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We study the physical process version and the equilibrium state version of the first law of thermody-

namics for a charged p-brane. The general setting for our investigations is (nþ pþ 1)-dimensional

Einstein dilaton gravity with (pþ 2) strength form fields.
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I. INTRODUCTION

The unrelenting search for the unification scheme in
contemporary high-energy physics leads to the idea that
our Universe may have been more than four dimensional.
One of the most promising approaches to the unification of
fundamental forces of nature is the superstring/M theory,
which is formulated on a higher dimensional manifold. On
the other hand, black holes through their quantum behavior
and thermodynamical properties have played an important
role in our quest for understanding quantum theory of
gravity. It triggers continuously growing interest in study-
ing properties of black holes and other black objects ap-
pearing in higher dimensional theories of gravity.

The uniqueness theorem for higher dimensional static
black holes is quite well justified [1]. On the contrary, the
situation is far from obvious as far as stationary axisym-
metric higher dimensional black holes is concerned. It was
shown that even in five dimensions a kind of black object
appeared. It was called a black ring and its topology of the
event horizon is S2 � S1 [2]. This object is equipped with
the same mass and angular momentum as a five-
dimensional spherically symmetric stationary axisymmet-
ric black hole. For a black rings story, see Ref. [3] and
references therein. However, the assumption about topol-
ogy of the considered black object enables one to prove the
uniqueness theorem for a five-dimensional vacuum sta-
tionary axisymmetric black hole [4] and for stationary
axisymmetric self-gravitating � models [5]. Taking into
account the so-called rod structure [6] enables one to
broaden these attempts to the case of asymptotically flat
five-dimensional black hole solutions of vacuum Einstein
equations [7] and charged five-dimensional stationary axi-
symmetric black holes [8] (where the gauge field appeared
only in the fifth dimension). In Ref. [9], assuming the
existence of two additional commutating axial Killing
vector fields and the horizon topology of the black ring
S1 � S2, the only asymptotically flat black ring solution

with a regular horizon is the Pomeransky-Sen’kov black
ring [10]. In Ref. [11] it was show that in five dimensions
admitting the self-gravitating � model the only asymptoti-
cally flat black ring with a regular rotating event horizon is
the black ring characterized by mass and two angular
momenta with constant mapping.
However, in multidimensional theories the situation

drastically changes. One can consider a product of
(d�m)-dimensional Minkowski spacetime times a com-
pact Ricci flat m-dimensional manifold Riccim. It happens
that black objects with different horizon topology depend-
ing on the size of extra dimensions arise. Namely, when the
size of a compact manifold is large compared to the event
horizon of a black object, one obtains a black hole with
topology of the event horizon Sd�2. On the contrary, when
the size of the manifold is small one gets a black string with
Sd�m�2 � Riccim. Such kinds of black objects were inten-
sively studied in five dimensions (Mink4 � S1) [12]. In the
spacetime in question, the arising black holes were named
caged black holes. Their numerical studies were presented
in Ref. [13], while Ref. [14] was devoted to their analytical
studies.
A string solution with topology Sd�3 � S1 is

z dependent and it is described by a (d� 1)-dimensional
Schwarzschild solution with coordinate dz2. It turns out
that nonextremal stationary translationally invariant
branes are unstable. In Ref. [15] the authors investigated
the stability of a black p-brane and revealed that such a
background was unstable as the compactification scale of
extended directions became larger than the order of the
horizon radius. Next, it was shown in [16] for a class of
magnetically charged p-brane solutions of stringy action
that the instability persisted to appear but decreased with
the charge increase to the extended value. On the other
hand, it happened that branes with extremal charge were
stable [17]. It was conjectured [18] that for a black brane
with translational symmetry, Gregory-Laflamme (GL) in-
stabilities occurred when the brane in question was ther-
modynamically unstable. It was also demonstrated
numerically that a certain class of black holes in anti–
de Sitter spacetime were unstable against linear perturba-
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tions [19]. Then, in Ref. [20] strong support for this con-
jecture was given. Among all, it was shown that it was
possible to reveal that many black branes were classically
unstable without implementing an arduous numerical
analysis of the problem.

In Ref. [21] it was revealed that a nonextremal transla-
tionally invariant black brane decayed to some stable sta-
tionary configuration. It settled down to a stable but
inhomogeneous p-brane. It was also found [22] that there
existed a large class of new stable inhomogeneous black
brane solutions which were unrelated to the GL instability.
They exist even if the adequate homogeneous solution with
the same mass and charge is stable.

But in principle it could be possible to derive the first law
of thermodynamics for branes that are not translationally
invariant. Some progress in this direction was made. In
Ref. [23] a black brane spacetime that had at least one
spatial translation Killing field tangent to the brane was
considered. For a static charge black brane a law which
related the tension perturbation, surface gravity, charge of
the event horizon area, and variations of charges and their
currents was derived. On the other hand, in Ref. [24] a
generalization of the gravitational tension in a given
asymptotically translationally invariant spacetime direc-
tion was presented. The tension was defined in analogy
with the Hawking-Horowitz energy definition [25]. This
definition was applied for finding a general tension formula
in the case for near-extremal branes.

Higher dimensional gravity also possesses more com-
plicated black objects such as p-branes, black strings,
black Saturn, i.e., an n-dimensional spherically symmetric
black hole surrounded by black rings. Various aspects of
this blossomming subject of research were treated in
Refs. [26,27] (see also references therein).

In our paper we shall examine the first law of thermo-
dynamics for a charged black p-brane in (nþ pþ 1)-
dimensional dilaton gravity with a (pþ 2)-form strength
field. In what follows one finds the physical process ver-
sion of the first law of thermodynamics for a charged black
p-brane and the so-called equilibrium version of this law.

The physical process version of the first law of black
object thermodynamics can be established by changing a
stationary black object by some infinitesimal physical
process. For instance, it can be realized throwing matter
into a black object. In addition, we assume that the final
state of the black object settles down to a stationary one,
and then it will be possible to extract the changes of the
black object’s parameters. This in turn enables one to gain
information about the first law of its mechanics. The
physical process version of the first law of black hole
thermodynamics was widely studied in the context of
Einstein and Einstein-Maxwell theory in Refs. [28,29] as
well as in Einstein-Maxwell axion-dilaton gravity being
the low-energy limit of the heterotic string theory in
Ref. [30]. The case of Einstein gravity coupled to a

(n� 2)-gauge form field strength was treated in
Ref. [31]. On the other hand, the black ring case was
examined in Ref. [32].
The equilibrium state version of the first law of black

hole mechanics constitutes the other attitude to the prob-
lem in question. It was studied in the seminal paper of
Bardeen, Carter, and Hawking [33]. These attempts are
based on considering the linear perturbations of a station-
ary electrovac black hole to another one. Reference [34]
was devoted to arbitrary asymptotically flat perturbations
of a stationary black hole, while the first law of black hole
thermodynamics valid for an arbitrary diffeomorphism
invariant Lagrangian with metric and matter fields possess-
ing stationary and axisymmetric black hole solutions was
obtained in Refs. [35–38]. The cases of higher curvature
terms and higher derivative terms in the metric were con-
sidered in [39], while the situation when the Lagrangian is
an arbitrary function of metric, Ricci tensor, and a scalar
field was elaborated on in Ref. [40]. In Ref. [41], a charged
rotating black hole was treated, where fields were not
smooth through the event horizon. The first law of black
hole thermodynamics was also intensively studied in the
case of n-dimensional black holes. The equilibrium state
version was elaborated on in Ref. [42] under the assump-
tion of spherical topology of black holes. Some of the
works assume that the four-dimensional black hole unique-
ness theorem extends to a higher dimensional case [43].
The Arnowitt-Deser-Misner (ADM) mass and Komar sur-
face integrals for energy density, tension, and angular
momentum density of a stationary p-brane were given in
Ref. [44]. As far as the black ring first law of mechanics is
concerned, the general form of this law was achieved in
Ref. [45], using the notion of bifurcate Killing horizons
and considering dipole charges. In n-dimensional gravity
containing (pþ 1)-form field strength and dilaton fields
the first law of black ring mechanics choosing an arbitrary
cross section of the event horizon to the future of the
bifurcation surface was derived in Ref. [46]. In
n-dimensional Einstein gravity with the Chern-Simons
term the physical process version and the equilibrium state
version of the first law of black ring thermodynamics were
derived in Ref [47], while the case of black Saturn was
presented in [48]. On the other hand, by means of the
covariant cohomological methods to the conserved charges
for p-form gauge fields coupled to gravity the first law of
thermodynamics was found in Ref. [49].
The paper is organized as follows. We devoted Sec. II to

the physical process version of the charged p-brane first
law of thermodynamics. Section III studies the equilibrium
state version of the first law of thermodynamics choosing
an arbitrary cross section of the p-brane event horizon to
the future of their bifurcation surfaces. Such an attitude
enables one to take into account fields which are not
necessarily smooth through the event horizon of a charged
p-brane under consideration. Section IV concludes our
investigations.
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II. PHYSICAL PROCESS VERSION OF THE FIRST
LAW OF BLACK HOLE MECHANICS

We begin with the Lagrangian describing (nþ pþ 1)-
dimensional dilaton gravity with (pþ 2)-form strength
fields. It is subject to the relation as follows:

L ¼ �

�
ðdÞR� 1

2
r��r��

� 1

2ðpþ 2Þ! e
���F�1����pþ2

F�1����pþ2

�
; (1)

where � is the volume element of dimension

d ¼ nþ pþ 1;

� is the dilaton field, while

F�1����pþ2
¼ ðpþ 2Þ!r½�1

A�2����pþ1�

is the (pþ 2)-form field strength, with a potential
A�1����pþ1

. By � we have denoted an arbitrary dilaton

coupling parameter. One can check that equations of mo-
tion for the underlying theory are given by

G�� � T��ðF;�Þ ¼ 0; (2)

ri1ðe���Fi1���ipþ2Þ ¼ 0; (3)

r�r��þ �

2ðpþ 2Þ! e
���F�1����pþ2

F�1����pþ2 ¼ 0: (4)

On the other hand, the energy momentum tensor for
(pþ 2)-form field strength and dilatons has the form as

T��ðF;�Þ ¼ 1

2
r��r��� 1

4
g��r��r��

þ 1

2ðpþ 2Þ! e
���

�
�
ðpþ 2ÞF��2����pþ1

F�
�2����pþ2

� 1

2
g��F�1����pþ2

F�1����pþ2

�
: (5)

In order to establish the physical version of the first law of
p-brane thermodynamics we shall try to find the explicit
expressions for the variation of mass and angular momen-
tum and the tension of the brane. On evaluating the varia-
tions of the Lagrangian (1) with respect to the adequate
fields, we find that one finally obtains

�L ¼ �ðG�� � T��ðF;�ÞÞ�g�� � �rj1ðe���Fj1���jpþ2Þ�Aj2���jpþ2

þ �

�
r�r��þ �

2ðpþ 2Þ! e
���F�1����pþ2

F�1����pþ2

�
��þ d�: (6)

Using the above formula (6) we get the symplectic (nþ p)-form �j1���jnþp
½c �; �c ��, which yields

�j1���jnþp
½c �; �c �� ¼ �mj1���jnþp

½!m � e���Fm�1����pþ1�A�1����pþ1
�rm����: (7)

In relation (7) by c � we denote fields in the considered theory while �c � is equal to their variations. !� stands for the
expression

!� ¼ r��g�� �r��g�
�: (8)

One can also remark that the adequate equations of motion can be read off relation (6). The standard procedure provided in
Ref. [29] enables one to identify variations of the fields with a general coordinate transformation induced by an arbitrary
Killing vector field 	�. Next, one can find that the Noether (nþ p)-form with respect to this above mentioned Killing
vector, i.e., J j1...jnþp

¼ �mj1���jnþp
J m½c �;L	c ��. The result of doing that is of the following form:

J j1���jnþp
¼ dðQGR þQBÞj1���jnþp

þ 2�mj1���jnþp
ðGm


 � Tm

ðF;�ÞÞ	


þ ðpþ 1Þ�mj1���jnþp
	dAd�3����pþ2

r�2
ðe���Fm�2����pþ2Þ; (9)

where QGR
j1���jnþp�1

yields

QGR
j1���jnþp�1

¼ ��j1���jnþp�1abra	b; (10)

while QA
j1���jnþp�1

has the following form:

QA
j1���jnþp�1

¼ pþ 1

ðpþ 2Þ! �mkj1���jnþp�1
	dAd�3����pþ2

e���Fmk�3����pþ2 : (11)

Having in mind that J ½	� ¼ dQ½	� þ 	�C�, where C� is an (nþ p) form constructed from dynamical fields, i.e., from
g��, (pþ 2)-form field Fj1���jpþ2 , and dilaton fields, one may consequently identify the sum of relations (10) and (11) with
the Noether charge for (nþ pþ 1)-dimensional dilaton gravity theory with (pþ 2)-form strength field. C� implies
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Ckj1���jnþp
¼ 2�gj1���jnþp

½Gk
g � Tk

gðF;�Þ� þ ðpþ 1Þ�gj1���jnþp
r�2

ðe���Fg�2����pþ2ÞAk�3����pþ2
: (12)

The source-free equations of motion are provided by the
requirement that C� ¼ 0. On the contrary, when the
source-free equations do not hold, they yield the following
relations:

G�� � T��ðF;�Þ ¼ T��ðmatterÞ; (13)

r	1
ðe���F	1���	pþ2Þ ¼ j	2���	pþ2ðmatterÞ: (14)

If one further assumes that ðg��; A�1����pþ1
; �Þ are solu-

tions of source-free equations of motion and
ð�g��; �A

�1����pþ1 ; ��Þ are the linearized perturbations sat-
isfying equations of motion with sources �T��ðmatterÞ and
�j�1����pþ1ðmatterÞ, then one obtains the relation of the
form as

�Ckm1���mnþp
¼ 2�gm1���mnþp

½�Tk
gðmatterÞ

þ ðpþ 1ÞAk�3����pþ2
�jg�3����pþ2ðmatterÞ�:

(15)

Because of the fact that the Killing vector field 	� de-
scribes also a symmetry of the background matter field,
one gets the formula for a conserved quantity connected
with 	�, namely,

�H	 ¼ �2
Z
�
�mj1���jnþp

½�Ta
mðmatterÞ	a

þ ðpþ 1Þ	iAi�3����pþ2
�jm�3����pþ2ðmatterÞ�

þ
Z
@�
½�Qð	Þ � 	 ���: (16)

Let us choose 	� to be an asymptotic time translation t�,
then one can conclude that M ¼ Ht and finally obtain the
variation of the ADM mass

��M ¼ �2
Z
�
�mj1���jnþp

½�Tk
mðmatterÞtk

þ ðpþ 1ÞtkAk�3����pþ2
�jm�3����pþ2ðmatterÞ�

þ
Z
@�
½�QðtÞ � t ���; (17)

where � ¼ n�2
n�1 . Next, if we take the Killing vector fields

’ðiÞ, which are responsible for the rotation in the adequate
directions, we arrive at the relations for angular momenta

�JðiÞ ¼ 2
Z
�
�mj1���jnþp

½�Ta
mðmatterÞ’a

ðiÞ

þ ðpþ 1Þ’a
ðiÞAa�3����pþ2

�jm�3����pþ2ðmatterÞ�

�
Z
@�
½�Qð’ðiÞÞ � ’ðiÞ ���: (18)

Moreover, p-brane spacetime may have more spatial
Killing vector fields tangent to the brane. Consequently,

with the above definition we introduce p translational
Killing vectors l�ðjÞ which are connected with the p-brane
tension in the adequate direction. Thus, the change of the
brane tension in the adequate direction yields

�T ðiÞ ¼ �2
Z
�
�mj1���jnþp

½�Tk
mðmatterÞlkðiÞ

þ ðpþ 1ÞlkðiÞAk�3����pþ2
�jm�3����pþ2ðmatterÞ�

þ
Z
@�
½�QðlðiÞÞ � lðiÞ ���: (19)

Let us suppose further that a stationary p-brane solution is
regular on and outside the event horizon. Moreover, let us
assume that the p-brane event horizon is a Killing horizon,
which implies that there exists a Killing vector field ��

normal to it. The Killing vector field �� is of the form

�� ¼ t� þX
i

�ðiÞ’�ðiÞ: (20)

The surface integrals in Eqs. (17)–(19) we understand as
surface integrals over the p-brane event horizon and a bulk
integral over the region bounded by the considered horizon
and transverse spatial infinity on a n-surface having vector
t� as one of its (pþ 1) normals. One has in mind that we
assume the existence of a Killing vector field responsible
for stationarity t�, Killing vector fields ’�ðiÞ which are
connected with rotation in the adequate direction as well as
Killing vector fields bounded to the translation in various
directions. We consider both an homogeneous p-brane
when lðiÞ are the same in every direction and an inhomoge-
neous brane when they differ in every direction. We call
these states of p-brane translationary invariant (for brev-
ity), keeping in mind what was written previously. All
Killing vector fields in question are mutually commutating.
Let us perturb the black p-brane by dropping in some

matter and assume that in the process of this action the
p-brane will not be destroyed and will settle down to a
stationary and translationary invariant final state. Then, the
next task will be to find the changes of the black p-brane
parameters. Changes of the event horizon area of a p-brane
will be computed by means of the n-dimensional
Raychaudhuri equation. In addition, we shall assume
that �0 is an asymptotically flat hypersurface which ter-
minates on the p-brane event horizon. Then, one takes
into account the initial data on �0 for linearized perturba-
tions of ð�g��; �A�1����pþ1

; ��Þ with �T��ðmatterÞ and

�j�1����pþ1ðmatterÞ. We require that �T��ðmatterÞ and

�j�1����pþ1ðmatterÞ disappear at infinity and the initial
data for ð�g��; �A�1����pþ1

; ��Þ vanish in the vicinity of

the black p-brane event horizonH on the adequate hyper-
surface �0. The above conditions provide that for the
initial time �0, the considered black p-brane is unper-
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turbed. On its own, it causes the perturbations to vanish near the internal boundary @�0. From relations (17) and (19) the
following is fulfilled:

��M�X
i

�ðiÞ�JðiÞ �
X
i

�T ðiÞ ¼ �2
Z
�0

�mj1���jnþp
½�Tf

mðmatterÞ�f þ ðpþ 1Þ�kAk�2����pþ1
�jm�2����pþ1ðmatterÞ�

� 2
X
i

Z
�0

�mj1���jnþp
½�Tk

mðmatterÞlkðiÞ þ ðpþ 1ÞlkðiÞAk�3����pþ2
�jm�3����pþ2ðmatterÞ�

¼
Z
H

��k� ��j1���jn�1
vðlÞ; (21)

where ��j1���jn�1
¼ n���j1���jn�1

and vðlÞ ¼ R
�j1���jp . By n�

we denoted the future directed unit normal to the hyper-
surface �0. k� is a tangent vector to the affinely parame-
trized null geodesics generators of the p-brane event
horizon. Further, we assume that all of the matter falls
into the considered black p-brane. We also keep in mind
that the current �� is conserved. Because of the above facts
we replace in relation (21) vector n� by the vector k�

defined above.
We shall assume that the field strength F�1����pþ2

is

invariant under symmetries generated by adequate
Killing vector fields. Namely, the adequate Lie derivatives
of gauge field A�1����pþ1

are equal to zero. One gets the

following:

L �A�1����pþ1
¼ 0; LlA�1����pþ1

¼ 0: (22)

The same relations are satisfied by the dilaton field

L �� ¼ 0; Ll� ¼ 0: (23)

It can be checked by the direct calculations that for 	�

generating symmetries of the considered background the
following relation takes place:

ðpþ 1Þ!L	A�1����pþ1
�j�1����pþ1 � 	dFd�2����pþ2

�j�2����pþ2

¼ ðpþ 1Þðpþ 1Þ!r�2
ð	dAd�3����pþ2

Þ�j�2����pþ2 : (24)

Equation (24) will be useful in calculations of the integral
over a black p-brane event horizon. In stationary back-
ground expansion 
 and shear �ij will vanish. Using the

higher dimensional Raychaudhuri equation of the form

d


d�
¼ � 
2

ðnþ p� 1Þ � �ij�
ij � R��	

�	�; (25)

where � denotes the affine parameter corresponding to
vector k�, one concludes that R��k

�k� jH¼ 0. Because

of this fact we get a relation of the form

1

2
k�r��k�r��þ 1

2ðpþ 1Þ! e
���F��2����pþ2

F�
�2����pþ2

� k�k�jH ¼ 0: (26)

Using the fact that Lk� ¼ 0, it is easily seen that,
F�

�2����pþ2k� ¼ 0. Because of the fact that
F��2����pþ2

k�k�2 ¼ 0, by asymmetry of F�1����pþ2
it turned

out that F��2����pþ1
k� � k�2

� � � k�pþ1
. It implies that the

pullback of F
�2����pþ2
� k� to the p-brane event horizon is

equal to zero. In turn, it reveals the fact that �kFk�2����pþ2
is

a closed (pþ 1) form on the p-brane event horizon.
The same considerations as above may be applied to the

integrals concerning p-brane tension. Now, we proceed to
the surface terms. It follows that the adequate surface terms
will have a form of �, �Q, where � is the constant sum
relating to the harmonic parts of 	dFd�2����pþ2

and �Q is the

variation of local charges. These allow one to write the
following:

��M�X
i

�ðiÞ�JðiÞ �
X
i

�T ðiÞ þ��Q

¼ 4
Z
H

�T�
�	�k�vðlÞ; (27)

where��Q ¼ �ð�Þ�Qð�Þ þ
P

i�lðiÞ�QlðiÞ is the sum of the

potentials and local charges connected with the adequate
Killing fields. Our next task is to find the right-hand side of
Eq. (27). It can be elaborated on by the same procedure as
described in Refs. [29–31]. Namely, considering the
(nþ pþ 1)-dimensional Raychaudhuri equation and us-
ing the fact that the null generators of the event horizon of
the perturbed black p-brane coincide with the null gener-
ators of the unperturbed black p-brane, leads to the relation
of the form

��Aeff ¼
Z
H

�T�
�ðmatterÞ	�k�vðlÞ; (28)

where � is the surface gravity of the black p-brane while
�Aeff ¼ vðlÞ�A is just an (n� 1)-dimensional effective
area of the event horizon of the considered p-brane. The
same reasoning enables us to find the same expression
when on the right-hand side of Eq. (28) lðiÞ exists instead
of 	�.
In light of what has been shown above we arrive at the

physical process version of the first law of black p-brane
mechanics in Einstein (nþ pþ 1)-dimensional gravity
with additional (pþ 2)-form field strength and dilaton
fields. It is provided by

��M�X
i

�ðiÞ�JðiÞ �
X
i

�T ðiÞ þ��Q ¼ 4��Aeff :

(29)
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We finally remark that in the sense of Ref. [29] the proof of
the physical process version of the first law of thermody-
namics for the (nþ pþ 1)-dimensional black p-brane
also provides support for cosmic censorship.

III. EQUILIBRIUM STATE VERSION OF THE
FIRST LAW OF P-BRANE MECHANICS

In this section we shall look for the equilibrium state
version of the first law of charged black p-brane thermo-
dynamics. In Ref. [50] it was shown that in the spacetime
with asymptotic conditions at infinity and possessing
Killing vector field 	�ðiÞ which generates asymptotical

symmetry it will be possible to define the conserved quan-
tity H	ðiÞ, which is given by the relation

�H	ðiÞ ¼
Z
1
ð ��Qð	ðiÞÞ � 	ðiÞ�Þ: (30)

�� denotes variation which has no effect on 	� since the
Killing vector field in question is treated as a fixed
background and it should not be varied in the above
expression (30).

In our considerations we take into account (nþ pþ 1)-
dimensional spacetime with charge p-brane. As was men-
tioned in the preceding section, we have the Killing vector
field �� which is normal to the p-brane event horizon and
translational Killing vectors l

�
ðiÞ in addition to the afore-

mentioned ones. Moreover, we assume that all are mutu-
ally commutating. In what follows we choose an arbitrary
cross section of the considered p-brane event horizon to
the future of the bifurcation surface. In Ref. [41] it was
revealed that such an attitude enabled one to treat fields
which were not necessarily smooth through the event
horizon of the black object. The only requirement is that
the pullback of these fields in the future of the bifurcation
surface be smooth.

To derive the equilibrium state version of the first law of
charged p-brane mechanics let us consider asymptotically
hypersurfaces � ending on the part of the p-brane event
horizons H to the future of the bifurcation surfaces. The
inner boundary SH of the hypersurface �will be the cross
sections of the black p-brane event horizon. Next, we shall
compare variations between two neighboring states of the
p-brane. One should recall [33] that there is a freedom in
which the points can be chosen to correspond when one
compares two slightly different solutions. In our consid-
eration we choose the freedom of the generalized coordi-
nate transformation and put SH the same as the two
solutions. Moreover, one takes into account the case
when the null vector remains normal to SH . The statio-

narity, axisymmetricity, and translantionarity of the con-
sidered solutions will be conserved, which provides in turn

that �t�, �’�ðiÞ, and �l� will be equal to zero. On the other
hand, the variation of the Killing vector field �� normal to

the charged p-brane event horizon will be given by the
following:

�	� ¼ X
i

��ðiÞ’�ðiÞ: (31)

Let us suppose that ðg��; A�1����pþ1
; �Þ are solutions of

the equations of motion and their variations
ð�g��; �A

�1����pþ1 ; ��Þ constitute their linearized pertur-

bations to also fulfill equations of motion. One requires
also that the pullback of the potential A�1����pþ1

to the future

of the bifurcation surface be smooth, but not necessarily
smooth on it [41]. We require further that A�1����pþ1

and its

variation �A�1����pþ1
vanish sufficiently rapid at infinity.

Consequently, for the charged black p-brane one obtains

��M�X
i

�ðiÞ�JðiÞ �
X
i

�T ðiÞ

¼
Z
ð ��Qð�Þ � ��Þ �

Z
ð ��QðlðiÞÞ � lðiÞ�Þ: (32)

To begin with we shall find the integral over the symplectic
(nþ p) form connected to the dilaton field. In the case
under consideration the volume element has the form

��aj1���jnþp�1
¼ �� ^ Na ^ �j1���jn�1

^ �j1���jp ; (33)

where vector N� is the ingoing future directed null normal

to the p-brane event horizon SH . It is normalized as
follows:

N��� ¼ �1: (34)

We arrive at the relation of the form

Z
�j1��

j1���jnþp
¼

Z
SH

vðlÞ�j1���jn�1
N��

���r���� ¼ 0;

(35)

where we used the fact that L�� ¼ 0. The arguments

presented in the preceding section can be applied now. It
leads to the following:

Z
QA

j1���jnþp�1
ð�Þ ¼ �ð�ÞQð�Þ: (36)

Our next task will be to find the variation �� of
QA

j1���jnþp�1
ð�Þ. Then, one obtains

��
Z

QA
j1���jnþp�1

ð�Þ ¼ �ð�ð�ÞQð�ÞÞ � ðpþ 1ÞvðlÞ
ðpþ 2Þ!

Z
SH

X
i

��ðiÞ’�ðiÞA��3����pþ2
�mkj1���jn�2

e���Fmk�3����pþ2 : (37)

As a direct consequence of relation (37) we arrive at the expression which can be written as
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��ð�ÞQð�Þ ¼ ðpþ 1ÞvðlÞ
ðpþ 2Þ!

Z
SH

X
i

��ðiÞ’�ðiÞA��3����pþ2
�mjj1���jn�2

e���Fmj�3����pþ2

þ ðpþ 1ÞvðlÞ
ðpþ 2Þ!

Z
SH

�d�Ad�3����pþ2
Nm�je

���Fmj�3����pþ2 : (39)

Using the fact that on the event horizon of black p-brane F��2����pþ2
�� � ��2

� � ���pþ1
and expressing ��aj1���jn�2

in the
same form as in the above case, one gets the following:

Z
�j1�A

j1���jnþp
¼ ðpþ 1ÞvðlÞ

ðpþ 2Þ!
Z
SH

�j1���jn�2
e����kF

jk�3����pþ2Nj�
�2�A�2����pþ2

: (40)

Having in mind Eqs. (39) and (40) one can conclude that

��
Z

QA
j1���jnþp�1

ð�Þ � �j1�A
j1���jnþp

¼ �ð�Þ�Qð�Þ: (41)

Now, let us turn our attention to the contribution bounded
with a gravitational field. Namely, for the p-brane one
obtains

Z
QGR

j1���jnþp�1
ð�Þ ¼ 2�Aeff ; (42)

where

A eff ¼ vðlÞ
Z
SH

�j1���jn�1

is the area of the p-brane event horizon. Then, it implies

��
Z

QGR
j1���jnþp�1

ð�Þ ¼ 2�ð�AeffÞ þ 2
X
i

��ðiÞJðiÞ; (43)

which we have denoted by JðiÞ ¼ 1
2 �R

SH
vðlÞ�j1���jn�2abra’ðiÞb the angular momentum con-

nected with the Killing vector fields responsible for the
rotations in the adequate directions. Following the calcu-
lations presented in Ref. [33] it could be found that the
following integral is satisfied:

Z
�j1�GR

j1���jnþp�1
ð�Þ ¼ 2Aeff��þ 2

X
i

��ðiÞJðiÞ: (44)

The above relation yields the conclusion that

��
Z

QGR
j1���jnþp�1

ð�Þ � �j1�GR
j1���jnþp

¼ 2��Aeff þ 2
X
a

��Aeff : (45)

The entirely analogous considerations can be applied to the
second part of the right-hand side of Eq. (32) related to the
brane tension and Killing vector fields lðiÞ.

Thus, the direct consequence of relations (41) and (45)
and the analogous for brane tension integrals provides the
first law of charged black p-brane mechanics in Einstein

(nþ pþ 1)-dimensional gravity with additional (pþ 2)-
form field strength and dilaton fields. The first law of
mechanics for the considered black objects can be written
in the form as

��M�X
i

�ðiÞ�JðiÞ þ��Q�X
i

�T ðiÞ ¼ 4��Aeff ;

(46)

where � and �Q are the adequate sums of constant poten-
tials on SH and the sum of local charges.

IV. CONCLUSIONS

In our paper we studied the first law of charged black
p-brane thermodynamics in (nþ pþ 1)-dimensional di-
laton gravity with (pþ 2)-form field strength. We assumed
stationarity and axisymmetricity of the considered
p-brane. Moreover, we supposed that there were p trans-
lation Killing vectors in addition to the t� Killing vector
field and’

�
ðiÞ Killing vectors responsible for the rotations in

adequate directions. All these Killing vectors commute
mutually. We looked for both the physical process version
and the equilibrium state version of the first law of charged
p-brane thermodynamics.
Considering the physical process version of the first law

of p-brane dynamics we change infinitesimally the
p-brane under consideration by throwing matter into it.
Assuming that this process will not destroy the black object
in question we find changes of the ADM mass, angular
momentum, tension, and effective area of the event horizon
of the p-brane. As far as the equilibrium state version of the
first law of p-brane thermodynamics is concerned we
chose arbitrary cross sections of p-brane event horizons
to the future of bifurcation surfaces, contrary to the pre-
vious derivations which are bounded to the considerations
of bifurcation surfaces as the boundaries of hypersurfaces
extending to spatial infinity. It turn, such attitude enables
one to treat fields which are not necessary smooth through
each event horizon of the adequate black object.
As was shown in Ref. [23] the modification of the

derivation of the first law of black p-brane thermodynam-
ics using the ADM formalism was fruitful. It will be not
amiss to use this idea in higher dimensional p-brane space-
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time. Perhaps the reasoning presented in [51] will be
useful. We hope to return to the problem in question
elsewhere.
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