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The aim of this paper is to investigate the separability of a spin-1=2 spinor field in a five-dimensional

rotating, charged black hole constructed by Cvetič and Youm in string theory, in the case when three Uð1Þ
charges are set equal. This black hole solution represents a natural generalization of the famous four-

dimensional Kerr-Newman solution to five dimensions with the inclusion of a Chern-Simons term to the

Maxwell equation. It is shown that the usual Dirac equation cannot be separated by variables in this

general spacetime with two independent angular momenta. However if one supplements an additional

counterterm into the usual Dirac operator, then the modified Dirac equation for the spin-1=2 spinor

particles is separable in this rotating, charged Einstein-Maxwell-Chern-Simons black hole background

geometry. A first-order symmetry operator that commutes with the modified Dirac operator has exactly the

same form as that previously found in the uncharged Myers-Perry black hole case. It is expressed in terms

of a rank-three totally antisymmetric tensor and its covariant derivative. This tensor obeys a generalized

Killing-Yano equation and its square is a second-order symmetric Stäckel-Killing tensor admitted by the

five-dimensional rotating, charged black hole spacetime.
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I. INTRODUCTION

Soon after Chandrasekhar [1] showed that the massive
Dirac’s equation can be separated by variables in the Kerr
geometry [2] by using the null tetrad formalism, Page [3]
and Lee [4] demonstrated that the same thing holds true in
the case of a Kerr-Newman black hole [5]. These works
were extended in [6] to the case of a rotating, charged
dyonic black hole background. Carter and McLenaghan [7]
further found that the separability of Dirac’s equation in the
Kerr geometry is related to the fact that the skew-
symmetric tensor admitted by the Kerr metric is a
Killing-Yano tensor of rank-two, and its square is just a
second-order symmetric Stäckel-Killing tensor discovered
by Carter [8]. Specifically speaking, they established the
correspondence between the separation constant appearing
in the separable solutions to the Dirac equation and the
first-order differential operator that commutes with the
Dirac operator. This first-order symmetry operator can be
constructed from the antisymmetric Killing-Yano tensor,
which implies an additional integral of motion that can be
physically associated with angular momentum [7].
Therefore, the separation of Dirac’s equations can be
understood in terms of this first-order differential operator
that characterizes the separation constant appearing in the
separated Dirac equations. The essential property that al-
lows the construction of such a symmetry operator is the
existence of a Killing-Yano tensor in the Kerr spacetime.
Subsequently, the most general symmetry operator com-
muting with the Dirac operator was obviously constructed
[9] in a four-dimensional case. Later, it was shown [10] that
many of the remarkable properties of the Kerr spacetime
are consequences of the existence of the Killing-Yano

tensor, which means that all the symmetries responsible
for the separability of various wave equations are ‘‘deriv-
able’’ from the Killing-Yano tensor.
It is necessary to extend these studies to the case of

rotating black holes in more than four dimensions since
higher-dimensional generalizations (with or without a cos-
mological constant) of the Kerr black hole and their prop-
erties have attracted considerable attention in recent years,
in particular, in the context of string theory, with the
discovery of the anti-de Sitter/conformal-field-theory
(AdS/CFT) correspondence, and with the advent of
brane-world theories. In our previous work [11], we have
investigated the separability of a massive fermion field
equation in the five-dimensional Myers-Perry [12] space-
time with two unequal angular momenta and its relation to
a rank-three Killing-Yano tensor. A first-order symmetry
operator commuting with the Dirac operator has been
constructed by using the rank-three Killing-Yano tensor
whose square is just the rank-two symmetric Stäckel-
Killing tensor. In addition, we have obtained a second-
order symmetry operator that commutes with the scalar
Laplacian operator.
These results have further extended previous studies of

hidden symmetry and separability properties of rotating
vacuum spacetimes, where the whole business of separa-
tion of variables in higher dimensions was initiated by
Frolov and his collaborators [13] (see [14] for a review
and references therein). In particular, they [15] first intro-
duced the concept of a so-called principal conformal
Killing-Yano tensor and showed that starting with this
tensor, a tower of Killing objects can be generated.
Inspired from their remarkable work [15], our construction
of the dual first-order differential symmetry operator from
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the expected Killing-Yano tensors was successfully
achieved, although a general theory for it in any dimen-
sions was already presented in [16].

In another paper [17], we have further studied the rela-
tion between the separability of Dirac’s equation and the
Killing-Yano tensor in the general five-dimensional Kerr-
AdS black holes [18] with two independent angular mo-
menta. It has been shown that the separability of the
massive Klein-Gordon scalar field equation is intimately
connected with the existence of a second-order Stäckel-
Killing tensor admitted by the five-dimensional Kerr-AdS
spacetime. It is further demonstrated that this rank-two
Stäckel-Killing tensor can be constructed from its ‘‘square
root,’’ a rank-three Killing-Yano tensor, which is respon-
sible for the separability of Dirac’s equation. An easy way
to obtain this tensor is that one can start from a potential
one-form to generate a rank-two conformal Killing-Yano
tensor, whose Hodge dual is just the expected Killing-Yano
tensor.

The next step is natural to extend the above analysis to
the case of charged generalizations of the four-dimensional
Kerr-Newman black hole in five dimensions. For this
purpose, one should base upon an analytical solution of
the five-dimensional Kerr-Newman black hole. Un-
fortunately, an exact solution of the rotating, charged
Kerr-Newman black hole in higher dimensions still re-
mains unknown up to now, although the neutrally-charged
generalizations of the Kerr metric to higher dimensions
were obtained [12] many years ago. So far, five-
dimensional rotating charged black holes in pure
Einstein-Maxwell theory have only been studied numeri-
cally [19] and approximately [20]. It is likely that an exact
rotating charged solution does not exist at all in five
dimensions within the pure Einstein-Maxwell systems
though static solutions in higher dimensions have been
known for a long time. Evidence to support this conjecture
is that in the simplest case for D ¼ 5 dimensions, the
Einstein field equation and the Maxwell equation cannot
simultaneously be satisfied [20] within such a pure
Einstein-Maxwell theory.

On the other hand, string theory provides powerful tools
to generate fruitful solutions [21] for rotating charged
black holes in higher dimensions. Motivated by ideas aris-
ing in various models in string theory, supersymmetric
rotating charged black holes were found [22,23] within
minimalD ¼ 5 supergravity theory. The existence of these
solutions is made possible due to the peculiar Chern-
Simons coupling of minimal D ¼ 5 supergravity and the
fact that a self-duality condition is allowed to be imposed
on the exterior derivative of the rotation one-form inD ¼ 5
dimensions. What is more, the inclusion of a Chern-
Simons term makes it easier to solve the field equations
in the minimal supergravity case [24]. Without such an
additional Chern-Simons term to the Maxwell equation, it
is very difficult to achieve an exact rotating charged solu-
tion to pure Einstein-Maxwell systems.

So far, all the exact solutions that have been found to
describe rotating charged black holes in five dimensions
belong to the Einstein-Maxwell-Chern-Simons (EMCS)
theory. Exact nonextremal solutions representing five-
dimensional rotating charged black holes with two equal
angular momenta were also found in AdS spaces [25].
Rotating charged black holes embedded in the Gödel uni-
verse have been constructed quite recently [26] in minimal
D ¼ 5 supergravity.
Recently, an exact solution describing a nonextremal

rotating charged black hole in five-dimensional AdS
spaces was obtained [27] in minimally gauged supergrav-
ity. This solution is characterized by the mass, the electric
charge, the cosmological constant and two unequal angular
momenta, representing the most general charged general-
izations of Kerr-AdS black holes in five dimensions. By
sending the cosmological constant to zero, one obtains a
general nonextremal solution that describes an asymptoti-
cally flat, rotating charged black hole, which can be viewed
as an exact charged generalization of the Kerr-Newman
solution in five dimensions within the framework of mini-
mal D ¼ 5 supergravity theory. This asymptotically flat
metric is included as a special case by setting three Uð1Þ
charges equal in the general three-charge solutions that
were generated by Cvetič and Youm [28] in string theory
more than ten years ago. The apparent relation between
them has been disclosed in Appendix B of Ref. [29]. We
shall call this asymptotically flat solution for shortness the
Cvetič-Youm or EMCS black hole and consider it as the
background metric in this paper. This general solution
includes the famous Breckenridge-Myers-Peet-Vafa
(BMPV) [22] black hole as a special case when two
rotation parameters, the mass parameter and the electric
charge simultaneously satisfy b ¼ �a and M ¼ �Q.
The main purpose of this article is to extend our previous

research [11,17] to deal with the separation of a spin-1=2
spinor field in the five-dimensional rotating, charged
Cvetič-Youm black hole background spacetime [28] with
two independent angular momenta and three equal Uð1Þ
charges. The black hole solution is a natural generalization
of the famous Kerr-Newman solution to five dimensions in
D ¼ 5 minimal supergravity theory. It is shown that the
usual Dirac equation cannot be separated by variables in
this general rotating, charged black hole spacetime with
two independent angular momenta. However, if one sup-
plements an additional counterterm into the usual Dirac
operator, then the modified Dirac equation for the spin-1=2
spinor particles is separable in this Cvetič-Youm black hole
background geometry. A first-order symmetry operator
commuting with the modified Dirac operator has precisely
the same form [11] as that previously found in the un-
charged Myers-Perry black hole case. It is expressed in
terms of a rank-three totally antisymmetric tensor and its
covariant derivative. This tensor obeys a generalized
Killing-Yano equation and its square is a second-order
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symmetric Stäckel-Killing tensor admitted by this general
rotating, charged EMCS black hole spacetime. In addition,
we have studied the separation of variables for a massive
Klein-Gordon equation in this five-dimensional Cvetič-
Youm black hole background spacetime. The symmetry
operator that commutes with the scalar Laplacian operator
is directly constructed from the separated parts of the
solutions and expressed in terms of the rank-two Stäckel-
Killing tensor.

Two pieces of previous work should be mentioned about
the separation of the Dirac equation in higher-dimensional
rotating vacuum spacetimes and in a rotating charged black
hole within minimal D ¼ 5 supergravity. In Ref. [30], the
separability of the Dirac equation in arbitrary dimensional
vacuum black hole spacetimes was published prior to our
work [11,17]. However, the separability of the Dirac equa-
tion and its connection with the Killing-Yano tensors had
not obviously been demonstrated there. What is more, the
authors had not explicitly presented the symmetry operator
that commutes with the Dirac operator, using the Killing-
Yano tensors. On the other hand, the authors of Ref. [31]
had studied the separability of the Hamilton-Jacobi and
Klein-Gordon equations in the D ¼ 5 rotating charged
Kerr-AdS black hole spacetime [27] of minimal gauged
supergravity, and presented the Stäckel-Killing tensors.
However, they were only able to separate the usual Dirac
equation in the case of equal rotation parameters. They
failed to find the ‘‘generalized’’ Killing-Yano tenors (first
given in this paper) and construct the dual symmetry
operator. So, the whole hidden symmetries for the D ¼ 5
EMCS black hole in terms of generalized conformal
Killing-Yano tenors had not been completely revealed in
their work. In the case of equal rotation parameters, their
work can naturally be recovered by ours if one omits the
extra counterterm introduced in our paper. However, even
in this special case, the counterterm still makes an impor-
tant contribution to the theory. Therefore, their work on the
separation of Dirac equation is incomplete in this sense.

The organization of this paper is outlined as follows. In
Sec. II, a simple form for the line element of the five-
dimensional Cvetič-Youm black hole is presented in the
Boyer-Lindquist coordinates, with which we can explicitly
construct the local orthonormal coframe one-forms (pen-
tad) just like the uncharged case [11]. In Sec. III, we focus
on the separation of variables for a massive Klein-Gordon
equation in this background and use the separated solutions
to construct a concise expression for the Stäckel-Killing
tensor and a second-order operator that commutes with the
scalar Laplacian operator. Section IV is devoted to the
separation of variables for a modified Dirac’s equation in
this five-dimensional EMCS black hole geometry. In this
section, we show that the usual massive Dirac equation
cannot be separated into purely radial and purely angular
parts, unless one supplements an additional counterterm
into the usual Dirac equation. With the inclusion of this

new counterterm, the modified Dirac equation for a
spin-1=2 spinor field in this general rotating, charged
EMCS black hole spacetime can be completely decoupled
into purely radial and purely angular parts. In Sec. V, we
shall demonstrate that the separated parts of the modified
Dirac’s equation also allow us to construct a first-order
symmetry operator that commutes with the modified Dirac
operator. This operator has exactly the same form [11] as
that previously found in the uncharged Myers-Perry black
hole case and is explicitly expressed in terms of a rank-
three totally antisymmetric tensor (and its covariant de-
rivative) admitted by the five-dimensional EMCS black
hole spacetime. This fact implies that the inclusion of a
new additional counterterm is reasonable and our modifi-
cation is compatible with our previous results [11,17]. It is
easy to check that this antisymmetric tensor of rank-three
does not satisfy the usual Killing-Yano equation but a
generalized form for it, while the Hodge dual of this tensor
can be generated from a potential one-form that has an
expression similar to the uncharged case [11,17].
Section VI ends with a brief summary of this paper and
the related work. In the Appendix, the affine spin-
connection one-forms are calculated by the first Cartan
structure equation from the exterior differential of the
pentad. The corresponding spinor-connection one-forms,
the curvature two-forms, and various useful tensors are
also given in this pentad formalism.

II. THE CVETI �C-YOUM BLACK HOLE SOLUTION
WITH THREE EQUAL Uð1Þ CHARGES

The five-dimensional rotating, charged black hole met-
ric considered in this paper is a special case of the general
three-charge solutions constructed by Cvetič and Youm
[28] in string theory, within which three Uð1Þ charges are
set equal. After doing that, the solution is greatly simplified
and obeys the complete Einstein-Maxwell-Chern-Simons
equations in D ¼ 5 minimal (ungauged) supergravity the-
ory. The bosonic part of this theory consists of the metric
and a one-form gauge field, which are governed by the
EMCS equations of motion derived from the action

S ¼ 1

16�

Z
d5x

� ffiffiffiffiffiffiffi�g
p ðR� F��F

��Þ

� 2

3
ffiffiffi
3

p ������F��F��A�

�
: (1)

The Einstein equation and the Maxwell-Chern-Simons
equation read

R�� � 1

2
g��R ¼ 2T�� � 2

�
F��F�

� � 1

4
g��F��F

��

�
;

(2)

@�

� ffiffiffiffiffiffiffi�g
p

F�� þ 1ffiffiffi
3

p ������A�F��

�
¼ 0: (3)
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One can include a negative cosmological constant into this
theory so that it becomes the minimal D ¼ 5 gauged
supergravity theory. A general solution that describes a
D ¼ 5 nonextremal rotating, charged black hole with two
independent angular momenta and a negative cosmological
constant has been given in Ref. [27] and various aspects of
rotating charged EMCS black holes have been studied
recently in [31–33]. Sending the cosmological constant
to zero, the metric recovers the Cvetič-Youm black hole
solution in which three Uð1Þ charges are set equal. The
correspondence between these solutions has been con-
firmed in the second appendix of Ref. [29].

The metric and the gauge potential presented below
simultaneously solve the Einstein equation and the
Maxwell-Chern-Simons equation. For our purpose in this
paper, we find that the metric for the D ¼ 5 EMCS black
hole can be diagonalized into a very convenient form in
order to construct a local orthonormal pentad with which
the spinor field equation can be decoupled into purely
radial and purely angular parts. As in Ref. [11], we find
that this line element can be recast into a simple form in
terms of the Boyer-Lindquist coordinates as follows:

ds2 ¼ g��dx
�dx� ¼ �ABe

A � eB

¼ ��r

�
X2 þ �

�r

dr2 þ�d	2

þ ða2 � b2Þ2sin2	cos2	
p2�

Y2 þ
�
ab

rp
ZþQp

r�
X

�
2
;

(4)

and the gauge potential is

A ¼
ffiffiffi
3

p
Q

2�
X; (5)

where

X ¼ dt� asin2	d
� bcos2	dc ;

Y ¼ dt� ðr2 þ a2Þa
a2 � b2

d
� ðr2 þ b2Þb
b2 � a2

dc ;

Z ¼ dt� r2 þ a2

a
sin2	d
� r2 þ b2

b
cos2	dc ;

(6)

and

r2�r ¼ ðr2 þ a2Þðr2 þ b2Þ � 2Mr2 þQ2 þ 2Qab;

� ¼ r2 þ p2; p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2cos2	þ b2sin2	

p
:

(7)

Here the parameters ðM;Q; a; bÞ are related to the mass,
the electric charge, and two independent angular momenta
of the black hole. Our conventions are as follows: Greek
letters �, � run over five-dimensional spacetime coordi-
nate indices ft; r; 	;
; c g, while Latin letters A, B denote
local orthonormal (Lorentzian) frame indices f0; 1; 2; 3; 5g.
�AB ¼ diagð�1; 1; 1; 1; 1Þ is the flat (Lorentzian) metric

tensor. Units are used as G ¼ @ ¼ c ¼ 1 from the
beginning.
An important case with special interest is the supersym-

metric BMPV black hole solution [22]. It is included as a
special case when the black hole becomes extremal, and
the angular velocities at the horizon vanish. Equivalently,
we have b ¼ �a, and M ¼ ��Q, where � ¼ �1. To see
this, we now let b ¼ �a and �2 ¼ r2 þ a2. After some
simplifications we get

ds2 ¼ � V

�2 � a2
ðdt� a�3Þ2 þ �2

V
d�2 þ �2d	2

þ �2sin2	cos2	ðd
� �dc Þ2

þ 1

�2 � a2

�
adt� �2�3 þ �Qa

�2
ðdt� a�3Þ

�
2
; (8)

A ¼
ffiffiffi
3

p
Q

2�2
ðdt� a�3Þ; (9)

where

V ¼ �2 � 2MþQ2 þ 2ðMþ �QÞa2
�2

;

�3 ¼ sin2	d
þ �cos2	dc :

(10)

Further adopting the Euler angle coordinates, the above
line element and the gauge potential can be recast into the
general ansatz for the metric and potential given in [26].
The explicit solution is given there by sending the Gödel
parameter to zero.
It is known that a supersymmetric black hole must be an

extremal one, but the converse is not true in general [34].
The extremal limit isM2 �Q2 ¼ 2ðMþ �QÞa2. When the
condition Mþ �Q ¼ 0 holds, the angular velocities at the
degenerate horizon �2

e ¼ M vanishes. It is easy to show
that the only extremal solution with regular horizon and
vanishing angular velocities takes place under the condi-
tions b ¼ �a andM ¼ ��Q, namely, the BMPV solution.
On the other hand, it has already been proven in [35] that
the BMPV solution is the only asymptotically flat, super-
symmetric, rotating charged black hole with a regular,
finite size horizon and finite entropy. It is reasonable to
infer that the Cvetič-Youm with three equal Uð1Þ charges
must also be unique. Recently, the uniqueness aspect of
rotating charged black holes has been discussed [33,36] in
five-dimensional minimal gauged supergravity. This fact
implies that we might have little hope in finding an exact
rotating charged black hole solution of the pure Einstein-
Maxwell system in five dimensions, although many people
think such a kind of solution should exist in higher dimen-
sions and may be very complicated to construct
analytically.
Our interest in this paper is the general nonextremal case

with two unequal rotation parameters. The outer event
horizon is determined by the largest root of �rþ ¼ 0.
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The Hawking temperature T ¼ 
=ð2�Þ and the
Bekenstein-Hawking entropy S ¼ A=4 with respect to
this horizon can be easily computed as

T ¼ r4þ � ðQþ abÞ2
2�rþ½ðr2þ þ a2Þðr2þ þ b2Þ þQab� ;

S ¼ �2 ðr2þ þ a2Þðr2þ þ b2Þ þQab

2rþ
;

(11)

while the angular velocities and the electrostatic potential
are measured relative to the observer at infinity as

�a ¼ aðr2þ þ b2Þ þQb

ðr2þ þ a2Þðr2þ þ b2Þ þQab
;

�b ¼ bðr2þ þ a2Þ þQa

ðr2þ þ a2Þðr2þ þ b2Þ þQab
;

� ¼
ffiffiffi
3

p
Qr2þ=2

ðr2þ þ a2Þðr2þ þ b2Þ þQab
:

(12)

The physical mass, two angular momenta, and the elec-
tric charge are given by

M ¼ 3�

4
M; Ja ¼ �

4
ð2MaþQbÞ;

Jb ¼ �

4
ð2MbþQaÞ; Q ¼

ffiffiffi
3

p
�

2
Q;

(13)

which obey the closed forms for the first law of black hole
thermodynamics

2

3
M ¼ TSþ�aJa þ�bJb þ 2

3
�Q; (14)

dM ¼ TdSþ�adJa þ�bdJb þ�dQ: (15)

In practice, it is much more efficient to use p rather than
	 itself as the appropriate angle coordinate. What is more,
the radial part and the angular part can be presented in a
symmetric manner. In what follows, we shall adopt p as the
convenient angle variable throughout this article. In doing
so, the five-dimensional Cvetič-Youm black hole metric
can be rewritten as

ds2 ¼ ��r

�
X2 þ �

�r

dr2 þ �

�p

dp2 þ �p

�
Y2

þ
�
ab

rp
ZþQp

r�
X

�
2
; (16)

where

�p ¼ �ðp2 � a2Þðp2 � b2Þ=p2; (17)

and

X ¼ dt� ðp2 � a2Þa
b2 � a2

d
� ðp2 � b2Þb
a2 � b2

dc ;

Y ¼ dtþ ðr2 þ a2Þa
b2 � a2

d
þ ðr2 þ b2Þb
a2 � b2

dc ;

Z ¼ dt� ðr2 þ a2Þðp2 � a2Þ
ðb2 � a2Þa d


� ðr2 þ b2Þðp2 � b2Þ
ða2 � b2Þb dc :

(18)

Completing the following coordinate transformations:

t ¼ �þ ða2 þ b2Þuþ a2b2v; 
 ¼ aðuþ b2vÞ;
c ¼ bðuþ a2vÞ; (19)

we get

X ¼ d�þ p2du; Y ¼ d�� r2du;

Z ¼ d�þ ðp2 � r2Þdu� r2p2dv:
(20)

The line element (16) is also applicable to the general
solution of D ¼ 5 rotating charged Kerr-AdS black holes
found in [27]. The similar metric form was also adopted in
[37] recently. Soon after the discovery of the solution
constructed in [27], the above elegant expressions for these
metrics had already been obtained by the present author for
the purpose of considering the separation of the massive
Dirac equation in these background spacetimes. However,
a satisfactory answer to the problem was achieved a little
more than one year ago.
The Cvetič-Youm black hole metric (4) possesses three

Killing vectors (@t, @
, and @c ). In addition, it also admits

a rank-two symmetric Stäckel-Killing tensor, which can be
written as the square of a rank-three antisymmetric tensor
that obeys a generalized Killing-Yano equation. In this
paper, we will show that the existence of the Stäckel-
Killing tensor ensures the separation of variables in a
massive Klein-Gordon scalar field equation, and the sepa-
rability of a modified Dirac’s equation in this spacetime
background is also closely associated with the existence of
a generalized Killing-Yano tensor of rank-three.
In five dimensions, there exist two different schemes

[38,39] for the algebra classification of Weyl curvature
tensors. According to the Weyl spinor classification [38],
the Myers-Perry and Kerr-AdS black holes [12,18] are of
Petrov type 22, while the BMPV solution is of Petrov type
22. In the Weyl tensor classification scheme [39], the
former uncharged vacuum solutions are of type D, and
the latter supersymmetric BMPV black hole is of type Ii.
It is anticipated that the general spacetime metric (4) is of
Petrov type 22 (or Ii), like its supersymmetric charged
version. This spacetime possesses a pair of real repeated
principal null vectors fl;ng, a pair of complex repeated
principal null vectors fm; �mg, and one real, spatial-like unit
vector k. They can be constructed to be of Kinnersley-type
as follows:
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l �@� ¼ 1

r2�r

½ðr2 þ a2Þðr2 þ b2Þ@t þ ðr2 þ b2Þa@
 þ ðr2 þ a2Þb@c þQðab@t þ b@
 þ a@c Þ� þ @r;

n�@� ¼ 1

2r2�
½ðr2 þ a2Þðr2 þ b2Þ@t þ ðr2 þ b2Þa@
 þ ðr2 þ a2Þb@c þQðab@t þ b@
 þ a@c Þ� � �r

2�
@r;

m�@� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�p=2

q
rþ ip

�
@p þ i

ðp2 � a2Þðp2 � b2Þ
p2�p

�
@t � a

p2 � a2
@
 � b

p2 � b2
@c

��
;

�m�@� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�p=2

q
r� ip

�
@p � i

ðp2 � a2Þðp2 � b2Þ
p2�p

�
@t � a

p2 � a2
@
 � b

p2 � b2
@c

��
;

k�@� ¼ 1

rp
ðab@t þ b@
 þ a@c Þ:

(21)

These vectors satisfy the following orthogonal relations

l�n� ¼ �1; m� �m� ¼ 1; k�k� ¼ 1; (22)

and all others are zero. In terms of these vectors, the metric
for the Cvetič-Youm black hole (4) can be put into a
seminull pentad formalism (2�21 formalism [11,17]) as
follows:

ds2 ¼ �l � n� n � lþm � �mþ �m �mþ k � k:

(23)

III. STÄCKEL-KILLING TENSOR AND SECOND-
ORDER SYMMETRY OPERATOR FROM THE
SEPARATED KLEIN-GORDON EQUATION

In this section, the massive Klein-Gordon scalar field
equation is shown to be separable in the five-dimensional
Cvetič-Youm metric. From the separated solution of the

radial and angular parts, we can construct a second-order
symmetry operator that commutes with the scalar
Laplacian operator. We show that a second-order, symmet-
ric, Stäckel-Killing tensor has a concise form in the local
Lorentzian pentad, which can be easily written as the
square of a rank-three generalized Killing-Yano tensor
given in Sec. V.
To begin with, let us consider a massive Klein-Gordon

scalar field equation

ðh��2
0Þ� ¼ 1ffiffiffiffiffiffiffi�g

p @�ð ffiffiffiffiffiffiffi�g
p

g��@��Þ ��2
0� ¼ 0;

(24)

where �0 is the rest mass of the scalar particle.
The metric determinant for this spacetime is

ffiffiffiffiffiffiffi�g
p ¼

rp�=ða2 � b2Þ, and the contrainvariant metric tensor can
be read accordingly from

g��@�@� ¼ �AB@A � @B

¼ � 1

r4�r�
½ðr2 þ a2Þðr2 þ b2Þ@t þ ðr2 þ b2Þa@
 þ ðr2 þ a2Þb@c þQðab@t þ b@
 þ a@c Þ�2 þ �r

�
@2r

þ �p

�
@2p þ ðp2 � a2Þ2ðp2 � b2Þ2

p4�p�

�
@t � a

p2 � a2
@
 � b

p2 � b2
@c

�
2 þ 1

r2p2
ðab@t þ b@
 þ a@c Þ2: (25)

The massive scalar field equation in the background spacetime metric (4) can be explicitly written as�
� 1

r4�r�

�
ðr2þa2Þðr2þb2Þ@tþðr2þb2Þa@
þðr2þa2Þb@c þQðab@tþb@
þa@c Þ

�
2þ 1

r�
@rðr�r@rÞ

þ 1

p�
@pðp�p@pÞþ ðp2�a2Þ2ðp2�b2Þ2

p4�p�

�
@t� a

p2�a2
@
� b

p2�b2
@c

�
2þ 1

r2p2
ðab@tþb@
þa@c Þ2��2

0

�
�¼ 0:

(26)

Adopting the ansatz of separation of variables � ¼ RðrÞSðpÞeiðm
þkc�!tÞ, we can separate it into a radial part and an
angular part,
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1

r
@rðr�r@rRÞ þ

�
1

r4�r

½ðr2 þ a2Þðr2 þ b2Þ!� ðr2 þ b2Þma� ðr2 þ a2ÞkbþQðab!�mb� kaÞ�2

� 1

r2
ðab!�mb� kaÞ2 ��2

0r
2 � �2

0

�
RðrÞ ¼ 0; (27)

1

p
@pðp�p@pSÞ �

�ðp2 � a2Þ2ðp2 � b2Þ2
p4�p

�
!þ ma

p2 � a2
þ kb

p2 � b2

�
2 þ 1

p2
ðab!�mb� kaÞ2 þ�2

0p
2 � �2

0

�
SðpÞ ¼ 0:

(28)

Now from the separated parts (27) and (28), one can construct a new dual equation as follows:�
� p2

r4�r�

�
ðr2 þ a2Þðr2 þ b2Þ@t þ ðr2 þ b2Þa@
 þ ðr2 þ a2Þb@c þQðab@t þ b@
 þ a@c Þ�2 þ p2

r�
@rðr�r@rÞ

� r2

p�
@pðp�p@pÞ � r2

ðp2 � a2Þ2ðp2 � b2Þ2
p4�p�

�
@t � a

p2 � a2
@
 � b

p2 � b2
@c

�
2

þ p2 � r2

r2p2
ðab@t þ b@
 þ a@c Þ2 � �2

0

�
� ¼ 0; (29)

from which we can extract a second-order symmetric tensor—the so-called Stäckel-Killing tensor

K��@�@� ¼ �p2 1

r4�r�
½ðr2 þ a2Þðr2 þ b2Þ@t þ ðr2 þ b2Þa@
 þ ðr2 þ a2Þb@c þQðab@t þ b@
 þ a@c Þ�2 þ p2 �r

�
@2r

� r2
�p

�
@2p � r2

ðp2 � a2Þ2ðp2 � b2Þ2
p4�p�

�
@t � a

p2 � a2
@
 � b

p2 � b2
@c

�
2 þ p2 � r2

r2p2
ðab@t þ b@
 þ a@c Þ2:

(30)

This symmetric tensor K�� ¼ K�� obeys the Killing equa-
tion

K��;� þ K��;� þ K��;� ¼ 0: (31)

In the local Lorentzian coframe given below in Eq. (38), it
has a simple, diagonal form

KAB ¼ diagð�p2; p2;�r2;�r2; p2 � r2Þ; (32)

similar to that found in the uncharged case [11].
Using the Stäckel-Killing tensor, the above dual equa-

tion can be written in a coordinate-independent form

ðK� �2
0Þ� ¼ 1ffiffiffiffiffiffiffi�g

p @�ð ffiffiffiffiffiffiffi�g
p

K��@��Þ � �2
0� ¼ 0:

(33)

Clearly, the symmetry operator K is expressed in terms of
the Stäckel-Killing tensor and commutes with the scalar
Laplacian operator h. Expanding the commutator
½K;h� ¼ 0 yields the Killing Eq. (31) and the integrability
condition for the Stäckel-Killing tensor.

IV. SEPARABILITY OF THE MODIFIED DIRAC
FIELD EQUATION IN A FIVE-DIMENSIONAL

CVETI �C-YOUM BLACK HOLE

In Ref. [11], the usual Dirac equation for spin-1=2
fermions in the general Myers-Perry black hole geometry
has been decoupled into purely radial and purely angular

parts by using the orthonormal fünfbein (pentad) formal-
ism. In this section, we shall extend that work to the case of
a rotating, charged Cvetič-Youm black hole. To do this, we
will cope with the spin-1=2 spinor field equation within a
local orthonormal pentad formalism and show that the
modified Dirac equation is separable by variables in the
D ¼ 5 Cvetič-Youm black hole geometry.
In five-dimensional curved background spacetime, the

Dirac equation for the spin-1=2 spinor field is

ðHD þ�eÞ� ¼ ½�AeA
�ð@� þ ��Þ þ�e�� ¼ 0; (34)

where � is a four-component Dirac spinor, �e is the rest
mass of the electron, eA

� is the fünfbein (pentad), its
inverse eA� is defined by g�� ¼ �ABe

A
�e

B
�, �� is the

spinor connection, and �A’s are the five-dimensional
gamma matrices obeying the anticommutation relations
(Clifford algebra)

f�A; �Bg � �A�B þ �B�A ¼ 2�AB: (35)

It is convenient to choose the following explicit represen-
tations for the gamma matrices:

�0 ¼ i�1 � ll; �1 ¼ ��2 � �3;

�2 ¼ ��2 � �1; �3 ¼ ��2 � �2;

�5 ¼ �3 � ll ¼ �i�0�1�2�3;

(36)
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where �i’s are the Pauli matrices, and I2 is a 2� 2 identity
matrix, respectively.

In the fünfbein formalism, the Dirac field Eq. (34) can be
rewritten in the local Lorentzian frame as [11,17]

ðHD þ�eÞ� ¼ ½�Að@A þ �AÞ þ�e�� ¼ 0; (37)

where @A ¼ eA
�@� is the local partial differential operator

and �A ¼ eA
��� is the component of the spinor connec-

tion projected in the local Lorentzian frame. Therefore, in
order to get the explicit expression of Dirac’s equation, one
needs to find @A and �A first. Once the pentad coframe one-
forms eA ¼ eA�dx

� have been concretely chosen, the local

differential operator @A ¼ eA
�@� can be determined via

the orthogonal relations: eA
�eB� ¼ �B

A and eA
�eA� ¼ �

�
� .

The new form of the five-dimensional Cvetič-Youm
metric (4) admits the following local Lorentzian basis
one-forms (pentad) eA orthonormal with respect to �AB,

e0 ¼
ffiffiffiffiffiffi
�r

�

s
X; e1 ¼

ffiffiffiffiffiffi
�

�r

s
dr; e2 ¼

ffiffiffiffiffiffiffi
�

�p

s
dp;

e3 ¼
ffiffiffiffiffiffiffi
�p

�

s
Y; e5 ¼ �

�
ab

rp
ZþQp

r�
X

�
;

(38)

from which we can easily get the dual orthonormal basis
one-vectors @A as follows:

@0 ¼ 1

r2
ffiffiffiffiffiffiffiffiffiffi
�r�

p ½ðr2 þ a2Þðr2 þ b2Þ@t þ ðr2 þ b2Þa@
 þ ðr2 þ a2Þb@c þQðab@t þ b@
 þ a@c Þ�; @1 ¼
ffiffiffiffiffiffi
�r

�

s
@r;

@2 ¼
ffiffiffiffiffiffiffi
�p

�

s
@p; @3 ¼ ðp2 � a2Þðp2 � b2Þ

p2
ffiffiffiffiffiffiffiffiffiffi
�p�

q �
@t � a

p2 � a2
@
 � b

p2 � b2
@c

�
; @5 ¼ 1

rp
ðab@t þ b@
 þ a@c Þ:

(39)

Therefore, the spinor differential operator is

�A@A ¼ �0 1

r2
ffiffiffiffiffiffiffiffiffiffi
�r�

p ½ðr2 þ a2Þðr2 þ b2Þ@t þ ðr2 þ b2Þa@
 þ ðr2 þ a2Þb@c þQðab@t þ b@
 þ a@c Þ� þ �1

ffiffiffiffiffiffi
�r

�

s
@r

þ �2

ffiffiffiffiffiffiffi
�p

�

s
@p þ �3 ðp2 � a2Þðp2 � b2Þ

p2
ffiffiffiffiffiffiffiffiffiffi
�p�

q �
@t � a

p2 � a2
@
 � b

p2 � b2
@c

�
þ �5 1

rp
ðab@t þ b@
 þ a@c Þ: (40)

The next step is to compute the component �A of the
spinor connection. In order to derive the spinor connection
one-forms � ¼ ��dx

� � �Ae
A, one can first compute the

spin-connection one-forms !AB ¼ !AB�dx
� � �ABCe

C

in the orthonormal pentad coframe, which can be deter-
mined from Cartan’s first structure equation and the skew-
symmetric condition

deA þ!A
B ^ eB ¼ 0;

!AB ¼ �AC!
C
B ¼ �!BA:

(41)

One can utilize �� ¼ ð1=8Þ½�A; �B�!AB� ¼ ð1=4Þ�
�A�B!AB� to construct � from !AB,

� ¼ 1

8
½�A; �B�!AB ¼ 1

4
�A�B!AB ¼ 1

4
�A�B�ABCe

C;

(42)

from which �A ¼ ð1=4Þ�B�C�BCA can be read out. The
explicit expressions for !A

B and �A are displayed in the
Appendix.

For our final purpose, we have to get the following
expression for �A�A subject to the Cvetič-Youm metric
(4),

�A�A ¼ 1

4
�A�B�C�BCA

¼ �1

ffiffiffiffiffiffi
�r

�

s �
�0

r

4�r

þ 1

2r
þ r� ip�5

2�

�
þ �2

ffiffiffiffiffiffiffi
�p

�

s �
�0

p

4�p

þ 1

2p
þ pþ ir�5

2�

�
þ

�
Qþ ab

2r2�
þ ab

2p2�

�

� i�0�1ðrþ ip�5Þ � Q

2�2
ðir�0�1 þ p�0�1�5Þ;

(43)

where a prime denotes the partial differential with respect
to the coordinates r or p.
One main result of this paper is to point out that the

existence of last term in the expression of �A�A spoils the
separability of the usual Dirac equation. However, this
unexpected term can be cancelled by including a new
counterterm:

1

12
ffiffiffi
3

p �A�B�C ~FABC ¼ Q

2�2
ðp�0�1 þ r�2�3Þ�5

� i

4
ffiffiffi
3

p �A�BFAB: (44)
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With this additional counterterm supplemented into the
ordinary covariant spinor differential operator HD ¼
�Að@A þ �AÞ, the modified Dirac equation for the
spin-1=2 spinor field can be satisfactorily decoupled in
the five-dimensional rotating charged background space-
time considered in this paper. What is more, as we will see
in the next section, the dual operator commuting with this
modified Dirac operator has precisely the same form as the
previous one [11] found in the uncharged Myers-Perry
black hole case. That means, the minor measure to remedy
the separability of the usual Dirac equation in this back-
ground metric is to supplement an additional counterterm
into it. Thus, it is reasonable to believe that our treatment is
on the right course. Following the present work, the authors
of Ref. [40] recently proposed to interpret the Hodge dual
three-form of the Maxwell field strength two-form as a
torsion tensor. As a result of this ‘‘formal’’ geometric
identification, the modification of the Dirac operator is
quite natural from the viewpoint of this generalized
‘‘torsion.’’

At this stage, a few comments are in order. Frankly
speaking, our initial aim of adding an extra counterterm
to the usual Dirac equation is to find out how we can
achieve the separability of variables in the spinor field
equation. However, this modification is not ‘‘freely’’
made. It is based upon the following considerations:
(1) Gauge invariance and general covariance should be
kept in the modified spinor field equation; (2) The modified
equation should naturally reduced to the uncharged case;
(3) The dual first-order differential operator should have
the same form as that in the uncharged case. In other
words, the pentad components of the Killing-Yano tensor
should have the same expressions as those in the uncharged
case. The previous definition of the Killing-Yano tensor
should not be changed or only a minor modification is
needed; (4) Inclusion of the additional counterterm should

be explained on the basis of supersymmetry. However, to
the best of our knowledge, this issue has not been ad-
dressed in the existing literature. Besides, as mentioned
above, the inclusion of this additional counterterm can be
geometrically understood [40] as a natural consequence if
one identifies the dual Maxwell three-form with a gener-
alized ‘‘torsion’’ tensor.
Another important issue needed to be pointed out is that

the separability of the Dirac equation in a stationary space-
time is coordinate (tetrad)-dependent. Whether or not the
Dirac equation is separable is determined at least by
(i) choosing an appropriate tetrad; and (ii) taking a suitable
representation for the gamma matrices. According to our
previous experience, the choice of a suitable tetrad is very
crucial for this purpose. In this paper, the success of the
separation by variables for the modified Dirac equation
relies heavily on the fact that we have found a most
convenient, orthonormal pentad system (38), since the
gamma matrices are easily chosen. Other pentad systems
can be considered by taking the Lorentzian (fünfbein)
transformations of this orthonormal pentad system, but in
the meanwhile one has to make the corresponding trans-
formations on the gamma matrices and Dirac spinor com-
ponents. Apart from these, it is not easy and impossible to
find some different coordinates or choose a different pen-
tad that one can use to completely separate the usual Dirac
equation. In the next section, we will demonstrate that it is
the modified Dirac operator not the usual one that can
commute with the symmetry operator Hf. This indicates

that the modified Dirac equation is separable, while the
usual Dirac equation is not, in the general case with two
unequal rotation parameters.
Combining Eqs. (40) and (43) with the counterterm (44),

we find that the modified Dirac’s covariant differential
operator in the local Lorentzian frame is

~HD ¼ �Að@A þ �AÞ þ 1

12
ffiffiffi
3

p �A�B�C ~FABC

¼ �0 1

r2
ffiffiffiffiffiffiffiffiffiffi
�r�

p ½ðr2 þ a2Þðr2 þ b2Þ@t þ ðr2 þ b2Þa@
 þ ðr2 þ a2Þb@c þQðab@t þ b@
 þ a@c Þ�

þ �1

ffiffiffiffiffiffi
�r

�

s �
@r þ �0

r

4�r

þ 1

2r
þ r� ip�5

2�

�
þ �2

ffiffiffiffiffiffiffi
�p

�

s �
@p þ

�0
p

4�p

þ 1

2p
þ pþ ir�5

2�

�
þ �3 ðp2 � a2Þðp2 � b2Þ

p2
ffiffiffiffiffiffiffiffiffiffi
�p�

q
�

�
@t � a

p2 � a2
@
 � b

p2 � b2
@c

�
þ �5 1

rp
ðab@t þ b@
 þ a@c Þ þ

�
Qþ ab

2r2�
þ ab

2p2�

�
i�0�1ðrþ ip�5Þ: (45)

With the above preparation in hand, we are now in a position to decouple the modified Dirac equation

ð~HD þ�eÞ� ¼ ½�Að@A þ �AÞ þ 1

12
ffiffiffi
3

p �A�B�C ~FABC þ�e�� ¼ 0: (46)

Substituting Eq. (45) into Eq. (46), the modified Dirac equation in the five-dimensional Cvetič-Youm metric reads
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�
�0 1

r2
ffiffiffiffiffiffiffiffiffiffi
�r�

p ½ðr2þa2Þðr2þb2Þ@tþðr2þb2Þa@
þðr2þa2Þb@c þQðab@tþb@
þa@c Þ�

þ�1

ffiffiffiffiffiffi
�r

�

s �
@rþ �0

r

4�r

þ 1

2r
þ r� ip�5

2�

�
þ�2

ffiffiffiffiffiffiffi
�p

�

s �
@pþ

�0
p

4�p

þ 1

2p
þ i�5

2�
ðr� ip�5Þ

�
þ�3 ðp2�a2Þðp2�b2Þ

p2
ffiffiffiffiffiffiffiffiffiffi
�p�

q
�
�
@t� a

p2�a2
@
� b

p2�b2
@c

�
þ�5 1

rp
ðab@tþb@
þa@c Þþ

�
Qþab

2r2�
þ ab

2p2�

�
i�0�1ðrþ ip�5Þþ�e

�
�¼ 0:

(47)

Multiplying ðr� ip�5Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ ip�5

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðr� ip�5Þp

by the left to the above equation, and after some lengthy algebra
manipulations we arrive at

�
�0 1

r2
ffiffiffiffiffiffi
�r

p ½ðr2 þ a2Þðr2 þ b2Þ@t þ ðr2 þ b2Þa@
 þ ðr2 þ a2Þb@c þQðab@t þ b@
 þ a@c Þ� þ �1
ffiffiffiffiffiffi
�r

p �
@r þ �0

r

4�r

þ 1

2r

�

þ �2
ffiffiffiffiffiffiffi
�p

q �
@p þ

�0
p

4�p

þ 1

2p

�
þ �3 ðp2 � a2Þðp2 � b2Þ

p2
ffiffiffiffiffiffiffi
�p

q �
@t � a

p2 � a2
@
 � b

p2 � b2
@c

�
þ

�
�5

p
� i

r

�

� ðab@t þ b@
 þ a@c Þ þ
�
Qþ ab

2r2
þ ab

2p2

�
i�0�1 þ�eðr� ip�5Þ

�
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ ip�5

q
�Þ ¼ 0: (48)

Now applying the explicit representation (36) for the
gamma matrices and adopting the following ansatz [11,17]
for the separation of variables

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ ip�5

q
� ¼ eiðm
þkc�!tÞ

R2ðrÞS1ðpÞ
R1ðrÞS2ðpÞ
R1ðrÞS1ðpÞ
R2ðrÞS2ðpÞ

0
BBB@

1
CCCA; (49)

we find that the modified Dirac equation in the five-
dimensional Cvetič-Youm metric can be decoupled into
the purely radial parts and the purely angular parts

ffiffiffiffiffiffi
�r

p
D�

r R1¼
�
�þi�er�Qþab

2r2
� i

r
ðab!�mb�kaÞ

�
R2;

(50)

ffiffiffiffiffiffi
�r

p
Dþ

r R2¼
�
��i�er�Qþab

2r2
þ i

r
ðab!�mb�kaÞ

�
R1;

(51)

ffiffiffiffiffiffiffi
�p

q
Lþ

p S1¼
�
�þ�epþ ab

2p2
þ 1

p
ðab!�mb�kaÞ

�
S2;

(52)

ffiffiffiffiffiffiffi
�p

q
L�

p S2¼
�
��þ�ep� ab

2p2
þ 1

p
ðab!�mb�kaÞ

�
S1;

(53)

in which

D�
r ¼ @r þ �0

r

4�r

þ 1

2r
� i

1

r2�r

½ðr2 þ a2Þðr2 þ b2Þ!

� ðr2 þ b2Þma� ðr2 þ a2Þkb
þQðab!�mb� kaÞ�;

L�
p ¼ @p þ

�0
p

4�p

þ 1

2p
� ðp2 � a2Þðp2 � b2Þ

p2�p

�
�
!þ ma

p2 � a2
þ kb

p2 � b2

�
:

The separated radial and angular Eqs. (50)–(53) can be
reduced into a master equation containing only one com-
ponent, however, the decoupled master equations are very
complicated. The angular parts can be transformed into the
radial part if one replaces p by ir in the vacuum case where
M ¼ Q ¼ 0.
In the above, we have explicitly shown that not the usual

Dirac equation but a modified one is separable by variables
in the general case of two unequal angular momenta. It is
should be pointed out that all our calculations are done in
this general case, the job for equal rotation parameters b ¼
�a is a trivial thing, and can be easily completed by using
the line element (8). The solution for the separated angular
part is a spinorial hyperspherical harmonics, while the
radial parts remain unchanged (just setting b ¼ �a). In
fact, the authors of Ref. [31] had already studied the
separation of the usual Dirac equation in this special case
(with a negative cosmological). However, they did not
consider the effect of the extra counterterm which still
makes an important contribution to the theory. Therefore,
their work on the separation of the Dirac equation is
incomplete in this sense. The present work can naturally
reduce to theirs in this special case if one omits the extra
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counterterm introduced here. In the remaining section, we
shall demonstrate that the existence of a rank-three gener-
alized Killing-Yano tensor is responsible for the separabil-
ity of the modified Dirac equation in the five-dimensional
rotating, charged Cvetič-Youm black hole geometry.

V. GENERALIZED KILLING-YANO TENSOR AND
FIRST-ORDER SYMMETRY OPERATOR

CONSTRUCTED FROM IT

In the last section, we have explicitly shown that the
modified Dirac’s equation is separable in the D ¼ 5
Cvetič-Youm black hole spacetime. In this section, we
will demonstrate that this separability is closely related
to the existence of a rank-three antisymmetric tensor ad-
mitted by the Cvetič-Youm metric. To this end, one should
construct a first-order symmetry operator that commutes
with the modified Dirac operator, by using this antisym-
metric tensor of rank-three, which should be determined
first.

In the case of a five-dimensional uncharged Myers-Perry
black hole, it has been demonstrated [11,15] that the rank-
two Stäckel-Killing tensor can be constructed from its
‘‘square root,’’ a rank-three, totally antisymmetric
Killing-Yano tensor, whose Hodge dual is a rank-two
conformal Killing-Yano tensor that can be generated
from a potential one-form.

In order to generalize this research to the rotating,
charged Cvetič-Youm black hole case, one expects that
the rank-two, Stäckel-Killing tensor given in Eq. (30) still
can be constructed from a rank-three antisymmetric tensor,

K�� ¼ � 1

2
f���f�

��: (54)

Now that in the local Lorentzian coframe (38), the Stäckel-
Killing tensor has a simple, diagonal form KAB ¼
diagð�p2; p2;�r2;�r2; p2 � r2Þ, it is suggested that the
expected antisymmetric tensor of rank-three can be given
by

f ¼ ð�pe0 ^ e1 þ re2 ^ e3Þ ^ e5; (55)

just like the uncharged case [11,15].
Apparently the Hodge dual of the three-form f is a two-

form k ¼ ��f. Adopting the following definitions:

k�� ¼ �ð�fÞ�� ¼ � 1

6

ffiffiffiffiffiffiffi�g
p

������f
���;

f��� ¼ ð�kÞ��� ¼ 1

2

ffiffiffiffiffiffiffi�g
p

������k
��;

(56)

and the convention �01235 ¼ 1 ¼ ��01235 for the totally
antisymmetric tensor density �ABCDE, we find that the two-
form is

k ¼ re0 ^ e1 þ pe2 ^ e3; (57)

which can be generated from a potential one-form [11]

2b̂ ¼ ðp2 � r2Þdtþ ðr2 þ a2Þðp2 � a2Þa
b2 � a2

d


þ ðr2 þ b2Þðp2 � b2Þb
a2 � b2

dc : (58)

Clearly, the two-form k ¼ ��f is closed as usual, dk ¼ 0,

because k ¼ db̂.
It is worth noting that the above analysis essentially

follows the same routine as we did in the uncharged case
[11]. At this stage, one needs to check whether the three-
form f¼� k is still a rank-three Killing-Yano tensor, and
whether its Hodge dual k ¼ ��f is a rank-two, skew-
symmetric, conformal Killing-Yano tensor. However, it is
disappointing to find that they no longer obey, respectively,
the ordinary Killing-Yano equation

f���;� þ f���;� � 0; (59)

and the conformal Killing-Yano equation

k��;�þk��;��1

4
ðg��k��;�þg��k

�
�;��2g��k

�
�;�Þ�0;

(60)

or in an equivalent form [41]

P ��� � k��;� þ 1

4
ðg��k��;� � g��k

�
�;�Þ

¼ 1ffiffiffi
3

p f���F�
� ¼ 1ffiffiffi

3
p ~F���k�

� � 0: (61)

In the subsequent paper [42], we find that the above
rank-three antisymmetric tensor obeys a modified Killing-
Yano equation

f���;� þ f���;� ¼ W ���� þW ����; (62)

where by construction, we have [42]

W ���� ¼ 1

2
ffiffiffi
3

p ffiffiffiffiffiffiffi�g
p

������f
���F��: (63)

In the following, this three-form field f¼� k will be called
a generalized Killing-Yano tensor, and its Hodge dual two-
form k ¼ ��f is a generalized conformal Killing-Yano
tensor.
In our previous work [11] done in the uncharged Myers-

Perry black hole case, we have adopted the rank-three
Killing-Yano tensor to construct a first-order symmetry
operator

H f ¼ � 1

2
����f��

�r� þ 1

16
��������f���;�; (64)

that commutes with the Dirac operator. In the charged
Cvetič-Youm black hole case considered here, we find
that this first-order symmetry operator is precisely the
expected one that commutes with the modified Dirac op-
erator if it is constructed from the generalized Killing-Yano
tensor (55) and its exterior differential
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W ¼ df

¼�4

�
ab

rp
þQp

r�

�
e0 ^ e1 ^ e2 ^ e3 � 4

ffiffiffiffiffiffiffi
�p

�

s
e0 ^ e1 ^ e2

^ e5 þ 4

ffiffiffiffiffiffi
�r

�

s
e1 ^ e2 ^ e3 ^ e5: (65)

At this point, it should be pointed out that the operator
Hf constructed from the above generalized Killing-Yano

tensor obeys the following eigenvalue equation:

ðHf þ �Þ� ¼ 0; (66)

in which � is the separation constant introduced in
Eqs. (50)–(53). Therefore, separating variables of this
equation along the same line as we previously did for the
modified Dirac equation exactly yields the radial and an-
gular parts (50)–(53) obtained in the last section. However,
we shall not repeat this process, which is the converse of
our construction procedure below for the operator Hf in

terms of the generalized Killing-Yano tensor.
Our remaining work in this paper is to construct the

above first-order symmetry operator commuting with the
modified Dirac operator, parallel to the work [11,17] done
in the case of the five-dimensional Myers-Perry and Kerr-
AdS black holes. In what follows, we shall demonstrate
that such a symmetry operator is directly constructed from
the separated solutions of the modified Dirac’s equation.

We now proceed to construct such an operator and high-
light the construction procedure. According to our analysis

made in the last section, we find that the modified Dirac
Eq. (48) can be split as�
�0 1

r2
ffiffiffiffiffiffi
�r

p ½ðr2 þ a2Þðr2 þ b2Þ@t þ ðr2 þ b2Þa@


þ ðr2 þ a2Þb@c þQðab@t þ b@
 þ a@c Þ�

þ �1
ffiffiffiffiffiffi
�r

p �
@r þ �0

r

4�r

þ 1

2r

�

� i

r
ðab@t þ b@
 þ a@c Þ þQþ ab

2r2
i�0�1

þ�er� i��0�1

�
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ ip�5

q
�Þ ¼ 0; (67)

�
�2

ffiffiffiffiffiffiffi
�p

q �
@p þ

�0
p

4�p

þ 1

2p

�
þ �3 ðp2 � a2Þðp2 � b2Þ

p2
ffiffiffiffiffiffiffi
�p

q
�

�
@t � a

p2 � a2
@
 � b

p2 � b2
@c

�

þ �5

p
ðab@t þ b@
 þ a@c Þ þ iab

2p2
�0�1 � i�ep�

5

þ i��0�1

�
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ ip�5

q
�Þ ¼ 0: (68)

Now we multiply Eq. (67) by p�0�1 and Eq. (68) by
�r�2�3 respectively from the left and add them together.
After using the relations i�5 ¼ �0�1�2�3 and �2�3�5 ¼
i�0�1, we get a dual equation

�
�0p

ffiffiffiffiffiffi
�r

p �
@r þ �0

r

4�r

þ 1

2r

�
þ �1p

1

r2
ffiffiffiffiffiffi
�r

p ½ðr2 þ a2Þðr2 þ b2Þ@t þ ðr2 þ b2Þa@
 þ ðr2 þ a2Þb@c

þQðab@t þ b@
 þ a@c Þ� þ �2ð�rÞ ðp
2 � a2Þðp2 � b2Þ

p2
ffiffiffiffiffiffiffi
�p

q �
@t � a

p2 � a2
@
 � b

p2 � b2
@c

�

þ �3r
ffiffiffiffiffiffiffi
�p

q �
@p þ

�0
p

4�p

þ 1

2p

�
� i�0�1 �

rp
ðab@t þ b@
 þ a@c Þ þ iðQþ abÞp

2r2
þ abr

2p2
�5 þ �ð�5r� ipÞ

�

� ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ ip�5

q
�Þ ¼ 0: (69)

Multiplying this equation by the left with a factor ðrþ i�5pÞ=�, we obtain
�
�0p

ffiffiffiffiffiffi
�r

�

s �
@r þ �0

r

4�r

þ 1

2r
þ r� ip�5

2�

�
þ �1p

1

r2
ffiffiffiffiffiffiffiffiffiffi
�r�

p ½ðr2 þ a2Þðr2 þ b2Þ@t þ ðr2 þ b2Þa@
 þ ðr2 þ a2Þb@c

þQðab@t þ b@
 þ a@c Þ� þ �2ð�rÞ ðp
2 � a2Þðp2 � b2Þ

p2
ffiffiffiffiffiffiffiffiffiffi
�p�

q �
@t � a

p2 � a2
@
 � b

p2 � b2
@c

�

þ �3r

ffiffiffiffiffiffiffi
�p

�

s �
@p þ

�0
p

4�p

þ 1

2p
þ i�5

2�
ðr� ip�5Þ

�
� i�0�1ðrþ i�5pÞ 1

rp
ðab@t þ b@
 þ a@c Þ

þ iab

2rp
þ iQp

2r�
þ �5

�
�� ab

2r2
þ ab

2p2
� Qp2

2r2�

��
� ¼ 0: (70)
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We continue to multiply the above equation a �5 matrix by the left in order to rewrite it as

�
�5�0p

ffiffiffiffiffiffi
�r

�

s �
@r þ �0

r

4�r

þ 1

2r
þ r� ip�5

2�

�
þ �5�1p

1

r2
ffiffiffiffiffiffiffiffiffiffi
�r�

p ½ðr2 þ a2Þðr2 þ b2Þ@t þ ðr2 þ b2Þa@
 þ ðr2 þ a2Þb@c

þQðab@t þ b@
 þ a@c Þ� þ �5�2ð�rÞ ðp
2 � a2Þðp2 � b2Þ

p2
ffiffiffiffiffiffiffiffiffiffi
�p�

q �
@t � a

p2 � a2
@
 � b

p2 � b2
@c

�

þ �5�3r

ffiffiffiffiffiffiffi
�p

�

s �
@p þ

�0
p

4�p

þ 1

2p
þ pþ i�5r

2�

�
þ ðp�0�1 � r�2�3Þ 1

rp
ðab@t þ b@
 þ a@c Þ

þ iab

2rp
�5 þ iQp

2r�
�5 þ Q

2�
�Qþ ab

2r2
þ ab

2p2
þ �

�
� ¼ 0; (71)

which can be viewed as an operator eigenvalue equation.
Our last task is to point out that the above Eq. (71) is essentially the explicit form of the eigenvalue Eq. (66). In order to

see this more clearly, one has to find the explicit expression for the symmetry operatorHf. To construct such an operator is

more involved than to treat with the Dirac operator HD ¼ ��r� ¼ ��ð@� þ ��Þ.
Observing the partial differential terms in Eq. (71), we can find that it can be exactly given by� 1

2�
���f��

�@� in terms

of the rank-three generalized Killing-Yano tenor given above, just as the uncharged case. Therefore, we hope to compute
� 1

2�
���f��

�r� in the next step. After some tedious and lengthy algebra manipulations, we get its explicit expression as

follows:

� 1

2
����f��

�ð@� þ ��Þ ¼ �5�0p

ffiffiffiffiffiffi
�r

�

s �
@r þ �0

r

4�r

þ 1

2r
þ r

2�

�
þ �5�1p

1

r2
ffiffiffiffiffiffiffiffiffiffi
�r�

p ½ðr2 þ a2Þðr2 þ b2Þ@t

þ ðr2 þ b2Þa@
 þ ðr2 þ a2Þb@c þQðab@t þ b@
 þ a@c Þ� þ �5�2ð�rÞ ðp
2 � a2Þðp2 � b2Þ

p2
ffiffiffiffiffiffiffiffiffiffi
�p�

q

�
�
@t � a

p2 � a2
@
 � b

p2 � b2
@c

�
þ �5�3r

ffiffiffiffiffiffiffi
�p

�

s �
@p þ

�0
p

4�p

þ 1

2p
þ p

2�

�

þ ðp�0�1 � r�2�3Þ 1

rp
ðab@t þ b@
 þ a@c Þ þ Q

2�
�Qþ ab

2r2
þ ab

2p2
�

�
ab

rp
þQp

r�

�
i�5

þ i

ffiffiffiffiffiffi
�r

�

s �
p2

2�
� 3

2

�
�0 þ i

ffiffiffiffiffiffiffi
�p

�

s �
3

2
� r2

2�

�
�3: (72)

Taking use of the above expression, Eq. (71) can be
rewritten as

�
� 1

2
����f��

�ð@� þ ��Þ

þ �þ 3i

2
�0

ffiffiffiffiffiffi
�r

�

s
� 3i

2
�3

ffiffiffiffiffiffiffi
�p

�

s
þ 3i

2

�
ab

rp
þQp

r�

�
�5

�
� ¼ 0:

(73)

This equation is almost the one that we expect to seek for
the operatorHf to satisfy all but the last three terms, which

can be supplied by

� 1

64
��������W���� ¼ 3i

2

�
�0

ffiffiffiffiffiffi
�r

�

s
� �3

ffiffiffiffiffiffiffi
�p

�

s

þ �5

�
ab

rp
þQp

r�

��
: (74)

Therefore we arrive at the final expression for the dual
operator Hf which can be written as

H f ¼ � 1

2
����f��

�ð@� þ ��Þ � 1

64
��������W����:

(75)

Using the definition W���� ¼ �f���;� þ f���;� �
f���;� þ f���;� and the identity f���;� ¼ 0 as well as

the property of gamma matrices, one can further recast
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the above operator into the equivalent form given by
Eq. (64).

Clearly, the modified Dirac operator ~HD commutes with

its dual operator Hf, because they obey ~HD� ¼ ��e�

and Hf� ¼ ���, respectively. From our discussion in

the last section, it is easy to see that � is a separation
constant introduced in the separated radial and angular
parts of the modified Dirac equation. This constant acts
as the eigenvalue of a first-order differential operator Hf

constructed from the ‘‘generalized’’ Killing-Yano tensor.
In other words, the dual first-order differential operator
characterizes the separation constant introduced in the
separated solutions of the modified Dirac equation and
explains why separation of the modified Dirac equation
can be achieved. Therefore, the separability of the modified
Dirac equation originates from the existence of a ‘‘gener-
alized’’ Killing-Yano tensor admitted by the three-equal-
charge Cvetič-Youm metric.

Expanding the commutative relation ½~HD;Hf� ¼ 0

yields the generalized Killing-Yano equation and the inte-
grability condition for the generalized Killing-Yano tensor
of rank-three.

To end our discussion, it should be pointed out that the
first-order symmetry operator Hf can be thought of as the

‘‘square root’’ of the second-order operator K. It has a lot
of correspondences in different contexts. It is a five-
dimensional charged analogue to the nonstandard Dirac
operator discovered in [7] for the four-dimensional Kerr
metric. This operator corresponds to the nongeneric super-
symmetric generator in pseudoclassical mechanics [16,43].

VI. CONCLUSIONS

In this paper, we have investigated the separability of a
spin-1=2 spinor field in the rotating charged Cvetič-Youm
black hole background spacetime and its relation to a
generalized Killing-Yano tensor of rank-three. Within the
fünfbein formalism, we have established a suitable pentad
for the Cvetič-Youm metric and obviously shown that the
usual Dirac equation of fermion fields cannot be separated
by variables in this general background geometry with two
independent angular momenta. Only when a new addi-
tional counterterm is supplemented into the Dirac equation
can the modified Dirac field equation for spin-1=2 fermions
in the five-dimensional Cvetič-Youm metric be decoupled
into purely radial and purely angular parts. We have also
dealt with the separation of a massive Klein-Gordon equa-
tion in the same background geometry and presented a
simple diagonal form for the Stäckel-Killing tensor, which
can be easily written as the square of a rank-three gener-
alized Killing-Yano tensor. Two symmetry operators that
commute, respectively, with the scalar Laplacian operator
and the modified Dirac operator have been constructed
from the separated solutions of the massive Klein-
Gordon equation and the modified massive Dirac’s equa-

tion. They have exactly the same expressions as those
obtained in the uncharged Myers-Perry black hole case,
and can be written in terms of the Stäckel-Killing tensor
and a generalized Killing-Yano tensor, respectively. The
success in dealing with the separability of a spin-1=2
spinor field equation is due to the supplement of a suitable
counterterm into the usual Dirac equation, the least cost to
pay for doing this is to modify the Killing-Yano tensor
equation so that it can be subject to five-dimensional
rotating charged black holes within minimal D ¼ 5
EMCS (un)gauged supergravity theory.
The work presented here includes our previous paper

[11] as a special case done for the general D ¼ 5 Myers-
Perry metric. In other words, the present work can com-
pletely recover all results [11,17] previously obtained for
the uncharged case. In the subsequent paper [42], we will
show that the present analysis is directly applicable to deal
with the separability of field equations for spin-0 and
spin-1=2 charged particles in the general, nonextremal,
rotating, charged black holes in minimal D ¼ 5 gauged
supergravity [27]. It is found that the modified Dirac
equation suggested in this paper can be separated by var-
iables into purely radial and purely angular parts in this
EMCS background spacetime. The Hodge dual of the
generalized Killing-Yano tensor of rank-three is a gener-
alized principal conformal Killing-Yano tensor of rank-
two, which can generate the whole ‘‘tower’’ of generalized
Killing-Yano and Stäckel-Killing tensors that are respon-
sible for the hidden symmetries of this general EMCS-
Kerr-AdS black hole geometry. Our research will further
generalize the notion of the principal conformal Killing-
Yano tensor that was first introduced in [15] (see [14] for a
complete summary of its properties) for the higher-
dimensional rotating vacuum black holes.
A possible application of the present work is that starting

from our modified Dirac equation, the gyromagnetic ratio
for an ‘‘electron’’ can be exactly computed in the five-
dimensional three-equal-charge Cvetič-Youm black hole
spacetime. Another further application is to determine
the supersymmetric condition of this spacetime and con-
firm that the BMPV black hole is the only supersymmetric,
rotating, charged, asymptotically flat solution in five di-
mensions. However, these subjects are beyond the scope of
this paper.
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APPENDIX: CONNECTION ONE-FORMS,
CURVATURE TWO-FORMS, AND OTHER USEFUL

TENSORS

In this appendix, the spin-connection one-forms, the
spinor-connection one-forms, and the curvature two-forms
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are presented in the fünfbein formalism. Once the pentad (38) has been chosen, the exterior differential of the coframe one-
forms can be figured out. After some algebraic computations, we obtain

de0 ¼ �
�
�0

r

2�r

� r

�

� ffiffiffiffiffiffi
�r

�

s
e0 ^ e1 � p

�

ffiffiffiffiffiffiffi
�p

�

s
e0 ^ e2 � 2p

�

ffiffiffiffiffiffi
�r

�

s
e2 ^ e3; de1 ¼ � p

�

ffiffiffiffiffiffiffi
�p

�

s
e1 ^ e2;

de2 ¼ r

�

ffiffiffiffiffiffi
�r

�
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�
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�

ffiffiffiffiffiffi
�r

�

s
e1 ^ e3 þ
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�p

�

s
e2 ^ e3;

de5 ¼ �2
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r2p
� Qr2
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e0 ^ e1 þ 1
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�
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p
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�p

�

s
e2 ^ e5:

(A1)

The pentad one-forms eA satisfy the torsion-free condition—Cartan’s first structure Eq. (41), through which the spin-
connection one-form !A

B ¼ !A
B�dx

� ¼ �A
BCe

C can be uniquely determined as follows:
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(A2)

The local Lorentzian frame component �A can be easily read from the spinor-connection one-form � � �Ae
A ¼

ð1=4Þ�A�B!AB and is given by
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�r

�

s
�0�2 � r
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�r

�

s
�1�3 �

�
�0

p

4�p

� p

2�

� ffiffiffiffiffiffiffi
�p

�

s
�2�3 �

�
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2rp2
þ Qp2

2r�2

�
�2�5;

�5 ¼
�
abþQ

2r2p
� Qr2

2p�2

�
�0�1 � 1

2r

ffiffiffiffiffiffi
�r

�

s
�1�5 �

�
ab

2rp2
þ Qp2

2r�2

�
�2�3 � 1

2p

ffiffiffiffiffiffiffi
�p

�

s
�2�5:

(A3)

Taking use of the local Lorentzian frame component �A given above and the properties of gamma matrices together with
the relation �5 ¼ �i�0�1�2�3, we arrive at
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�A�A ¼ �1

ffiffiffiffiffiffi
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�

s �
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2r
þ r

2�

�
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ffiffiffiffiffiffiffi
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s �
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s
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�
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�
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s
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�
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�
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�
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2�

�
þ �2

ffiffiffiffiffiffiffi
�p
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þ 1
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þ r

2�
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�p
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s
i�2�5 �

�
abþQ

2r2p
� Qr2

2p�2

�
�0�1�5

� p

2�

ffiffiffiffiffiffi
�r

�

s
i�1�5 þ

�
ab

2rp2
þ Qp2

2r�2

�
i�0�1

¼ �1

ffiffiffiffiffiffi
�r

�

s �
�0

r

4�r

þ 1

2r
þ r� ip�5

2�

�
þ �2

ffiffiffiffiffiffiffi
�p

�

s �
�0

p

4�p

þ 1

2p
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2�

�
þ

�
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2r2p2
þ Q

2r2�

�
i�0�1ðrþ ip�5Þ

� Q

2�2
i�0�1ðr� ip�5Þ; (A4)

where a prime denotes the partial derivative with respect to the coordinates r or p.
Using our pentad formalism, the curvature two-forms RA

B ¼ d!A
B þ!A

C ^!C
B can be concisely expressed by

R0
1 ¼ �e0 ^ e1 þ 2C1e

1 ^ e5 � 2C0e
2 ^ e3 þ 2C2e

2 ^ e5;

R0
2 ¼ �e0 ^ e2 � C0e

1 ^ e3 þ C2e
1 ^ e5 � C1e

2 ^ e5;

R0
3 ¼ �e0 ^ e3 � C3e

0 ^ e5 þ C0e
1 ^ e2 � C1e

3 ^ e5;

R0
5 ¼ �C3e

0 ^ e3 þ �e0 ^ e5 � C2e
1 ^ e2;

R1
2 ¼ �C0e

0 ^ e3 þ C2e
0 ^ e5 þ �e1 ^ e2 � C4e

3 ^ e5;

R1
3 ¼ C0e

0 ^ e2 þ �e1 ^ e3 � C3e
1 ^ e5 þ C4e

2 ^ e5;

R1
5 ¼ �2C1e

0 ^ e1 � C2e
0 ^ e2 � C3e

1 ^ e3 þ 2C4e
2 ^ e3 þ �e1 ^ e5;

R2
3 ¼ 2C0e

0 ^ e1 þ 2C4e
1 ^ e5 þ �e2 ^ e3 þ 2C3e

2 ^ e5;

R2
5 ¼ �2C2e

0 ^ e1 þ C1e
0 ^ e2 þ C4e

1 ^ e3 þ 2C3e
2 ^ e3 þ "e2 ^ e5;

R3
5 ¼ C1e

0 ^ e3 � C4e
1 ^ e2 þ "e3 ^ e5;

(A5)

where

� ¼ 2Mð3r2 � p2Þ
�3

� 8Qab

�3
�Q2ð10r2 þ 7p2Þ

�4
; � ¼ � 2Mðr2 � p2Þ

�3
þ 2Q2 þ 4Qab

�3
;

� ¼ � 2M

�2
þQ2ð2r2 þ p2Þ

�4
; � ¼ 2Mðr2 � 3p2Þ

�3
� 8Qab

�3
�Q2ðr2 � 2p2Þ

�4
;

" ¼ 2M

�2
�Q2ðr2 þ 2p2Þ

�4
; C0 ¼ 4Mrp

�3
þ 2Qabðr2 � p2Þ

rp�3
�Q2ð3r2 þ 2p2Þp

r�4
;

C1 ¼ 2Qrp

�3

ffiffiffiffiffiffi
�r

�

s
; C2 ¼ � 2Qr2

�3

ffiffiffiffiffiffiffi
�p

�

s
; C3 ¼ � 2Qrp

�3

ffiffiffiffiffiffiffi
�p

�

s
; C4 ¼ 2Qp2

�3

ffiffiffiffiffiffi
�r

�

s
:

Finally, the Ricci tensors, the scalar curvature, and the
Einstein tensors for the D ¼ 5 Cvetič-Youm metric are

� R00 ¼ R11 ¼ � 2Q2ð2r2 þ p2Þ
�4

;

R22 ¼ R33 ¼ 2Q2ðr2 þ 2p2Þ
�4

;

(A6)

R55 ¼ 2Q2ðr2 � p2Þ
�4

; R ¼ � 2Q2ðr2 � p2Þ
�4

; (A7)

�G00 ¼ G11 ¼ � 3Q2

�3
; G22 ¼ G33 ¼ 3Q2

�3
;

G55 ¼ 3Q2ðr2 � p2Þ
�4

:

(A8)
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Using the pentad (38), the Uð1Þ gauge potential one-
form can be written as

A ¼
ffiffiffi
3

p
Q

2
ffiffiffiffiffiffiffiffiffiffi
�r�

p e0; (A9)

the field strength two-form and its corresponding Hodge
dual three-form are

F ¼ dA ¼
ffiffiffi
3

p
Q

�2
ðre0 ^ e1 � pe2 ^ e3Þ; (A10)

~F ¼ �F ¼
ffiffiffi
3

p
Q

�2
ðpe0 ^ e1 þ re2 ^ e3Þ ^ e5: (A11)

The complete Einstein equations are satisfied by the
energy-momentum tensor of the Uð1Þ gauge field

� T00 ¼ T11 ¼ � 3Q2

2�3
; T22 ¼ T33 ¼ 3Q2

2�3
;

T55 ¼ 3Q2ðr2 � p2Þ
2�4

:

(A12)

Finally, the Maxwell-Chern-Simons equation can be re-
written as

@�ð ffiffiffiffiffiffiffi�g
p

F��Þ þ 1

2
ffiffiffi
3

p ������F��F�� ¼ 0; (A13)

and is satisfied by verifying that

d ~F ¼ � 4
ffiffiffi
3

p
Q2rp

�4
e0 ^ e1 ^ e2 ^ e3 ¼ 2ffiffiffi

3
p F ^ F:

(A14)
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