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Local non-Hermitian potentials VðxÞ � V�ðxÞ can, sometimes, generate stable bound states c ðxÞ at real
energies. Unfortunately, the idea [based on the use of a non-Dirac ad hoc metric �ðx; x0Þ � �ðx� x0Þ in
Hilbert space] cannot directly be transferred to scattering due to the related loss of the asymptotic

observability of x [cf. H. F. Jones, Phys. Rev. D 78, 065032 (2008)]. We argue that for smeared (typically,

nonlocal or momentum-dependent) potentials V � Vy this difficulty may be circumvented. A return to the

usual (i.e., causal and unitary) quantum scattering scenario is then illustrated via an exactly solvable

multiple-scattering example. In it, the anomalous loss of observability of the coordinate remains restricted

to a small vicinity of the scattering centers.
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I. INTRODUCTION

An intuitive understanding of various physical aspects of
scattering can be facilitated when one turns attention to
simplified, one-dimensional schematic models of experi-
mental setup. An extremely exciting toy-model scenario
has recently been proposed and analyzed in Ref. [1]. One
of the most elementary and popular delta-function poten-
tials V0ðxÞ ¼ ���ðxÞ has tentatively been combined with
a remote non-Hermitian interaction. The purpose of this
gedanken experiment has been formulated as a study of an
‘‘interface’’ between Hermitian and non-Hermitian com-
ponents of the potentials exemplified by the superposition

VðxÞ ¼ V0ðxÞ þ i�½�ðx� LÞ � �ðxþ LÞ�; L � 1:

(1)

Our present text offers an immediate continuation of this
project. We feel motivated by the occurrence of many open
questions in such a setting. In particular, the results of
Ref. [1] indicated that it might be rather difficult to keep
a non-Hermitian interaction model short ranged and com-
patible with the standard requirements of a local and causal
physical interpretation of incoming and/or scattered waves.

Our present answer to these compatibility questions will
be predominantly affirmative. More precisely, we shall
emphasize that the number of problems which arose during
the analysis of potential (1) may be attributed to its strict
locality. We shall propose and advocate the replacement of
the strictly local interaction operators V � VðxÞ by their
slightly smeared descendants tractable as weakly
momentum-dependent operators. For illustration purposes
we shall use interactions V � Vy given by Eq. (6) in Sec. II
and Eq. (14) in Sec. III.

The latter choice of amended model will preserve its
maximal similarity with the original potential of Ref. [1].
First, the role played by the real ‘‘measure of non-
Hermiticity’’ � in Eq. (1) will be transferred to another
real coupling constant g. Second, the distance L between
the strictly localized interaction points of Eq. (1) will be
replaced by a variable integerN representing a separation
distance between two not entirely local, ‘‘smeared’’ do-
mains of support of our interaction V.
We decided to parallel the majority of quantitative re-

sults of Ref. [1] by their close and explicit analogs. The
major problems resulted from the manifest non-
Hermiticity of the interaction which implies, for Eq. (1)
at least, the necessity of a drastic change of the concept of
the coordinate. In Ref. [2] this mathematical result has
been identified as a source of deep conflict between the
use of x in Eq. (1) (i.e., in the ‘‘input’’ definition of the
interaction) and, simultaneously, in the asymptotic bound-
ary conditions for the one-dimensional scattering,

c ðxÞ ¼
�
ei�x þ Re�i�x; x � �1;
Tei�x; x � 1:

(2)

It is necessary to keep in mind that the core of this conflict
does not lie in the formalism of quantum mechanics itself.
Formally, no problems occur since all the unitary trans-
formations of a given model (cf., e.g., a nonlocal free-
motion example given in Sec. 5 of Ref. [3]) must lead to
equivalent physical predictions.
The differences in predictions can only occur when

nonequivalent definitions of the dynamics are being com-
pared. This is precisely in this sense that the difficulties
emerged in Refs. [1,2] where a simultaneous validity of
both the definition (1) of the local physical interaction V �
Vy and an a priori assignment (2) of the usual physical
meaning to the local free waves exp�i�x in asymptotic
domain has been required.*znojil@ujf.cas.cz
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A key to the resolution of this misunderstanding has
been described in our paper [4] where we showed that non-
Hermitian models exist, where the simultaneous validity of
the phenomenological postulates (1) and (2) can be
achieved after a certain modification of their respective
forms. In this sense, our present paper will just amend and
strengthen the argumentation of Ref. [4]. Indeed, in a way
emphasized by the note added in proof in [1], our old
model ‘‘still involved a departure from standard quantum
mechanics at large distances.’’

The present final resolution of the conflict between the
locality of forces and waves will rely on a nontrivial
extension of the class of interactions accompanied by an
enhancement of efficiency of necessary mathematics.
These technical details will be described in Secs. III and
IV and in two Appendixes. In nuce, the Runge-Kutta
coordinate-discretization method [5] will be shown supe-
rior, for the given purpose, to the usual perturbation ex-
pansions as employed, e.g., in Ref. [1]. In the latter study of
Eq. (1), for this reason, both the inverse length 1=L and the
variable coupling constant � had to be assumed small. In
contrast, the variability of both our present parameters g
and N will be, within their respective physical ranges,
unrestricted.

The presentation of our explicit scattering solutions in
Sec. IV will confirm the full consistency and unitarity of
the scattering in our amended class of non-Hermitian
models. In the Summary (Sec. V) several comments will
finally be added clarifying the proposed changes of theo-
retical perspective in a broader, less model-dependent
context.

II. TOWARD THE SHORT-RANGED NON-
HERMITICITIES

A. Runge-Kutta discretization

We may treat any one-dimensional Schrödinger equa-
tion

� d2

dx2
c ðxÞ þ VðxÞc ðxÞ ¼ Ec ðxÞ; x 2 ð�1;1Þ

(3)

with a local and real or complex potential VðxÞ as a
continuous h ! 0 limit of its difference-equation approxi-
mation defined along the Runge-Kutta doubly infinite lat-
tice of discrete coordinates x ¼ xk ¼ kh, k ¼ 0;�1; . . . ,

� c ðxk�1Þ � 2c ðxkÞ þ c ðxkþ1Þ
h2

þ VðxkÞc ðxkÞ
¼ Ec ðxkÞ: (4)

Approximate wave functions may be then constructed via
the methods of linear algebra reparametrizing, incidentally,
the real energies E ¼ ð2� 2 cos’Þ=h2 in terms of a real

angle ’ ¼ ’ðEÞ 2 ð0; �Þ. The scattering boundary condi-
tions (2) may and should be rewritten in their discrete
version,

c ðxmÞ ¼
�
eim’ þ Re�im’; m � �M � �1;
Teim’; m 	 M� 1:

(5)

One could easily discretize the ultralocal non-Hermitian
toy-model (1) and confirm the discouraging conclusions,
formulated in Ref. [1], that one can ‘‘no longer talk in
terms of reflection and transmission coefficients’’ so that
‘‘the only satisfactory resolution (of dilemmas) is to treat
the non-Hermitian scattering potential as an effective one,
and work in the standard framework of quantum mechan-
ics, accepting that this effective potential may well involve
the loss of unitarity’’ [1].
The loss of unitarity need not necessarily be perceived as

a weakness of the theory, especially when one deals ‘‘with
a subsystem of a larger system whose physics has not been
taken fully into account’’ [1]. In this sense one may per-
ceive Eq. (1) with a local non-Hermitian interaction
VðxÞ � V�ðxÞ as an ‘‘effective theory,’’ i.e., as an incom-
plete picture of physical reality. This philosophy finds
interesting phenomenological applications ranging from
classical optics [6] or models with supersymmetry [7] up
to the manifestly nonunitary scattering models in quantum
phenomenology [8] and up to the descriptions of open
systems in nuclear and solid state physics [9] and in
quantum cosmology [10]. Nevertheless, in an alternative,
theoretically much more ambitious approach to the local-
ized non-Hermitian scattering potentials one should insist
on the conservation of a suitable current and, hence, on the
strict unitarity of the scattering realized by the asymptoti-
cally observable free plane waves.

B. Nonlocal updates of potentials

The first (and the least sophisticated) quantitative non-
Hermitian model satisfying the above requirements has
been constructed in our paper [4]. We replaced Eq. (4) by
its generalization where the interaction operator V ac-
quired the nearest-neighbor form,

� c ðxkþ1Þ � 2c ðxkÞ þ c ðxk�1Þ
h2

þ Vk;kþ1c ðxkþ1Þ
þ Vk;kc ðxkÞ þ Vk;k�1c ðxk�1Þ ¼ Ec ðxkÞ: (6)

After a rescaling of the Hamiltonian H ¼ �d2=dx2 þ V
by an inessential numerical factor h2 we obtained
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H ¼ �4þV;

�4 ¼

2
66666666666666664

. .
. . .

.

. .
.

2 �1

�1 2 �1

�1 2 �1

�1 2 . .
.

. .
. . .

.

3
77777777777777775

(7)

and chose the following, minimally nonlocal potential:

V ¼ Vða;b;c;...Þ

¼

. .
.

. .
. �c

c �b
b �a

a �b
b �c

c . .
.

. .
.

2
666666666666666664

3
777777777777777775

: (8)

The resulting multiparametric Hamiltonian H ¼
�4þVða;b;c;...Þ � Hy remains manifestly non-Hermitian

in the ‘‘friendly’’ Hilbert space H ðFÞ endowed with the
usual inner product

hc j�iðFÞ ¼ X
k

c �ðxkÞ�ðxkÞ ¼ hc j�i in H ðFÞ: (9)

Note that the summation would only be replaced by the
integration in the continuous limit h ! 0. Now, the key
point is that the same operator H may be found Hermitian

after one moves into another Hilbert space H ðSÞ. In the
latter space the definition of the inner product must be
different and more general,

hc j�iðSÞ ¼ X
k

X
n

c �ðxkÞ�k;n�ðxnÞ

¼ hc j�j�i :¼ hhc j�i in H ðSÞ: (10)

The ‘‘non-Dirac metric’’ matrix� ¼ �y must only remain
positive definite and compatible with the Hamiltonian in
question [11],

Hy� ¼ �H: (11)

In the notation of Ref. [12] one writes H ¼ Hz and speaks
about a ‘‘quasi-Hermiticity’’ [11] or ‘‘pseudo-Hermiticity’’
[13] or ‘‘crypto-Hermiticity’’ [14] of the Hamiltonian. In
this context the core of the message delivered by our paper

[4] was that there exists a metric-operator matrix �ða;b;c;...Þ
which remains compatible with our interaction model (8)
as well as with the asymptotic observability of Runge-

Kutta coordinates xk. This matrix has the following com-
pact and fully diagonal form:

�ða;b;c;...Þ ¼

. .
.

��5

��3

��1

�1
�3

�5
. .
.

2
66666666666666664

3
77777777777777775
:

(12)

Its elements are given by closed formulas,

��1 ¼ ð1� aÞð1� b2Þð1� c2Þð1� d2Þ 
 
 
 ;
��3 ¼ ð1� aÞð1� bÞ2ð1� c2Þð1� d2Þ 
 
 
 ;
��5 ¼ ð1� aÞð1� bÞ2ð1� cÞ2ð1� d2Þ 
 
 
 :

One arrives at a causality-observing physical picture of
scattering based on a clear separation of the ‘‘in’’ and

‘‘out’’ solutions not only in Hilbert space H ðFÞ but also
in Hilbert space H ðSÞ.
In our subsequent paper [15] the next step has been

made. In the spirt of Eq. (1) we simulated the existence
of several separate point interactions. Unfortunately, the
construction of the metric only remained feasible under a
very specific, left-right symmetric arrangement of the set
of interaction centers. Sometimes, this type of symmetry is
being called PT symmetry, for reasons and with motiva-
tions which are thoroughly explained elsewhere [16].
Our present continuation of development of the

multiple-scattering idea will be based on a return to asym-
metric models, allowing an independence of arrangement
of several spatially separated scatterers. Paradoxically, the
transition to asymmetric realizations of the set of interac-
tion centers will be accompanied by a simplification of
analysis of their mutual interference.

C. Limiting transition to continuous coordinates h ! 0

For a quantitative specification of the extent of non-

locality induced by multiparametric matrices Vða;b;c;...Þ of
Eq. (8) let us start from the simplest, coordinate-
independent model where a � b � c � 
 
 
 . Then, the

limiting transition to h ¼ 0 converts operator Vða;a;a;...Þ

into the first power of the momentum, Vða;a;a;...Þ � d=dx.
In the subsequent step one may reintroduce a weak coor-
dinate dependence (with a � b � 
 
 
 ) and evaluate the
continuous limit perturbatively. Locally, the limit h ! 0
will preserve the same leading-order approximate propor-
tionality of the coordinate-dependent potential to the
momentum.
Admitting an unconstrained variability of the parame-

ters in matrices Vða;b;c;...Þ we obtain some less trivial coor-
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dinate- and momentum-dependent operators. For the sake
of brevity let us restrict similar considerations solely to the
models with just a few nonvanishing coupling parameters.
Then, the limiting transition h ! 0 will certainly lead to
point interactions. Their explicit definition will be given
precisely by the matching of the wave functions. Just a
slightly more complicated alternative to the delta-function
point-interaction model (1) of Ref. [1] will be obtained.
Our Appendixes A and B may be consulted for illustration
of some technical aspects of such a type of matching
recipe.

Our illustrative toy potential (8) has not been too well
designed for phenomenological purposes since it did not
allow us to remove the spatial asymmetry from the related
metric matrix (12),

��k

�k
¼ ð1� aÞð1� bÞ2ð1� cÞ2 
 
 


ð1þ aÞð1þ bÞ2ð1þ cÞ2 
 
 
 : (13)

The effect of the localized non-Hermiticity in H remained
long ranged.

III. TOY MODEL

Equation (13) indicates that the flow of the probability is
different to the left and to the right of the scattering center.
A weaker form of this shortcoming characterizes also the
PT -symmetric models of Ref. [15] where the metric
remained rescaled (i.e., non-Dirac, �k;k � 1) along the

spatial interval(s) separating the individual scatterers.
This encouraged us to perform a series of computer-
assisted trial-and-error experiments leading, at the end, to
our present interaction-matrix candidate

Vðg;N Þ ¼

. .
.

. .
.

0

0
�g

g g
�g

0

0 . .
.

. .
.

0
0

|{z}
large gap;

�g
g g

�g
0

2N þ 1
columns

0 . .
.

. .
.

2
6666666666666666666666666666664

3
7777777777777777777777777777775

; (14)

where each scatterer is simulated by a three-dimensional
submatrix. Although our particular model (14) comprises
just two localized interaction centers at x�ðNþ2Þ, we shall
not consider three [as in Eq. (1)] or more individual scat-
terers because such a generalization would remain routine,
not necessitating any significant further technical improve-
ments of our method.

A. Metric �ðg;N Þ with localized anomalies

Using heuristic arguments we arrived at Ansatz (14) and
studied the scattering solutions. The Schrödinger equation
with the smallest gaps N has been studied first of all. A
sample of these calculations may be found collected in
Appendixes A and B. They demonstrate that one of the

specific merits of Eq. (14) lies in a maximal simplicity of
necessary algebraic manipulations.
The second merit of the choice of Eq. (14) can be seen in

its generic character. One can add several further interac-
tion submatrices of the same form without worsening the
feasibility of the calculations. On this background, without
any real loss of generality we restricted our attention just to
the first nontrivial example which is characterized by the
occurrence of the mere two remote centers of interaction.
We decided to construct all the eligible metric matrices

as linear-algebraic solutions of Eq. (11). After we imposed
the condition of the compatibility of�with the asymptotic
observability of the coordinate we revealed that our present

models Vðg;N Þ can be assigned the diagonal metric opera-
tors of the same doubly infinite diagonal matrix form
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�ðg;N Þ ¼

. .
.

1

1
1þg
1�g

1
1

. .
.

1

|ffl{zffl}
1

1þg
1�g

1

¼ 2N þ 1
ð“distance”Þ

1
. .
.

2
666666666666666666666666666666664

3
777777777777777777777777777777775

: (15)

This metric differs from the Dirac’s �ðDiracÞ ¼ I solely at
the centers of the nonvanishing three-by-three submatrices
simulating the non-Hermitian pointlike scatterers.

B. Single-center limit h ! 0 at N ¼ �1

The picture of the scattering as offered by our toy
potential (14) and by the related metric matrix (15) de-
pends on the Runge-Kutta discretization length h > 0.
Once we demand that a measured distance between two
scattering centers is a macroscopic constant L, our parame-
ter N must grow with the decrease of h as L=h.
Vice versa, the use of an h-independent N will only
lead to a single-centered scatterer. In the latter scenario
the scattering is realized by a ‘‘quasilocal’’ potential. Its
explicit specification will depend on the h dependence of
N ¼ N ðhÞ. It remains compatible with L ¼ 0 whenever
hN ðhÞ ! 0 for h ! 0. Such a flexibility may make the
interactions better suited for fine-tuning, say, of the
strength of nonlocalities and/or of the extent of the viola-
tion of conservation laws at short distances, etc.

For illustration purposes let us pick up the elementary
example of Appendix A. Relaxing the specification of
some concrete asymptotic boundary conditions let us rein-

terpret its ‘‘distant’’ wave function components as an arbi-
trary free wave c ðxÞ. At x � x�2 or x 	 x2 this yields the
coincidence of symbols

U�m ¼ c ðx�mÞ :¼ c ðfreeÞ�m ; Lm ¼ c ðxmÞ :¼ c ðfreeÞ
þm ;

m 	 N þ 3 ¼ 2;

respectively. Next, the first and last matching condition
extend both the latter assignments by one more step,

U�1 ¼ ð1þ gÞc ðx�1Þ; L1 ¼ ð1þ gÞc ðxþ1Þ:
Finally, with c 0 ¼ c ðx0Þ we arrive at the three dynami-
cally nontrivial requirements

2 cos’ �1 0
�1þ g2 2 cos’ �1þ g2

0 �1 2 cos’

2
64

3
75 U�1

ð1� g2Þc 0

L1

2
64

3
75

¼ ð1� g2Þ
c ðfreeÞ

�2

0
c ðfreeÞ

2

2
64

3
75; (16)

which define our wave function, implicitly, near the origin.
Tentatively, we may Taylor expand

c ðfreeÞ
�2 ¼ c � 2hc 0 þ 2h2c 00 þ 
 
 
 ; ð1þ gÞ�1U�1 ¼ c � hc 0 þ h2c 00=2þ 
 
 
 ; c 0 ¼ c ;

ð1þ gÞ�1L1 ¼ c þ hc 0 þ h2c 00=2þ 
 
 
 ; c ðfreeÞ
2 ¼ c þ 2hc 0 þ 2h2c 00 þ 
 
 


and insert these approximants in Eq. (16), yielding

�ð1� gÞðc � 2hc 0 þ 2h2c 00Þ þ 2 cos’ðc � hc 0 þ h2c 00=2Þ � ð1� gÞc ¼ Oðh3Þ;
�ð1þ gÞðc � hc 0 þ h2c 00=2Þ þ 2 cos’c � ð1þ gÞðc þ hc 0 þ h2c 00=2Þ ¼ Oðh3Þ;
�ð1� gÞðc þ 2hc 0 þ 2h2c 00Þ þ 2 cos’ðc þ hc 0 þ h2c 00=2Þ � ð1� gÞc ¼ Oðh3Þ:

According to these relations, the Schrödinger equation V � E ¼ c 00=c would make quantity V large and positive when
extracted from the combination of the first and third equations, or large and negative when extracted from the middle

SCATTERING THEORY USING SMEARED NON-HERMITIAN . . . PHYSICAL REVIEW D 80, 045009 (2009)

045009-5



equation. This means that our tentative assumption about
the smoothness of wave functions near the origin leads to
mathematical contradictions and must be abandoned.

Let us now modify our assumptions, distinguish be-
tween the left and right wave functions, and set AðxÞ ¼
c ðx� hÞ and BðxÞ ¼ c ðxþ hÞ, i.e.,

ð1þ gÞ�1U�1 ¼ Að0Þ :¼ A;

ð1þ gÞ�1L1 ¼ Bð0Þ :¼ B:

Naturally,

c ðfreeÞ
�2 � A� hA0 þOðh2Þ;

c ðfreeÞ
2 � Bþ hB0 þOðh2Þ;

while quantity c 0 acquires the two alternative first-order
representations,

c 0 � Aþ hA0 � B� hB0:

In the limit h ! 0 the latter relation yields

A ¼ B; A0 ¼ �B0:

The insertion of our amended Ansätze in Eq. (16) leads just
to the three alternative versions of the requirement of
smallness of A ¼ Oðh2Þ, B ¼ Oðh2Þ as well as of c 0 ¼
OðhÞ. Thus, in the continuous-coordinate extreme our
simplest N ¼ �1 example degenerates to the opaque-
wall-barrier dynamics generated by an additional
Dirichlet boundary condition c ð0Þ ¼ 0.

We see that the role of non-Hermiticity is, in our model
with N ¼ �1 at least, truly nonperturbative and dynami-
cally highly influential. This conclusion may indepen-
dently be confirmed by the inspection of the N ¼ �1
reflection and transmission coefficients given in
Appendix A. We believe that also beyond this concrete
example, at least some of its features will survive a tran-
sition to more-center models and/or to the two-center
models at large separation distances N ðhÞ ¼ Oð1=hÞ.

IV. THE UNITARITY OF THE SCATTERING AT
ANY N

The first encouraging surprise encountered during the
inspection of the discretized metric (15) is that it remains
asymptotically diagonal in the coordinate representation.
This means that the asymptotic coordinate x remains ob-
servable. Moreover, the range of influence of individual
non-Hermitian scatterers is shortened via Eqs. (14) and
(15). Thus, the only missing component of the whole
picture are formulas for the reflection and transmission
coefficients, the determination of which may start from
the linear Schrödinger equation for discretized wave func-
tions c ¼ c ðxkÞ ¼ c k,

Hc ¼ Ec : (17)

In its light the validity of boundary conditions (5) can be
prolonged to all the subasymptotic free-motion domain,

c�m ¼ e�im’ þ Reim’ � U�m;
cþm ¼ Teim’ � Lm;

�
m 	 N þ 3:

(18)

In parallel, for larger integers N ¼ N ðhÞ we may profit
from adding another free-motion Ansatz at the smaller
subscripts,

c k ¼ Ceik’ þDe�ik’; jkj � N : (19)

One should add that the study of the large distancesN �
1 might be well motivated by its potential relevance in
physics. In particular, its feasibility could offer a guide for
simulation of macroscopic nonlocalities, the presence of
which could, in its turn, lead to the violation of causality at
small distances. In parallel it is important that the effect of
our non-Hermitian V can be kept localized. This means
that in contrast to virtually all of the published older
models the simplicity of interaction (14) enables us to
return to the ‘‘old-fashioned’’ definitions of the reflection
coefficient R and transmission coefficient T.

A. The elimination of N from matching conditions

The second surprise offered by our example is that the
matching remains easy even for remote interactions with
N � 1. In order to show this, let us now assume that the
distance 2N þ 1 between two three-dimensional interac-
tion submatrices in (14) is arbitrary. We may abbreviate, in
partitioned notation,

Vðg;N Þ ¼

0 g 0 ~0T 0 0 0
�g 0 �g ~0T 0 0 0
0 g 0 ~0T 0 0 0
~0 ~0 ~0 0̂ ~0 ~0 ~0
0 0 0 ~0T 0 g 0
0 0 0 ~0T �g 0 �g
0 0 0 ~0T 0 g 0

2
666666666664

3
777777777775
;

where 0̂ denotes a null matrix (of dimension 2N þ 1) and

where ~0 are null column vectors. The superscripts T denote
transpositions (i.e., row real vectors). In such a notation
one has to consider the following 2N þ 7 matching con-
ditions:

M½N �ð’Þ

U�N�3

U�N�2 þ ��2

U�N�1 þ ��1
~c 0

LNþ1 þ �1

LNþ2 þ �2

LNþ3

2
66666666664

3
77777777775

¼

U�N�4

0
0
~0
0
0

LNþ4

2
66666666664

3
77777777775
;

where
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M½N �ð’Þ ¼

2 cos’ �1� g 0 ~0T 0 0 0
�1þ g 2 cos’ �1þ g ~0T 0 0 0

0 �1� g 2 cos’ ~aT 0 0 0
~0 ~0 ~a F̂½N � ~b ~0 ~0
0 0 0 ~bT 2 cos’ �1� g 0
0 0 0 ~0T �1þ g 2 cos’ �1þ g
0 0 0 ~0T 0 �1� g 2 cos’

2
666666666664

3
777777777775
;

and where ~aT ¼ ð�1; 0; . . . ; 0Þ and ~bT ¼ ð0; . . . ; 0;�1Þ are
two (2N þ 1)-dimensional auxiliary row vectors. The
other auxiliary ‘‘free-motion’’ submatrix F̂½N � is tridiago-
nal and (2N þ 1) dimensional. Its elements 2 cos’ along
the main diagonal are complemented by the elements �1
which lie along its two neighboring diagonals.

B. Exact solvability

What remains for us to demonstrate is that our model
conserves the global or asymptotic flow of probability, i.e.,

that one obtains jRj2 þ jTj2 ¼ 1 in spite of the manifest
non-Hermiticity of the Hamiltonian H. In this setting the
final surprise comes with the observation that the reflection
and transmission coefficients are obtainable in closed
form. Even when the distance parameter N is arbitrarily
large, the use of Ansatz (19) reduces the original set of
2N þ 7 matching conditions to the following two inde-
pendent matching conditions consisting of four items each:

2 cos’ �1� g 0 0

�1þ g 2 cos’ �1þ g 0

0 �1� g 2 cos’ �1

0 0 �1 2 cos’

2
666664

3
777775

U�N�3

U�N�2 þ ��2

U�N�1 þ ��1

c�N

2
666664

3
777775 ¼

U�N�4

0

0

c�Nþ1

2
666664

3
777775;

2 cos’ �1 0 0

�1 2 cos’ �1� g 0

0 �1þ g 2 cos’ �1þ g

0 0 �1� g 2 cos’

2
666664

3
777775

cN

LNþ1 þ �1

LNþ2 þ �2

LNþ3

2
666664

3
777775 ¼

cN�1

0

0

LNþ4

2
666664

3
777775:

Out of this octuplet of equations, the first and last lines can be solved,

ð1þ gÞ��2 ¼ �gU�N�2; ð1þ gÞ�2 ¼ �gLNþ2:

This leads to the following two triplets of conditions:

2 cos’ �1þ g2 0

�1 2 cos’ �1

0 �1 2 cos’

2
664

3
775

U�N�2

U�N�1 þ ��1

c�N

2
664

3
775 ¼

ð1� g2ÞU�N�3

0

c�Nþ1

2
664

3
775;

2 cos’ �1 0

�1 2 cos’ �1

0 �1þ g2 2 cos’

2
664

3
775

cN

LNþ1 þ �1

LNþ2

2
664

3
775 ¼

cN�1

0

ð1� g2ÞLNþ3

2
664

3
775:

Using the first and last equation we eliminate

ð1� g2Þ��1 ¼ g2U�N�1 þ g2U�N�3;

ð1� g2Þ�1 ¼ g2LNþ1 þ g2LNþ3:

The net result of these manipulations are the four relations

2 cos’ �1

�1 2 cos’

" #
U�N�1 þ g2U�N�3

ð1� g2Þc�N

" #
¼ ð1� g2ÞU�N�2

ð1� g2Þc�Nþ1

" #
;

2 cos’ �1

�1 2 cos’

" # ð1� g2ÞcN

LNþ1 þ g2LNþ3

" #
¼ ð1� g2ÞcN�1

ð1� g2ÞLNþ2

" #
;
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which can be simplified to read

ð1� g2Þc�N ¼ U�N þ 2g2U�N�2 þ g2U�N�4;

ð1� g2Þc�N�1 ¼ U�N�1 þ g2U�N�3;

ð1� g2ÞcN ¼ LN þ 2g2LNþ2 þ g2LNþ4;

ð1� g2ÞcNþ1 ¼ LNþ1 þ g2LNþ3:

These equations represent the two alternative definitions of
the sum CþD and of the difference C�D of the two
unknown coefficients in c k,

2ð1� g2ÞðCþDÞ cosN ’

¼ A�ð’Þ þ Að’ÞðRþ TÞ;
2ð1� g2ÞðCþDÞ cosðN þ 1Þ’
¼ B�ð’Þ þ Bð’ÞðRþ TÞ � 2ið1� g2ÞðC�DÞ sinN ’

¼ A�ð’Þ þ Að’ÞðR� TÞ;
� 2ið1� g2ÞðC�DÞ sinðN þ 1Þ’
¼ B�ð’Þ þ Bð’ÞðR� TÞ;
where we abbreviated

Að’Þ ¼ eiN ’ þ g2ð2eiðNþ2Þ’ þ eiðNþ4Þ’Þ;
Bð’Þ ¼ eiðNþ1Þ’ þ g2eiðNþ3Þ’:

In the next step we eliminate C and D and express

R� T ¼ �u�ð’Þ
uð’Þ ;

uð’Þ ¼ Bð’Þ
sinðN þ 1Þ’� Að’Þ

sinN ’
;

Rþ T ¼ �v�ð’Þ
vð’Þ ;

vð’Þ ¼ Bð’Þ
cosðN þ 1Þ’� Að’Þ

cosN ’
:

The required amplitudes R and T are now found, in closed
form, as the respective sum and difference of the latter two
expressions. In the final step their probability conservation
property

jRj2 þ jTj2 ¼ 1

is easily seen.

V. SUMMARY

Our main technical result is that via a discretization of
the real axis of coordinates x (and using the matching
method) an exact linear-algebraic solvability of our present
model of scattering has been achieved. Constructively, the
necessary unitarity requirement has been satisfied at the
same time. Our model [containing several spatially sepa-
rated and strictly localized interactions which appear non-

Hermitian inH ðFÞ � L2ðRÞ] is being assigned the more or

less unique Hilbert space of states H ðSÞ � H ðphysicalÞ
where the use of an anomalous inner product makes the
Hamiltonians (crypto)Hermitian.
It is worth noticing that the metric operator which

defines the inner product in H ðphysicalÞ merely differs
from the usual Dirac’s delta function locally, viz., in a
close vicinity of interaction points. This implies that the
physical operator of the coordinate remains unmodified
almost everywhere. An entirely consistent physical picture
of scattering from multiple scatterers is obtained in this
way. In contrast to the older models using non-Hermitian
but strictly local potentials VðxÞ, the free motion between
our present, slightly nonlocal individual non-Hermitian
pointlike scatterers remains undistorted.
In conclusion let us reemphasize that the motivation and

inspiration of our present study of a simplified model of
multiple scattering resulted from several sources. One of
the most important ones has to be seen in the recent
enormous growth of interest in the models of quantum
dynamics of bound states which look manifestly non-
Hermitian in L2ðRÞ and/or in similar mathematical repre-
sentations of the Hilbert space of states [16].
The key to success can be seen in the discovery of

feasibility of a strictly physics-motivated transition to cor-

rect Hilbert spaceH ðphysicalÞ [12]. Our present paper can be
read as an implementation and advertisement of such an
approach where one chooses a slightly more complicated
input physics (i.e., in our case, a slightly nonlocal
Hamiltonian H ¼ T þ V) and where one is rewarded by
a perceivable simplification of mathematics. In particular,

we saw that the resulting metric � in H ðphysicalÞ differed
from the unit operator just in a finite number of matrix
elements in our model.
We have only to repeat that our second, less abstract

motivation grew from the emergence of several very recent
studies of manifestly non-Hermitian models of quantum
scattering [8]. Several issues may be addressed in this
context. For example, in the less ambitious, effective-
theory versions of these models (where one does not insist
on the conserved probability) one can easily stay in the

single, effective-theory Hilbert space H ðFÞ. Moreover,
various additional dynamical assumptions [like the strict
locality of potentials VðxÞ] may easily be incorporated in
the similar pragmatic applications of the theory.
In contrast, in the ‘‘fundamental’’ and unitary quantum

theory a real challenge is to be seen in the existence of a
correlation between non-Hermiticity of a local V and the
long-range nonlocality emerging in� [17]. One can notice
that this relationship seems highly model dependent. In this
sense, our present message can be read as a methodical
encouragement. Basically, we found that whenever one
broadens the class of the eligible potentials the latter model
dependence can be reinterpreted as an advantage.
It should be remembered that the increase of the non-

Hermiticity of H need not necessarily be correlated with
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the growth of nonlocalities in� obscuring the clear physi-
cal picture of scattering. We succeeded here in showing
that both the nonlocalities occurring in V and � can be
kept under control simultaneously. After all, one may note
that in our present one-dimensional model with x 2 R the
anomalies disappear ‘‘almost everywhere’’ in the continu-
ous limit h ! 0.

In this manner our present text brought a rather surpris-
ing resolution of the puzzle formulated in Ref. [15] where
we did not manage to get rid of the nonlocality in a non-
Hermitian model comprising several spatially separate
scattering centers. Here we revealed that sometimes it
makes good sense to sacrifice some inessential symmetries
of the model in order to preserve either its exact solvability
or its phenomenological flexibility. We should note that the
feasibility of our (computer-assisted) algebraic manipula-
tions survived even the transition to unusually complicated
point-interaction simulations by three-by-three matrices.

In the context of physics, good news concerns, first of
all, the possibility of an explicit construction of an optimal
metric � in the physical Hilbert space. Its ‘‘optimality’’
reflects the fact that with an obvious exception of the
closest vicinities of the pointlike interaction centers of
our model, the metric� itself has successfully been forced
to commute with the operator of the coordinate almost
everywhere. This means that in contrast to intuitive expec-
tations (supported even by some solvable models), the
concept of coordinate and of an asymptotically free (i.e.,
measurable) motion of a quantized object can survive the

emergence of a finite number of pointlike non-Hermitian
obstacles positioned arbitrarily along the real line.
The latter observation allows us to declare that our

model represents an illustrative example of a standard
quantum system where the non-Hermiticity as well as the
resulting nonlocalities (in both the metric � and in wave
functions) remains confined to a very small part of the
domain of the coordinates. This means not only that up to
the singular points the coordinates remain measurable but
also that the clear physical picture and consistent probabi-
listic interpretation of the non-Hermitian systems are natu-
rally being extended to the multiple-scattering scenario.
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APPENDIX A: CONSTRUCTION OF THE
AMPLITUDES FOR MODEL (14) AT N ¼ �1

In the special case of our toy-modelHðg;N Þ atN ¼ �1
the analysis of the respective transition and reflection
amplitudes T and R can be based on the explicit solution
of the Schrödinger equation which degenerates, in an
obvious manner and under the notation conventions of
Sec. IV, to the following set of the five linear relations
representing matching conditions near the origin:

�1 2 cos’ �1� g 0 0 0 0
0 �1þ g 2 cos’ �1þ g 0 0 0
0 0 �1� g 2 cos’ �1� g 0 0
0 0 0 �1þ g 2 cos’ �1þ g 0
0 0 0 0 �1� g 2 cos’ �1

2
666664

3
777775

U�3

U�2

U�1 þ ��1

c 0

L1 þ �1

L2

L3

2
66666666664

3
77777777775

¼ 0:

Their solution may start from the first and last line giving

ð1þ gÞ��1 ¼ �gU�1 ¼ �gðe�i’ þ Rei’Þ; ð1þ gÞ�1 ¼ �gL1 ¼ �gTei’:

This enables us to consider just the three modified matching conditions

�1þ g2 2 cos’ �1 0 0
0 �1þ g2 2 cos’ �1þ g2 0
0 0 �1 2 cos’ �1þ g2

2
64

3
75

U�2

U�1

ð1� g2Þc 0

L1

L2

2
666664

3
777775 ¼ 0:

The first and last rows read

ð1� g2Þc 0 ¼ U0 þ g2U�2

¼ 1þ g2e�2i’ þ ð1þ g2e2i’ÞR;
ð1� g2Þc 0 ¼ L0 þ g2L2 ¼ ð1þ g2e2i’ÞT;

so that their combination

1þ g2e�2i’ ¼ ð1þ g2e2i’ÞðT � RÞ

defines the difference between our two amplitudes as a
complex number with unit norm,
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T � R ¼ 1� i	

1þ i	
� ei�; 	 ¼ g2 sin2’

1þ g2 cos2’
:

The remaining central matching condition can be given the
form of an equation for the sum � ¼ T þ R of the ampli-
tudes, with the solution equal to another complex number
with unit norm,

T þ R ¼ �e�2i’ 1� i


1þ i

� ei�;


 ¼ ð1� g2Þ sin2’
1� 3g2 � cos2’� g2 cos2’

:

This gives the two final formulas

2T ¼ ei� þ ei�; 2R ¼ ei� � ei�

with the two respective properties

4jTj2 ¼ ðei� þ ei�Þðe�i� þ e�i�Þ
¼ 2þ eið���Þ þ eið���Þ;

4jRj2 ¼ ðei� � ei�Þðe�i� � e�i�Þ
¼ 2� eið���Þ � eið���Þ;

which imply that

jRj2 þ jTj2 ¼ 1:

This means that in contrast to the observations made in
some other non-Hermitian models [1,2,4], the flow of
probability is conserved so that the standard physical pic-
ture of the scattering does not require any modifications.

APPENDIX B: CONSTRUCTION OF THE
AMPLITUDES FOR MODEL (14) AT N ¼ 0

In place of the five-dimensional matching condition of
our preceding Appendix let us now turn our attention to the
family of nontrivial models where the two three-
dimensional elementary-interaction submatrices are sepa-
rated by a free-motion interval of the length 2N þ 1. In
the first nontrivial model with N ¼ 0 the nonvanishing
submatrix of our interaction matrix is seven dimensional,

Vðg;0Þ ¼

0 g 0 0 0 0 0
�g 0 �g 0 0 0 0
0 g 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 g 0
0 0 0 0 �g 0 �g
0 0 0 0 0 g 0

2
66666666664

3
77777777775
:

In such a case one has to consider seven matching con-
ditions of the form

M½0�ð’Þ

U�3

U�2 þ ��2

U�1 þ ��1

c 0

L1 þ �1

L2 þ �2

L3

2
66666666664

3
77777777775

¼

U�4

0
0
0
0
0
L4

2
66666666664

3
77777777775
;

where

M½0�ð’Þ ¼

2 cos’ �1� g 0 0 0 0 0
�1þ g 2 cos’ �1þ g 0 0 0 0

0 �1� g 2 cos’ �1 0 0 0
0 0 �1 2 cos’ �1 0 0
0 0 0 �1 2 cos’ �1� g 0
0 0 0 0 �1þ g 2 cos’ �1þ g
0 0 0 0 0 �1� g 2 cos’

2
66666666664

3
77777777775
:

The separate subset of the first and last matching condition is solvable as follows:

ð1þ gÞ��2 ¼ �gU�2; ð1þ gÞ�2 ¼ �gL2:

The backward insertion of these formulas leads to the quintuplet of the reduced matching conditions

�1þ g2 2 cos’ �1þ g2 0 0 0 0
0 �1 2 cos’ �1 0 0 0
0 0 �1 2 cos’ �1 0 0
0 0 0 �1 2 cos’ �1 0
0 0 0 0 �1þ g2 2 cos’ �1þ g2

2
666664

3
777775

U�3

U�2

U�1 þ ��1

c 0

L1 þ �1

L2

L3

2
66666666664

3
77777777775

¼ 0:

Its first and last lines define the other two correction components,

ð1� g2Þ��1 ¼ g2ðU�1 þU�3Þ; ð1� g2Þ�1 ¼ g2ðL1 þ L�3Þ;
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so that we are left with the three matching conditions

�1þ g2 2 cos’ �1 0 0
0 �1 2 cos’ �1 0
0 0 �1 2 cos’ �1þ g2

2
64

3
75

U�2

U�1 þ g2U�3

ð1� g2Þc 0

L1 þ g2L3

L2

2
666664

3
777775 ¼ 0:

Their first and last items define the same quantity in two
ways,

ð1� g2Þc 0 ¼ U0 þ g2ðU�2 þ 2 cos’U�3Þ
¼ U0 þ g2ð2U�2 þU�4Þ;

ð1� g2Þc 0 ¼ L0 þ g2ðL2 þ 2 cos’L3Þ
¼ L0 þ g2ð2L2 þ L4Þ:

In effect, one can eliminate c 0,

ðT � RÞ½1þ g2ð2e2i’ þ e4i’Þ�
¼ ½1þ g2ð2e�2i’ þ e�4i’Þ�;

and specify the difference between T and R,

T � R ¼ 1� i	0

1þ i	0 � ei�
0
;

	0 ¼ g2ð2 sin2’þ sin4’Þ
1þ g2ð2 cos2’þ cos4’Þ :

Next, in a complete parallel to the previous construction,

the sum � of T and R may and should be extracted again
from the last and symmetrized middle items of our match-
ing conditions,

2U�1 þ 2L1 þ 2g2ðU�3 þ L3Þ
¼ U0 þ L0 þ g2ð2U�2 þ 2L2 þU�4 þ L4Þ:

After appropriate insertions this gives a similar formula as
above,

T þ R ¼ � 1� i
0

1þ i
0 � ei�
0
;


0 ¼ �2 sin’þ g2ð2 sin2’� 2 sin3’þ sin4’Þ
½1� 2 cos’þ g2ð2 cos2’� 2 cos3’þ cos4’Þ� :

The same argumentation as above confirms the validity of
the identity

jRj2 þ jTj2 ¼ 1

i.e., of the same probability conservation law as above.
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