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We extend the dimensional deconstruction by utilizing the knowledge of graph theory. In the

dimensional deconstruction, one uses the moose diagram to exhibit the structure of the ‘‘theory space.’’

We generalize the moose diagram to a general graph with oriented edges. In the present paper, we consider

only the Uð1Þ gauge symmetry. We also introduce supersymmetry into our model by use of superfields.

We suppose that vector superfields reside at the vertices and chiral superfields at the edges of a given

graph. Then we can consider multivector, multi-Higgs models. In our model, ½Uð1Þ�p (where p is the

number of vertices) is broken to a single Uð1Þ. Therefore, for specific graphs, we get vortexlike classical
solutions in our model. We show some examples of the graphs admitting the vortex solutions of simple

structure as the Bogomolnyi solution.
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I. INTRODUCTION

Recently, ‘‘Higgsless theories’’ are eagerly studied by
many authors [1,2]. Most of these models are derived from
or related to the method of the dimensional deconstruction
(DD) [3], which leads to the breakdown of electroweak
symmetry.

The typical structure of DD is shown diagrammatically
in Fig. 1. This model incorporates the ½SUð2Þ�Nþ1 �Uð1Þ
gauge group and N þ 1 nonlinear-sigma-model fields. If N
is equal to one, the number of the site is three in Fig. 1. The
three-site Higgsless model [2] is in this category. In the
generic scenario, the ½SUð2Þ�Nþ1 �Uð1Þ gauge group is
broken to Uð1Þ.

The moose diagram like Fig. 1 naturally leads to the
Lagrangian of the model. This moose diagram indicates a
relation between gauge fields and scalar fields. We will
generalize this relation in the context of graph theory. We
can express the relation between gauge fields and scalar
fields in a graph, which is just a complex moose diagram.
We wish to call this theory based on a graph as ‘‘graph
dimensional deconstruction’’ (GDD). The idea of GDD has
already been published as Ref. [4].

In the present work, we propose another idea of using
superfields to introduce supersymmetry (SUSY) into the
model. We assign vector superfields to vertices and chiral
superfields to edges of a graph. This is another extension of
the DD.

In the beginning, both DD and SUSY are to provide the
mechanism of solving the gauge hierarchy problem. The
motivations of including SUSY are, nevertheless, claimed

as follows. First of all, we should think that every field
theory has SUSY at very high energy, because the correct
or controlled UV behaviors are believed, or because of
superstring theory or M theory. The second motivation
comes from the necessity of more symmetries. Because
DD and GDD are basically the mechanism of controlling
the mass spectrum of field theory, we need more symmetry
to determine the (self)interaction of fields. Thus we con-
sider the supersymmetric extension of the GDD model
here.
In this paper, we consider only the Abelian theory. For

notation, please consult Ref. [4].

II. A REVIEW OF FIELD THEORY ON A GRAPH
(OR GDD)

A graph GðV; EÞ consists of a set of vertices V and a set
of edges E. A vertex is connected with another one by an
edge. We let the number of the vertices be p, p � #V, and
the number of the edges be q, q � #E. In Fig. 2, we show
the simplest graph with p ¼ 2 and q ¼ 1, constructed by
two vertices and an edge.
We consider a simple Abelian theory. Abelian gauge

fields reside at vertices and scalar fields reside at edges.
The Uð1Þ transformation is defined at each vertex. The
Lagrangian density is

L ¼ � 1

4

X
v2V

Fv
��F

��
v � X

e2E

ðD�UeÞyðD�UeÞ; (1)

where the covariant derivative is

D �Ue ¼ ð@� þ igA
�
tðeÞ � igA

�
oðeÞÞUe; (2)

with jUej2 ¼ f2.
If we rewrite Ue as Ue ¼ feiae , the real scalar fields ae

act as the Stueckelberg fields [5]. The number of physical
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massless scalar fields is q� pþ 1, or the number of closed
circuits involved in the graph, because p� 1 scalar de-
grees of freedom are absorbed by the to-be massive vector
fields. If and only if the graph is tree (or absent from closed
circuits), the scalar fields disappear from the physical
spectrum.

The ðmassÞ2 matrix of vector fields M2
A is given by

2g2f2�, where the ðp; pÞ matrix

� � EET (3)

is called as the graph Laplacian and the ðp; qÞ matrix E is
the incidence matrix [6] defined as

ðEÞve ¼
8><
>:
1 if v ¼ oðeÞ
�1 if v ¼ tðeÞ
0 otherwise.

(4)

Here v ¼ oðeÞ means that the vertex v is the origin of the
edge e and v ¼ tðeÞmeans that the vertex v is the terminus
of the edge e. The ðq; pÞmatrix ET is the transposed matrix
of E.

For more general cases, one might consider individual
coupling constants for vertices as

D �Ue ¼ ð@� þ igtðeÞA
�
tðeÞ � igoðeÞA

�
oðeÞÞUe; (5)

and jUej2 ¼ f2e for each edge. In this case the mass matrix
becomes

M2
A ¼ 2GEF2ETG ¼ 2ðGEFÞðGEFÞT; (6)

where the diagonal matrices G and F are given by

ðGÞvv0 ¼
�
gv if v ¼ v0
0 otherwise,

ðFÞee0 ¼
�
fe if e ¼ e0
0 otherwise,

(7)

respectively.
To summarize this section: In the GDD model, the mass

spectrum is given by eigenvalues of the graph Laplacian or
the related matrix constructed from the incidence matrix of
the graph.

III. THE USE OF THE STUECKELBERG
SUPERFIELD

Next we incorporate SUSY into the GDDmodel. We use
superfields [7] to this end.
In this paper, we consider that vector superfields fVvg

exist on vertices. We still impose the Uð1Þ transformation
on Vv at each vertex as

Vv ! Vv þ ið�v � ��vÞ; (8)

where �v is a chiral superfield. Then the invariant super-
field is defined as usual [7]:

Wv
� ¼ � 1

4
�D �DD�Vv: (9)

The kinetic term of the vector field can be created from this
for each vertex.
Further we introduce a chiral superfield Se at each edge.

The superfield Se is assumed to be transformed as

Se ! Se � i�tðeÞ þ i�oðeÞ: (10)

Then we can write the Stueckelberg term [8]

ðVtðeÞ � VoðeÞ þ Se þ �SeÞ2; (11)

and a gauge invariant term for the interaction with scalars

L ¼ X
v2V

1

4g2v
ðW�

vW
v
�j�� þ �Wv

_�
�W _�
v j �� ��Þ

þ X
e2E

2f2eðVtðeÞ � VoðeÞ þ Se þ �SeÞ2j�� �� ��: (12)

FIG. 2. The simplest graph, constructed by two vertices and an
edge. A vertex vi is identified by i, where i is a label for each
vertex. In the same way, an edge ei is identified by i, where i is a
label for each edge. The arrow means a direction of the edge.
This edge is called an oriented edge. In terms of the oriented
edge, the original vertex v1 is v1 ¼ oðe1Þ and the terminal vertex
v2 is v2 ¼ tðe1Þ. This oriented graph corresponds to the gener-
alized moose diagram.

FIG. 1. A moose diagram. There are N þ 1 SUð2Þ gauge fields and a Uð1Þ gauge field. Each gauge field exists on each site
represented by a small circle. The coupling constant of the gauge fields Ai

� is gi (i ¼ 0; 1; 2; . . . ; N), and the coupling constant of the

Uð1Þ gauge field B� is gNþ1. The vacuum expectation value of the scalar fields �i is fi (i ¼ 1; 2; . . . ; N; N þ 1).
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The bosonic part of the theory is found to be

Lb ¼ �X
v2V

1

4g2v
Fv
��F

��
v � X

e2E

2f2e
2

ðA�
tðeÞ � A�

oðeÞ

þ @�aeÞ2 � 1

2

X
e2E

2f2eð@��eÞ2 þ
X
v2V

1

2g2v
D2

v

þ 2
X
e2E

2f2ejFSej2 þ
X
e2E

2f2eðDtðeÞ �DoðeÞÞ�e; (13)

where the notation of the component field is a rather
standard one and is gathered in Appendix A.

Eliminating the auxiliary fields FSe and rescaling �e,
gauge fields, andDv to have canonical kinetic terms we get

Lb ¼ � 1

4

X
v2V

Fv
��F

��
v � X

e2E

2f2e
2

ðgtðeÞA�
tðeÞ

� goðeÞA
�
oðeÞ þ @�aeÞ2 � 1

2

X
e2E

ð@��eÞ2

� X
e;e02E

X
v2V

fe�eðETÞevg2vðEÞve0fe0�e0

þ 1

2

X
v2V

�
Dv �

ffiffiffi
2

p
2

gv
X
e2E

ðEÞvefe�e

�
2
: (14)

Now one can easily find the mass matrices for vectors
and scalars:

M2
A ¼ 2GEF2ETG ¼ 2ðGEFÞðGEFÞT;

M2
� ¼ 2FETG2EF ¼ 2ðGEFÞTðGEFÞ; (15)

where E is defined as (4) while G and F are given by (7).
Massless scalar fields are absent if and only if the graph is a
tree graph. The mass spectrum of the scalar fields is the
same as the one for the vector fields except for zero modes
[9].

The fermionic part of the theory is found to be

L f ¼ �i
X
v2V

1

g2v
�v�

�@� ��v � i
X
e2E

2f2e�e�
�@� ��e

þ X
e2E

2f2e½�eð�tðeÞ � �oðeÞÞ þ H:c:�; (16)

and can be rescaled as

L f ¼ �i
X
v2V

�v�
�@� ��v � i

X
e2E

�e�
�@� ��e

� X
e2E

X
v2V

ffiffiffi
2

p ½fe�eðETÞevgv�v þ H:c:�: (17)

Here �v and �e are Weyl spinor fields contained in Vv and
Se, respectively.

One will find the mass matrices for fermions after re-
scaling the fields:

M2
� ¼ 2GEF2ETG ¼ 2ðGEFÞðGEFÞT;

M2
� ¼ 2FETG2EF ¼ 2ðGEFÞTðGEFÞ: (18)

Note that the fermions � and � form Dirac fields for
massive modes. Also note that all field contents are neutral
as well as free from interactions.

IV. MULTIVECTOR, MULTI-HIGGS MODEL

A. General construction

We will construct the model that the symmetry ½Uð1Þ�p
is spontaneously broken to Uð1Þ. Therefore we will not use
the Stueckelberg fields but the Higgs fields.
As the model in the previous section, we consider vector

superfields on vertices and suppose that Uð1Þ transforma-
tion is defined at each vertex. Moreover in the present case,
we introduce a ‘‘bicharged’’ scalar field � on each edge,
which is transformed under two Uð1Þ symmetries as [10]

�e ! e�2i�tðeÞ�ee
2i�oðeÞ : (19)

Now we get the ½Uð1Þ�p invariant supersymmetric multi-
vector, multi-Higgs model on a graph governed by the
following Lagrangian:

L ¼ 1

4

X
v2V

ðW�
vW

v
�j�� þ �Wv

_�
�W _�
v j �� ��Þ

þ X
e2E

��ee
2gVtðeÞ�ee

�2gVoðeÞ j�� �� ��

� 2g
X
e2V

	eðVtðeÞ � VoðeÞÞj�� �� ��; (20)

where we rescale the gauge coupling constant to be seen
explicitly. The Fayet-Illiopoulos (FI) terms are chosen so
that they are similar to those in the model of the previous
section, when 	e � f2e [11]. This paper will not go into the
issue about anomaly and will deal with only classical
aspects of the model.
The bosonic part of the Lagrangian reads

Lb ¼ � 1

4

X
v2V

Fv
��F

��
v þ 1

2

X
v2V

D2
v �

X
e2E

ðD��eÞy

� ðD��eÞ þ
X
e2E

Fy
�e
F�e þ g

X
e2E

ðDtðeÞ

�DoðeÞÞ�y
e�e � g

X
e2V

ðDtðeÞ �DoðeÞÞ	e; (21)

where the covariant derivative is

D ��e ¼ ð@� þ igA
�
tðeÞ � igA

�
oðeÞÞ�e: (22)

By use of the incidence matrix of the graph, we rewrite
the above Lagrangian as

Lb ¼ � 1

4

X
v2V

Fv
��F

��
v þ 1

2

X
v2V

D2
v �

X
e2E

ðD��eÞy

� ðD��eÞ þ
X
e2E

Fy
�e
F�e � g

X
e2E

ð�y
e�e � 	eÞ

� ðETDÞe: (23)

Substituting the equation of motion for the auxiliary fields
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F�e ¼ 0 and Dv ¼ g
X
e2E

ð�y
e�e � 	eÞðETÞv; (24)

into the bosonic Lagrangian, we obtain

L b ¼ � 1

4

X
v2V

Fv
��F

��
v � X

e2E

ðD��eÞyðD��eÞ

� g2

2

X
e;e02E

ð�y
e�e � 	eÞðETEÞee0 ð�y

e0�e0 � 	e0 Þ:

(25)

Note that ETE is a ðq; qÞ matrix.

B. Example: P3

The structure of the model depends on the incidence
matrix of the graph. For a simple example, let us consider
the path graph with three vertices P3.

The incidence matrix depends on the orientation of
edges. For instance, two cases can be considered as follows
[12]:

ðEAÞve ¼
1 0
�1 1
0 �1

0
@

1
A; ðEBÞve ¼

1 0
�1 �1
0 1

0
@

1
A;
(26)

where EA is the incidence matrix of PA
3 and EB is the one of

PB
3 . The two graphs are shown in Fig. 3.

Interestingly, the following matrix is independent of the
edge orientation:

EAE
T
A ¼ EBE

T
B ¼

1 �1 0
�1 2 �1
0 �1 1

0
@

1
A � �: (27)

This is known as the graph Laplacian.
On the other hand, we find

ET
AEA ¼ 2 �1

�1 2

� �
; ET

BEB ¼ 2 1
1 2

� �
: (28)

Therefore the shape of the Higgs potential in Eq. (25)
depends on the edge orientation.
Figure 4 illustrates the contour plots of the potentials in

Eq. (25) for the graphs PA
3 and PB

3 .

C. Mass matrices for bosonic and fermionic fields

Individually different gauge coupling constants will also
be considered. The consequence of such consideration
forces the bosonic part of the Lagrangian to be

Lb ¼ � 1

4

X
v2V

Fv
��F

��
v � X

e2E

ðD��eÞyðD��eÞ

� 1

2

X
e;e02E

X
v2V

ð�y
e�e � 	eÞðETÞevg2vðEÞve0

� ð�y
e0�e0 � 	e0 Þ; (29)

with

D ��e ¼ ð@� þ igtðeÞA
�
tðeÞ � igoðeÞA

�
oðeÞÞ�e: (30)

Here we assume that all 	e are positive and
ffiffiffiffiffi
	e

p ¼ fe. Thus

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

FIG. 4. Contour plots of scalar potentials for the models based on PA
3 (left) and on PB

3 (right), respectively. In both plots, potentials
are normalized by g2f4, the contour spacing is 0.1, and the horizontal axis indicates j�1j=f while the vertical axis indicates j�2j=f.

FIG. 3. P3: the path graph with three vertices. There are two substantially different graphs. They have the different incidence
matrices.
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the vacuum expectation value for j�ej is fe and physical
scalar fields should be considered as the linear combina-
tions of j�ej � fe. Each phase part of a to-be massive
scalar field is eaten by a vector field through the Higgs
mechanism. Then the ðmassÞ2 matricesM2

V for vector fields
and M2

S for scalar fields in this case are

M2
V ¼ 2GEF2ETG ¼ 2ðGEFÞðGEFÞT;

M2
S ¼ 2FETG2EF ¼ 2ðGEFÞTðGEFÞ; (31)

where the matrices that appeared in the above equations are
the same as (4) and (7).

Although the shape of the potential with respect to j�ej
depends on the orientation of edges in the graph, the mass
spectrum of the scalar fields is the same as the one for the
vector fields except for zero modes, similarly to the model
in the previous section.

The number of the moduli of the potential is q� pþ 1
for a general graph. This is equal to the number of inde-
pendent closed circuits in the graph [13]. For tree graphs,
the vacuum expectation values of�e are determined rigidly
if all 	e are positive.

The fermionic part of the Lagrangian is

L f ¼ �i
X
v2V

�v�
�@� ��v � i

X
e2E

c e�
�D�

�c e

þ i
ffiffiffi
2

p X
e2E

ð�e
�c eðETÞevgv ��v � �y

e c eðETÞevgv�Þ;

(32)

where �v and c e are Weyl spinor fields contained in Vv

and �e, respectively. The covariant derivative on c e is
defined as D�c e ¼ ð@� þ igtðeÞA

�
tðeÞ � igoðeÞA

�
oðeÞÞc e.

Substituting the vacuum expectation values h�ei ¼ fe,
we find

M2
� ¼ 2ðGEFÞðGEFÞT; M2

c ¼ 2ðGEFÞTðGEFÞ:
(33)

Since SUSY is unbroken, the bosonic and fermionic spec-
tra are the same.

In this paper, we have considered models with unbroken
SUSY. The model with partially broken SUSY is interest-
ing, for some 	e < 0. The present analysis will not go into
such models.

V. VORTEX SOLUTION

It is well known that the vortex solution can be found in
the Abelian-Higgs model [14]. In many papers, the solu-
tion is used as a simple model for a cosmic string [15]. We
consider the vortex-type solutions in our model described
in the previous section.

Although an academic interest in our toy model is an
important motivation for the following study, we also think
that topological configurations are a key ingredient in
recent studies in theoretical physics. A possibility is ex-

pected that a similar model provides an example of a
complicated brane/string system. In the present paper, any-
way, we study only simple vortex in our theory and their
generalizations and possible applications to particle phys-
ics and cosmology are left for future work.
Moreover we will consider only tree graphs as the bases

of models.

A. Bogomolnyi equation

In the Abelian-Higgs model, the vortex solution is well
known [14]. Moreover, it is known [16] that supersymmet-
ric Uð1Þ theory satisfies the Bogomolnyi condition [17].
Because our model is also supersymmetric, the
Bogomolnyi condition can be found. The equations of
motion can be reduced to the following two sets of equa-
tions:

Fij
v ¼ �"ijgv

X
e2E

ðEÞveðj�ej2 � 	eÞ; (34)

and

D i�e ¼ �i"ijDj�e; (35)

where i, j denote two spatial directions and "ij is the
antisymmetric tensor.
These equations are the Bogomolnyi equations.
The energy per unit length of a vortex string can be

written as

E ¼
Z

d2x

�
1

4

X
v2V

Fv
ijF

ij
v þ X

e2E

ðDi�eÞyðDi�eÞ

þ 1

2

X
e;e02E

X
v2V

ðj�ej2 � 	eÞðETÞevg2vðEÞve0

� ðj�e0 j2 � 	e0 Þ
�

(36)

¼
Z

d2x

�
1

4

X
v2V

fFij
v � "ijgvðEÞveðj�ej2 � 	eÞg2

þ 1

2

X
e2E

jDi�e � i"ijDj�ej2

�
�X
v2V

X
e2E

1

2
"ijF

ij
v gvðEÞve	e

� i
X
e2E

"ij@ið�y
eDj�eÞ

��
: (37)

For a solution of finite energy density, Di�e is equal to
zero at spatial infinity. If the asymptotic behavior of �e is
expressed by the azimuthal angle ’ and an integer ne, i.e.
�e !

ffiffiffiffiffi
	e

p
eine’, the condition tells ðETgvA

v
i Þe ! ne@i’,

and then
R
d2xðET"ijgvF

ij
v Þe ¼ 4
ne. Therefore the en-

ergy density becomes
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E ¼
Z

d2x

�
1

4

X
v2V

fFij
v � "ijgvðEÞveðj�ej2 � 	eÞg2

þ 1

2

X
e2E

jDi�e � i"ijDj�ej2
�
� 2


X
e2E

jnej	e:

(38)

We deal with the lowest bound for the energy density
read from this result. The vortex solution satisfying the
Bogomolnyi equation (34) and (35) has the energy density
2


P
e2Ejnej	e [18].

B. Bogomolnyi vortices and SUSY

It is well known that the SUSY is partially broken in the
topological background fields. Here we briefly describe the
pattern of SUSY breaking in our model. Notation may be
found in [7]. According to SUSY, the variations of the
gauginos �e are

���v ¼ i�Dv þ ���Fv���: (39)

Using the Bogomolnyi equations (34), and assuming the
vortex string lies in the third direction for simplicity, the
above variations are rewritten as

���v ¼ �iF12
v ð1� �3Þ�: (40)

This means that the half of the SUSYat the vertex is broken
in the presence of the central magnetic flux of the vortex.

The variations of partners of �e are

��c e ¼ i
ffiffiffi
2

p
����D��e; (41)

where D�c e � @�c e þ iððgAÞ�tðeÞ � ðgAÞ�oðeÞÞc e. If the

vortex string lies in the third direction, this reduces when
the Bogomolnyi equations (35) hold,

��c e ¼ i
ffiffiffi
2

p
��½�1D1c e þ �2D2c e�

¼ i
ffiffiffi
2

p
��ð�1 � i�2ÞD1c e: (42)

We find again that the half of the SUSY at the edge is
broken in the presence of the magnetic flux.

C. Construction of vortices: Ansatz

Next we examine how we can obtain the explicit solu-
tions in our model. For simplicity, we consider a common
gauge coupling constant g and a single constant f ¼ ffiffiffi

	
p

.
In other words, we consider the case that G ¼ gI and F ¼
fI (where I is the identity matrix). Although we cannot tell
about most general solutions, we take the ansatz for a
simple, physically admissible type of vortex solutions
[19]. We impose the axially symmetric ansatz

�e ¼ �eðrÞeine’; (43)

Av
’ ¼ PvðrÞ; (44)

on Bogomolnyi equations. Here we express the radial

coordinate as r and the azimuthal angle as ’. The integers
ne are winding numbers. The detailed calculation is shown
in the Appendix D. We get the following Bogomolnyi
equations:

�0
e

�e

¼ �ðgðETPÞ � nÞe
r

; (45)

P0
v

r
¼ �g

X
e2E

ðEÞveð�2 � f2Þe; (46)

where the prime (0) denotes the derivative with respect to r.
These equations are the special case of the Bogomolnyi
equations.

D. Examples of vortex solutions

We show some concrete examples for the vortex solution
in our model. To have the vortex solution we restrict the
graph structure, or equivalently, the incident matrix E.
Here we also consider configurations with the least wind-
ing numbers for simplicity and for feasibility in physical
systems.
We consider here the cases with the single-centered

exact solution similar to the normal vortex. The asymptotic
behavior of general cases can be obtained and is shown in
Appendix E.

1. Example 1: P2

The simplest case has two vertices and an edge. This
graph is P2 graph. We show the graph in Fig. 5.
In this case, the incidence matrix and its transposed

matrix are

ðEÞve ¼ 1
�1

� �
; ðETÞev ¼ 1 �1

� 	
: (47)

Then considering the Bogomolnyi equations

P0
v

r
¼ �g

X
e2E

ðEÞveð�2 � f2Þe; (48)

�0
e

�e

¼ �ðgETP� nÞe
r

; (49)

the first one becomes

P0
1

r
¼ �gð�2 � f2Þ; (50)

P0
2

r
¼ þgð�2 � f2Þ: (51)

FIG. 5. P2: the path graph with two vertices.
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Therefore it is necessary to find a set of unique equations
that we suppose the relation P1ðrÞ ¼ �P2ðrÞ. On the other
hand, in the second equation we notice

X
v

ðETÞevPv ¼ 1 �1
� 	 1

�1

� �
P1 ¼ 2P1: (52)

So, we get the following equations:

P0
1

r
¼ �gð�2 � f2Þ; (53)

�0

�
¼ � 2gP1 � n

r
: (54)

These equations can be reduced to

~P0

x
¼ �ð~�2 � 1Þ; (55)

~�0

~�
¼ � ~P� n

x
; (56)

if we rescale the variables so that ~PðxÞ ¼ 2gP1ðrÞ, ~�ðxÞ ¼
�ðrÞ=f, x ¼ ffiffiffi

2
p

gfr, n ¼ 1 and the prime (0) is the deriva-
tive with respect to x. These equations are precisely the
same as the normal Bogomolnyi equations. The normal
Bogomolnyi equations are shown in Appendix C.

The energy per unit length of the straight string is given
by 2
f2 in this case. Generalization to the case with the
winding number n > 1 is trivial.

2. Example 2: P3

We consider the P3 graph, the three-vertex path graph. In
this graph, we consider two patterns of the direction of the
edges. We show these in Fig. 6.

The condition to reduce the Bogomolnyi equations in
these cases to the normal ones (55) and (56) with �1 ¼ �2

and n1 ¼ n2 ¼ 1 are P1ðrÞ ¼ �P3ðrÞ and P2ðrÞ � 0 in the
case with PA

3 while P1ðrÞ ¼ P3ðrÞ and P2ðrÞ ¼ �2P1ðrÞ in
the case with PB

3 . The necessary scaling is that ~PðxÞ ¼
gP1ðrÞ and x ¼ gfr in the case with PA

3 while ~PðxÞ ¼
3gP1ðrÞ and x ¼ ffiffiffi

3
p

gfr in the case with PB
3 . The energy

density takes the same value 2
f2ð1þ 1Þ ¼ 4
f2 in both
cases.

3. Example 3: K1;N

We consider another tree graph, the star graph K1;N . In

the star graph, vNþ1 is adjacent to all the other vertices and

no extra edge exists. We recognize two types of edges. One
is the edge whose origin is vNþ1; another edge is one
whose terminus is vNþ1. We call the edge of the first
type eo; the one of the second type is et.
We heuristically find the cases that we get the vortex

solution similar to the normal one with �1 ¼ �2 ¼ 	 	 	 ¼
�N ¼ �Nþ1: Here two cases are shown where the number
of edges belonging to two types is

KA
1;N: #eo ¼ #et ¼ N=2; (57)

KB
1;N: #eo ¼ N and #et ¼ 0; or vice versa; (58)

where, of course, N is considered to be even in the case A.
The graphs of two types are shown in Fig. 7.
The incidence matrix of KA

1;N (where N is even) is the

(N þ 1, N) matrix given by

ðEAÞve ¼

�1 0 0 	 	 	 0
0 1 0 	 	 	 0
0 0 �1 	 	 	 0
..
. ..

. ..
. . .

. ..
.

0 0 0 	 	 	 1
1 �1 1 	 	 	 �1

0
BBBBBBBB@

1
CCCCCCCCA
; (59)

while the incidence matrix of KB
1;N is

ðEBÞve ¼

�1 0 0 	 	 	 0
0 �1 0 	 	 	 0
0 0 �1 	 	 	 0
..
. ..

. ..
. . .

. ..
.

0 0 0 	 	 	 �1
1 1 1 	 	 	 1

0
BBBBBBBB@

1
CCCCCCCCA
: (60)

We found these patterns by extending the analysis of
getting the vortex solution in the case with P3 graph shown
previously, because K1;2 is the same as P3.

In the first case (57), we have vortex solutions if
P2‘�1ðrÞ ¼ �P2mðrÞ (‘,m are positive integers and ‘,m 

N
2 ) and PNþ1 � 0. In the second case (58), we have the

solutions if P1ðrÞ ¼ P2ðrÞ ¼ 	 	 	 ¼ PNðrÞ and PNþ1ðrÞ ¼
�NP1ðrÞ. In both cases the energy density is found to be
2
Nf2 if all the winding numbers are unity.

4. Inclusion of no winding scalar edge

In the previous two examples, all Higgs scalars have
nonzero winding number. Conversely we consider that
there is an edge where the assigned scalar has no winding

FIG. 6. The graph PA
3 has edges of the same direction while PB

3 has edges of the different direction.
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number; thus �e � f at the edge. We use the dashed line to
express such an edge, as in Fig. 8.

For a constant �e, PoðeÞðrÞ � PtðeÞðrÞ holds everywhere
[20]. Suppose that one has already constructed the vortex
solution in a certain model with a specific graph structure.
Then one might duplicate the solution and the graph. One
may connect the identical vertices of the original and copy
of the graph by the no winding scalar edge. The number of
such connection is arbitrary. This method can be applied to
the case with two different models and solutions, if one
finds the same functional form of PvðrÞ in each model. Of
course more than two vertices can be connected if Pv is
common at all vertices.

5. Example 4: P4

We consider the P4 graph. The graph P4 has two P2 as
subgraphs and is shown in Fig. 9. We do not show the
direction of the edge in this graph. This graph has a left-
right symmetry with respect to the dashed edge. This
symmetry is connected with the winding number of each
vector field. The vector fields at the both ends of the dashed
line must be described by an identical function. For this
reason, we should impose the left-right symmetry to the
direction of edges. In the P4 case, we find two types of the
edge orientation graph for admitting the normal vortex
solutions, shown in Fig. 10 and 11. In the similar way,
we consider the model based on P2‘ with normal vortex
solutions.

6. Example 5: P6

The graph P6 has three P2 as subgraphs. We study the
model based on P6 and their standard solution in the above-
mentioned way.

In addition, P6 has two P3 as subgraphs. Similarly to the
case with P4, we can consider the P6 graph as two sub-
graphs connected by an edge. We exhibit the P6 graph in
Fig. 12. We have the left-right symmetry with respect to the
dashed edge also in this case. We classify four types of the
graph in terms of the direction of the edges as in Fig. 13. In
the similar way, we can consider the P3‘ graph, and asso-
ciated models and solutions.

7. Example 6

We can connect two K1;N graphs by the dashed edge as

in Fig. 14. As this example, we can find the graph structure
admitting the normal vortex solutions.

VI. CONCLUSION AND OUTLOOK

We have generalized DD into GDD and introduced
SUSY to GDD in the Abelian theory. A multi-Abelian-
Higgs model has been studied as a further generalization.
After getting the Bogomolnyi equations, we explicitly
constructed vortex solutions of the normal type. To get
the vortex solution, we restricted the graph structure to the
special cases shown in the previous section. We showed
some examples for the graph which has the normal vortex
solution.
We have left the following aspects of the multi-Abelian-

Higgs models for future work. First, we discussed single-
centered vortex in the present paper. The possibility of
multivortex solution [21] is an important subject to study.
Next, in this paper, we mainly considered tree graphs. If we
take general graph structures as the bases of multi-Abelian-
Higgs models, we have scalar potentials with (many) flat
directions of the lowest energy. The appearance of moduli

FIG. 8. This dashed line means that �e � f on this edge, no
winding scalar edge.

FIG. 9. P4 graph consists of two P2 and an edge.

FIG. 10. P4 graph whose edge direction is left-right symmetric
with respect to the dashed edge. Each of edge direction is
outgoing with respect to the dashed edge.

FIG. 7. The star graphs, KA
1;N and KB

1;N .

FIG. 11. P4 graph. Each of edge direction is incoming with
respect to the dashed edge.
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is the feature of supersymmetric theories and the vortex
solution in such a model is crucial for phenomenological
models [22]. At the same time, the quantum corrections
might become essential. The generalization of the method
in [23] will be useful to investigate the quantum effects
about vortices. Finally, because our model contains several
fields, the possibility of different types of topological
defects, such as rings [24], must be examined.

We considered the Abelian gauge theory in GDD as well
as multi-Higgs models. We are also interested in the non-
Abelian theory because the three-site Higgsless model is
based on the ½SUð2Þ�2 �Uð1Þ gauge theory. While we
considered vortices in the Abelian gauge theory in this
paper, on the other hand there exist monopoles in the
non-Abelian gauge theory. In future work, we wish to
incorporate monopoles, superfields, and GDD into non-
Abelian theory as some toy models for the Higgsless
model.
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APPENDIX A: CONTENTS OF SUPERFIELDS

In this appendix, we collect the superfields and their
component fields. See Ref. [7].
(1) Vector superfield,

Vv ¼ ����
��A�

v þ i�� �� ��v � i �� ����v

þ 1

2
�� �� ��Dv: (A1)

This satisfies

V2
v ¼ � 1

2
�� �� ��Av

�A
�
v ; V3

v ¼ 0: (A2)

(2) Chiral superfield (Stueckelberg superfield),

Se ¼ 1

2
ð�e þ iaeÞ þ ��e þ i��� ��

1

2

� ð@��e þ i@�aeÞ þ ��FSe þ i

2
�� �� ���@��e

þ 1

8
�� �� ��ðh�e þ ihaeÞ; (A3)

Se þ �Se ¼ �e þ ��e þ �� ��e � ��� ��@�ae þ ��FSe

þ �� ��Fy
Se þ

i

2
�� �� ���@��e

þ i

2
�� �� ���@� ��e þ 1

4
�� �� ��h�e: (A4)

FIG. 12. P6 graph, which includes two P3 as subgraphs.

FIG. 13. There are four types of the P6 graph consisting of two P3.

FIG. 14. The graph consisting of two K1;N connected by the
dashed edge.
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(3) Chiral superfield (Higgs superfield),

�e ¼ �e þ
ffiffiffi
2

p
�c e þ i��� ��@��e þ ��F�e

þ iffiffiffi
2

p �� �� ���@�c e þ 1

4
�� �� ��ðh�eÞ: (A5)

APPENDIX B: THE EIGENVALUES OF MATRICES
AB AND BA

Let A be a ðp; qÞ matrix and B be a ðq; pÞ matrix. Then
(pþ q, pþ q) matrices U and V are defined as

U ¼ Ip A
B xIq

� �
; V ¼ xIp �A

0qp Iq

� �
; (B1)

where Ip is the ðp; pÞ identity matrix while 0qp is the ðq; pÞ
matrix all of whose elements are zero.

The products of two matrices are

UV ¼ xIp 0pq
xB xIq � BA

� �
;

VU ¼ xIp � AB 0pq
B xIq

� �
:

(B2)

Because detUV ¼ detVU, the eigenvalues of AB and BA
are equal, except for zero eigenvalues.

APPENDIX C: THE NORMALVORTEX IN
ABELIAN-HIGGS MODEL

The Ginzburg-Landau theory is used as a macroscopic
theory of the superconductivity. That is nonrelativistic
theory, and we know an Abelian-Higgs model as the rela-
tivistic version of the Ginzburg-Landau theory. This model
includes the normal vortex solution. In this paper we dis-
tinguish the vortex solution of the Abelian-Higgs model
from the vortex solutions of our multi-Abelian-Higgs mod-
els, by using the word ‘‘normal.’’

In the Abelian-Higgs model, the Lagrangian density is

L ¼ � 1

4
F��F�� � jD��j2 � 1

2
g2ð�2 � f2Þ2; (C1)

where F�� ¼ @�A� � @�A� is a field strength of the

Abelian gauge field A�, � is a complex scalar field, and

f is its vacuum expectation value h�i ¼ f. D�� is the

covariant derivative of the scalar field

D�� ¼ @��þ igA��; (C2)

where g is the gauge coupling constant to the scalar field�.
To obtain the classical solution in this theory, we impose

the static, axially symmetric ansatz:

A ¼ e’PðrÞ; (C3)

� ¼ �ðrÞein’; (C4)

where the integer n is the winding number. We used the
circular cylindrical coordinates r, ’, and z.
We use the scale conversion x � gfr, ~P � gP, and ~� �

�=f. Therefore the energy density of per unit length of the
z axis becomes

E ¼ 2
f2
Z 1

0
dxx

�
1

2

� ~P0

x
þ ~�2 � 1

�
2 þ

�
~�0 þ ~P� n

x
~�

�
2

� ~P0

x
ð~�2 � 1Þ � 2~�~�0 ~P� n

x

�
; (C5)

where the prime (0) denotes the derivative with respect to x.
Asymptotic values are as follows: ~Pð0Þ ¼ 0, ~Pð1Þ ¼ n,
~�ð0Þ ¼ 0, and ~�ð1Þ ¼ 1. We can write the following in-
equality for the energy:

E � 2
nf2
Z 1

0
ð~�2Þ0dx ¼ 2
nf2: (C6)

This lower bound on the energy is the Bogomolnyi bound
and it is saturated when ~� and ~P satisfy the following
equations:

~P0

x
¼ �ð~�2 � 1Þ; (C7)

~�0

~�
¼ � ~P� n

x
: (C8)

These equations are the Bogomolnyi equations.

APPENDIX D: ACTION AND EQUATION OF
MOTION WITH VORTEX ANSATZ

In this appendix, we show the details about the
Bogomolnyi equations for the vortex configuration. We
take the axially symmetric ansatz

�e ¼ �eðrÞeine’; Av
’ ¼ PvðrÞ: (D1)

Then we find

D r�e ¼ �0
ee

ine’;

D’�e ¼ iðne þ ðgPÞtðeÞ � ðgPÞoðeÞÞ�ee
ine’;

(D2)

where the prime denotes d
dr , the derivative with respect to r,

and ðgPÞv ¼ gvPv. Thus the kinetic term of the scalar
reads

jDi�ej2 ¼ ð�0
eÞ2 þ

ðne þ ðgPÞtðeÞ � ðgPÞoðeÞÞ2
r2

�2
e; (D3)

while the Maxwell term becomes

1

4
Fij
v Fv

ij ¼
1

2

ðP0
vÞ2
r2

: (D4)

The total action can be rewritten as
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E ¼ 2

Z 1

0
drr

�
1

2

X
v2V

ðP0
vÞ2
r2

þ X
e2E

�
ð�0

eÞ2

þ ððETGPÞe � neÞ2
r2

�2
e

�
þ 1

2

X
e;e02E

ð�2
e � 	eÞ

� ðETG2EÞee0 ð�2
e0 � 	e0 Þ

�
; (D5)

and this is no other than the energy density per unit length
in the present static case.

Varying this, we obtain the following equations of mo-
tion:

ðr�0
eÞ0
r

¼ ððETGPÞe � neÞ2
r2

�e

þ X
e;e02E

�eðETG2EÞee0 ð�2
e0 � 	e0 Þ; (D6)

�
P0
v

r

�0 ¼ 2
X
e2E

ððETGPÞe � neÞ
r2

�2
eðETGÞev: (D7)

These second-order simultaneous equations can be re-
duced to the first-order Bogomolnyi equations

�0
e ¼ �ðETGPÞe � ne

r
�e; (D8)

P0
v

r
¼ �X

e2E

ð�2
e � 	eÞðETGÞev: (D9)

APPENDIX E: ASYMPTOTIC PROFILE OF THE
VORTEX

We investigate the asymptotic behavior of the solution
of (D8) and (D9) in this appendix. To this purpose, first we
introduce new variables pvðrÞ and ReðrÞ:

PvðrÞ ¼ av � pvðrÞ; �e ¼ fe � ReðrÞ; (E1)

where the constant av satisfies

ne ¼ ðETGaÞe: (E2)

Next we prepare p-dimensional eigenvectors xðaÞ (a ¼
1; . . . ; p� 1) for the ðmassÞ2 mass matrix for vector fields
satisfying

2ðGEFÞðGEFÞTxðaÞ ¼ ðmðaÞÞ2xðaÞ; for nonzero modes

(E3)

and q-dimensional eigenvectors XðaÞ for the ðmassÞ2 mass
matrix for scalar fields satisfying

2ðGEFÞTðGEFÞXðaÞ ¼ ðmðaÞÞ2XðaÞ: (E4)

Hereafter we restrict ourselves on the case with tree graphs
treated in the text. Thus q ¼ p� 1. The zero mode sat-
isfies

2ðGEFÞðGEFÞTxð0Þ ¼ 0: (E5)

The relations of two sets of eigenvectors are

XðaÞ ¼
ffiffiffi
2

p

mðaÞ ðGEFÞTxðaÞ; xðaÞ ¼
ffiffiffi
2

p

mðaÞGEFX
ðaÞ; ða� 0Þ

(E6)

and we adopt the normalization convention

xðaÞTxðaÞ ¼ XðaÞTXðaÞ ¼ 1: (E7)

Using the eigensystems, we can expand the variables by
eigenvectors as

pvðrÞ ¼
X
ðaÞ
pðaÞxðaÞv ; ReðrÞ ¼

X
ðaÞ
RðaÞXðaÞ

e : (E8)

Noticing Reð1Þ ¼ 0 and pvð1Þ ¼ 0, the equations of
motion (D6) and (D7) become at the asymptotic region,
r ! 1,

RðaÞ00 þ 1

r
RðaÞ0 � ðmðaÞÞ2RðaÞ ¼ 0; (E9)

pðaÞ00 � 1

r
pðaÞ0 � ðmðaÞÞ2pðaÞ ¼ 0; (E10)

and the Bogomolnyi equations (D8) and (D9) become at
the asymptotic region, r ! 1,

RðaÞ0 ¼ � 1

r

mðaÞffiffiffi
2

p pðaÞ; (E11)

pðaÞ0

r
¼ � ffiffiffi

2
p

mðaÞRðaÞ: (E12)

The solution of the above equations is

RðaÞ ¼ CK0ðmðaÞrÞ; pðaÞ ¼ ffiffiffi
2

p
CrK1ðmðaÞrÞ: (E13)

This result can be derived by using the following formulas
for the modified Bessel function of the second type, such as
K0ðzÞ and K1ðzÞ:

K00
0 ðzÞ þ

1

z
K0

0ðzÞ � K0ðzÞ ¼ 0;

K00
1 ðzÞ þ

1

z
K0

1ðzÞ �
�
1þ 1

z2

�
K1ðzÞ ¼ 0; (E14)

ðzK1ðzÞÞ00 � 1

z
ðzK1ðzÞÞ0 � ðzK1ðzÞÞ ¼ 0; (E15)

K0
0ðzÞ ¼ �K1ðzÞ; ðzK1ðzÞÞ0 ¼ �zK0ðzÞ; (E16)

where the prime (0) means the derivative with respect to z.
More rough estimation can be done with the exponential

function because

K�ðzÞ �
ffiffiffiffiffi



2z

r
e�z; for large z: (E17)
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