density is not a well-defined physical observ-
able as such. If one defines the energy density as the 00-
component of the gravitational energy-momentum tensor
(variation of the Lagrangian with respect to the metric)
then it will depend on the particular coupling to the gravi-
tational field, which can also include a term in the

Lagrangian of the form � 1
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi�gðxÞp
RðxÞ’ðxÞ2 where R

is the Riemann scalar. In a flat spacetime, this produces an
additional contribution to the local energy density given by

	�ðxÞ ¼ ��@2x’
2ðxÞ; (76)

which can contribute already at tree-level for a ‘‘nonmini-
mal’’ coupling � � 0.11 Even when � ¼ 0 at tree level, as
we have implicitly been assuming so far, quantum contri-

10The inclusion of this term corresponds to the finite renorm-
alizations m ! �m and � ! �� in the final result (28) of Ref. [21].

11The associated integrated total energy vanishes for the kink,
but in solitons involving long-range fields such as magnetic
monopoles improvement terms to the energy-momentum tensor
can also contribute to the total energy, see Ref. [55].
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butions will in general produce such a term. Indeed, the
combination �2

0 ��2
B appearing in the divergent contri-

butions Eqs. (74) and (75) is proportional to @2x’
2
KðxÞ,

�2
0 ��2

B ¼ 6�

m3
@2x’

2
KðxÞ (77)

and thus can be removed by a counterterm

� 1
2��

ffiffiffiffiffiffiffiffiffiffiffiffiffi�gðxÞp
RðxÞ’ðxÞ2 with divergent ��.

Alternatively, having a nonzero � already at tree level
produces further divergences of the form of (74) and (75),
namely,

�	� ¼ ��@2xh�2iðxÞ ¼ �4��	Cas: (78)

This is UV divergent in 3þ 1 dimensions and also gen-
erally IR divergent because it involves the kink profile. By
choosing � ¼ 1=2 we can in fact make sure that the
correspondingly modified local energy density is indepen-
dent of AdðTÞ and thus always IR finite (but not UV finite in
3þ 1 dimensions). Alternatively, � ¼ 1=6 leads to a UV
finite (but generally IR divergent) one-loop local energy
density for d ¼ 3 without infinite renormalization of �. (In
a massless theory, � ¼ d�1

4d preserves conformal invariance

in a gravitational background and thus � ¼ þ1=6 is the
value which corresponds to an improved stress tensor that
is finite in 3þ 1 dimensions.)

IV. CONCLUSION

We have calculated one-loop corrections to the profile of
sine-Gordon and CP1 kinks and ’4 domain walls at zero
and finite temperature. Using dimensional regularization,
we have reproduced results for the one-loop field profile of
1þ 1-dimensional (bosonic) kinks of Refs. [12,21], and
have extended them to include thermal contributions, and
also to cover higher-dimensional ’4 kink domain walls.
We have shown that a renormalization condition which
defines thermal screening masses self-consistently at nega-
tive wave vector squared simplifies the result and removes
certain artifacts in the resulting one-loop corrected kink
profile.

However, in the case of domain walls, we have encoun-
tered divergences in local quantities that are not taken care
of by standard renormalization of the parameters in the
Lagrangian as summarized in Table I. On the one hand, we

have found infrared singularities caused by the massless
modes which are the higher-dimensional analogs of the
translational zero mode of the 1þ 1-dimensional kink. In
the 2þ 1-dimensional domain wall, these infrared singu-
larities lead to a logarithmic sensitivity of the correction to
the classical kink profile on the system size. This corre-
sponds to the phenomenon of interfacial roughening in
statistical physics, where the same model has been studied
in a 3-dimensional Euclidean setting [27]. In 3þ 1 dimen-
sions, the one-loop kink profile at zero temperature turns
out to be infrared finite in dimensional regularization,
whereas thermal contributions lead to logarithmic infrared
singularities, thus exhibiting the phenomenon of interface
roughening in the context of a relativistic field theory at
finite temperature.
In the case of the ’4 kink and the corresponding domain

walls, we have also calculated the local energy profile and
discussed its ambiguities. Depending on the underlying
energy-momentum tensor, in particular, the parameter �
in a possible � 1

2�
ffiffiffiffiffiffiffi�g

p
R’2 term in the Lagrangian, we

generally found both infrared and ultraviolet divergences.
In 2þ 1 and 3þ 1 dimensions, the infrared divergences
are the same as those found in the field profile, although for
the choice � ¼ 1

2 they can be eliminated from the energy

profile. Ultraviolet divergences arise in 3þ 1 dimensions
whenever � � 1

6 , corresponding to an unimproved energy-

momentum tensor, and these divergences can then be
canceled by improvement terms. However, both infrared
and ultraviolet divergences drop out in the integrated en-
ergy density. Considering the manifestly finite thermal
corrections to the energy density we have found that the
contributions from the massless modes are crucial in en-
suring that the energy density vanishes in the limit m ! 0,
i.e. when the domain wall has melted in a second-order
phase transition. In the case of the field profile, excluding
these massless modes (as done e.g. in Ref. [46]) would
have resulted in nonrenormalizable ultraviolet-divergences
in place of the (physical) infrared divergences.
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TABLE I. Divergences left after standard renormalization in the field profile �1ðxÞ, the local energy density 	ðxÞ, and total energy
(mass or surface tension) for the various dimensions. ‘‘IR’’ denotes IR divergences which introduce a dependence on system size;
‘‘UV’’ denotes divergences requiring composite operator renormalization through improvement terms for the energy-momentum
tensor.

Dimension Profile �1ðxÞ Energy density 	ðxÞ Total energy M

1þ 1 Finite Finite Finite

2þ 1 IR (all T) IR (all T, � � 1
2 ) Finite

3þ 1 IR (T > 0) IR (T > 0, � � 1
2 ), UV (� � 1

6 ) Finite
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