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We consider two different effective polymerization schemes applied to D-dimensional, spherically

symmetric black hole interiors. It is shown that polymerization of the generalized area variable alone leads

to a complete, regular, single-horizon spacetime in which the classical singularity is replaced by a bounce.

The bounce radius is independent of rescalings of the homogeneous internal coordinate, but does depend

on the arbitrary fiducial cell size. The model is therefore necessarily incomplete. It nonetheless has many

interesting features: After the bounce, the interior region asymptotes to an infinitely expanding

Kantowski-Sachs spacetime. If the solution is analytically continued across the horizon, the black hole

exterior exhibits asymptotically vanishing quantum corrections due to the polymerization. In all spacetime

dimensions except four, the falloff is too slow to guarantee invariance under Poincaré transformations in

the exterior asymptotic region. Hence, the four-dimensional solution stands out as the only example which

satisfies the criteria for asymptotic flatness. In this case it is possible to calculate the quantum-corrected

temperature and entropy. We also show that polymerization of both phase space variables, the area and the

conformal mode of the metric, generically leads to a multiple horizon solution which is reminiscent of

polymerized minisuperspace models of spherically symmetric black holes in loop quantum gravity.
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I. INTRODUCTION

Polymer quantization [1,2] (sometimes known as Bohr
quantization) provides a unitarily inequivalent alternative
to Schrödinger quantization. It has gained importance of
late because of its deep connection to loop quantum gravity
(LQG) [1], and has been successfully applied to simple
quantum mechanical systems [1,3,4] as well as minisuper-
space models for gravitational systems. Investigations of
loop quantum cosmology [5–7] and spherically symmetric
black hole interiors [8–13] have provided strong evidence
that polymer quantization may resolve the classical singu-
larities of general relativity.

The full polymer quantized dynamics is nontrivial even
in simple models. It is therefore reassuring that there exists
a limit of the polymer theory which retains some of the
properties of the discretized theory while giving rise to a
solvable set of dynamical equations. Recently, this effec-
tive polymerization technique was used to great effect [9–
12] to investigate polymer corrections to the interior of
Schwarzschild black holes in 4D spacetime. It is generally
accepted that different quantization schemes (i.e. different
choices of canonical variables) can lead to qualitatively
different results, depending on which of the geometrical
phase space variables inherit the discrete polymer struc-
ture. Corichi and Singh have postulated a reasonable set of
consistency conditions which lead to a unique loop quan-
tum gravity motivated quantization scheme in the case of
homogeneous, isotropic cosmology [14] as well as Bianchi
I cosmologies [15]. It is not clear whether an analogous
unique, consistent candidate exists for less symmetric situ-

ations, such as black hole interiors. One of the main
purposes of this paper is to examine this question.
We investigate in detail the consequences of a nonstan-

dard choice of effective polymer dynamics for spherically
symmetric black hole interiors in arbitrary spacetime di-
mension greater than three. The results in 4D were pre-
sented in condensed form in [16]. Here we give the details,
including results for all spacetime dimensions and an
analysis of the dependence on auxiliary parameters such
as the fiducial cell size introduced to regulate the integral
along the noncompact spatial dimension. It proves conve-
nient to use the formalism of generic dilaton gravity [17],
which describes the spherically symmetric sector of
Einstein gravity in arbitrary spacetime dimension as well
as several other 2D models of potential interest. Since we
are not tied to a particular microscopic quantum gravity
theory, we will consider polymerization schemes different
from those of [9–12]. We work with the parametrization of
the geometric phase space variables that emerges naturally
in the context of generic dilaton gravity. One of the vari-
ables is of course the dilaton itself, which, in higher
dimensional Einstein gravity is proportional to the area
of spheres at fixed distance from the center of symmetry.
The other is the conformal mode of the 2D metric, which is
related to the conformal mode of the physical higher
dimensional metric by a nonconstant rescaling.
We show first of all that polymerization of the area alone

gives rise to qualitatively different spacetimes than does
polymerization of both area and conformal mode. While in
both quantizations the singularity is replaced by a bounce,
the former leads to a single-horizon solution whereas the
latter exhibits a cyclic behavior with multiple horizons,
reminiscent of the results of [9,12]. As in previous works,
both approaches yield a bounce radius that does depend on
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an extra parameter, suggesting that such models are incon-
sistent, as argued in [14]. We discuss in some detail this
aspect of the model and conclude that area polymerization,
in particular, while necessarily incomplete due to the de-
pendence on fiducial scale, nonetheless yields quantum-
corrected black hole spacetimes that are deserving of fur-
ther study because of their intriguing generic properties.
The resulting spacetimes depend on only two physical
parameters, namely the black hole mass and the bounce
radius. The latter depends on both the polymerization scale
and a scale invariant version of the fiducial cell size, which
needs to be fixed by heuristic arguments. It is reasonable to
assume that it is roughly of the order of the Planck scale.
The interior spacetime avoids the classical singularity, but
the bounce is not cyclic as there is only a single bifurcative
horizon. After the bounce the physical metric describes an
infinitely expanding Kantowski-Sachs [18] spacetime. The
polymerization thus generically drives the system into an
asymptotic interior end state that is not a small correction
to the classical spacetime. The resulting scenario is remi-
niscent of past proposals for universe creation in black hole
interiors via quantum effects [19,20].

We also show that for D> 4 the solutions have strange
asymptotic properties in the exterior region. While the
solutions are all asymptotically flat in the sense that the
metrics go to the Minkowski metric at infinity, in all
dimensions except four the falloff is too slow to guarantee
the finiteness of the Poincaré generators. A global asymp-
totically flat black hole spacetime can only be constructed
for D ¼ 4. This four-dimensional quantum-corrected
black hole spacetime turns out to have fascinating proper-
ties which we review. We also present new results in 4D for
the quantum-corrected black hole temperature and entropy.
As expected from previous work (see for instance,
Refs. [21–25]), the lowest order correction for the entropy
in 4D is logarithmic.

The paper is organized as follows. In Sec. II we review
classical generic dilaton gravity, including its relationship
to higher dimensional spherically symmetric Einstein
gravity, Hamiltonian analysis, and solution to the
Hamilton-Jacobi theory. Section III describes in general
the effective approach to polymer quantization. Our main
results are in Sec. IV, which contains the polymerized (both
partial and full) solutions for higher dimensional black
hole interiors, as well as the extension of the solutions to
the exterior. We also dedicate a subsection for a critical
examination of the results obtained, including a discussion
about the role of fiducial structures. Section V describes
the specifics for 4D and derives the thermodynamic prop-
erties, while Sec. VI ends with some conclusions and
prospects for future work.

II. CLASSICAL THEORY

Although the classical theory is well known, it is in-
structive to recall the main features that must be recovered

in the appropriate classical limit of the polymerized theory.
Furthermore, by doing so we highlight the classical scale
invariance that plays an important role in the effective
polymer theory.

A. Action and solutions

Let us begin with the action

S½g;�� ¼ 1

2G

Z
d2x

ffiffiffiffiffiffiffi�g
p �

�RðgÞ þ Vð�Þ
l2

�
; (1)

which is, up to conformal reparametrizations of the metric,
the most general 1þ 1-dimensional, second order, diffeo-
morphism invariant action depending on the metric tensor
g�� and the dilaton scalar � [17,26,27]. In this expression,

l is a positive constant with a dimension of length and G is
the dimensionless two-dimensional Newton’s constant.
The quantity S is dimensionless, providing we consider
units in which @ ¼ 1. Specific theories are obtained by
specifying the dilaton potential Vð�Þ.
The equations implied by the action (1) are exactly

solvable and obey a generalized Birkhoff theorem [28].
The general solution can be written in ‘‘interior
Schwarzschild’’ form:

ds2 ¼ �½2lGM� jð�Þ��1l2d�2 þ ½2lGM� jð�Þ�dx2;
(2)

where jð�Þ satisfies
dj

d�
¼ Vð�Þ: (3)

The integration constantM represents the Arnowitt-Deser-
Misner (ADM) mass which we take to be positive.
Although more general models may be studied, in this
paper we assume that jð�Þ is a monotonic function such
that jð�Þ ! 0 when � ! 0. The solution then contains
precisely one Killing horizon [27–29] at �H, such that

jð�HÞ ¼ 2lGM: (4)

The action (1) describes a wide range of theories, each
characterized by a different dilaton potential Vð�Þ. For
instance, in the Jackiw-Teitelboim model [30] Vð�Þ is a
linear function of � whereas in Callan-Giddings-Harvey-
Strominger (CGHS) theory [31] Vð�Þ is a constant. Of
prime importance for the present work is that the action (1)
also describes the radial sector of a spherically symmetric
spacetime in D ¼ nþ 2 dimensions. A precise correspon-
dence can be obtained with the identifications

2G ¼ 16�Gðnþ2Þn
8ðn� 1Þ�ðnÞln

; (5a)

� ¼ n

8ðn� 1Þ
�
r

l

�
n
; (5b)

Vð�Þ ¼ ðn� 1Þ
�

n

8ðn� 1Þ
�
1=n

��1=n; (5c)
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where Gðnþ2Þ is the D-dimensional Newton’s constant, r is
the radius of a rotationally invariant two-sphere, and

�ðnÞ ¼ 2�ðnþ1Þ=2

�ð12 ðnþ 1ÞÞ (6)

is the area of the n-dimensional unit sphere. The dilaton
has a geometrical interpretation as the area of an invariant
n sphere at fixed distance from the center of spherical
symmetry.

The two-dimensional metric in the action (1) is related
to the physical D-dimensional metric by

ds2phys ¼
ds2

jð�Þ þ r2d�2
n; (7)

where d�2
n is the line element of the unit n sphere given in

terms of the angular coordinates �i by

d�2
n ¼ d�21 þ sin2ð�1Þd�22 þ sin2ð�1Þsin2ð�2Þd�23 þ � � �

þ Yn�1

i¼1

sin2ð�iÞd�2n: (8)

The physical metric has a curvature singularity at
jð�Þ ¼ 0, and when Eqs. (5) are substituted into the met-
ric, it takes the form of the D-dimensional (interior)
Schwarzschild solution [32]:

ds2phys ¼ �
�
rn�1
S

rn�1
� 1

��1
dr2 þ

�
rn�1
S

rn�1
� 1

�
dx2 þ r2d�2

n;

(9)

where the Schwarzschild radius rS is given by

rn�1
S ¼ 16�Gðnþ2ÞM

n�ðnÞ : (10)

B. Hamiltonian formulation

We shall now proceed to the Hamiltonian formulation of
the theory. We restrict to homogeneous slices in the inte-
rior. It is convenient to parametrize the metric in the action
(1) as

ds2 ¼ e2�ð��2dt2 þ dx2Þ; (11)

where � ¼ �ðtÞ and � ¼ �ðtÞ is the lapse function.
Because the action involves an infinite integral over a
spacelike coordinate x, we shall perform all the calcula-
tions inside a finite fiducial cell by restricting the integra-
tion over a finite interval L0 ¼

R
dx. While this is a

standard procedure in the existing LQG minisuperspace
models, we note that it differs from our previous approach
in [16], where the equations of motion were solved directly
from the Lagrangian density without explicitly performing
the integration.

In terms of the parametrization (11), and after integrat-
ing over a finite fiducial interval L0, the action reads

S ¼
Z

dtð�� _�þ��
_�þ �GÞ; (12)

where a dot denotes a derivative with respect to the time
coordinate t and the single (Hamiltonian) constraint is

G ¼ G

L0

���� þ L0e
2� V

2l2G
� 0: (13)

The symbol � denotes a weak equality in the Dirac sense:
it can only be imposed after all Poisson brackets are
evaluated. Since the metric is homogeneous, no timelike
boundary terms are needed to complement this action. The
resulting Hamiltonian equations of motion are

�� ¼ �L0 _�

�G
; (14a)

�� ¼ �L0
_�

�G
; (14b)

_�� ¼ �L0

2l2G
e2�

dV

d�
; (14c)

_�� ¼ �L0e
2� V

l2G
: (14d)

It is important to note that with the identifications in (5),
the system above is related to spherically symmetric
Einstein gravity in spacetime dimension three or higher
by a simple point canonical transformation. For example,
for D ¼ 4, the Hamiltonian (13) can be converted to the
loop quantum gravity Hamiltonian of Ref. [11] by the
following canonical transformation:

Pc ¼ 4�; c ¼ ����

4
þ ���

16�
; (15a)

Pb ¼ 2L0e
��1=4; b ¼ � �

2L0

e�����
�1=4; (15b)

where l ¼ lPl ¼ 1 has been used. This transformation is
regular for �> 0.
As expected Eqs. (12)–(14) describe a parametrized

Hamiltonian system with two physical phase space degrees
of freedom. The Hamiltonian constraint (13) implies that
time is embedded in one of the phase space coordinates, so
that one needs to gauge fix (i.e. choose a time coordinate)
in order to obtain unique evolution equations. Instead of
following this procedure directly, for what follows it is
useful to first obtain the classical solutions from the
Hamiltonian constraint using Hamilton-Jacobi (H-J) the-
ory [33]. We look for an H-J function Sð�;�Þ such that

�� ¼ @S

@�
; (16a)

�� ¼ @S

@�
; (16b)

so that on the constraint surface
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G

L0

�
@S

@�

��
@S

@�

�
þ L0e

2� Vð�Þ
2l2G

¼ 0: (17)

This equation is trivially separable and the ansatz S ¼
fð�Þ þ gð�Þ yields the complete solution for the
Hamilton-Jacobi function,

S ¼ �	L0

4lG
e2� þ L0

jð�Þ
	lG

þ C; (18)

where 	 and C are constants. The solution for � in terms of
� is obtained from

@S

@	
¼ � L0

4lG
e2� � L0

jð�Þ
	2lG

¼ �
; (19)

where 
 is the constant of motion conjugate to 	. The
solutions for momenta are given by

�� ¼ @S

@�
¼ L0

Vð�Þ
	lG

; (20a)

�� ¼ @S

@�
¼ �	L0

2lG
e2�: (20b)

For the rest of the paper, we choose to work with positive
constants 	 and 
. This means that as long as e2� is

positive, � and _� have the same sign. This is readily
seen by comparing Eqs. (14b) and (20b). In the context
of black hole spacetimes, this implies that when the lapse
function � is negative, the time evolution moves from the
bifurcative black hole horizon toward the future singularity
at � ¼ 0. For positive �, the time evolution moves from
the past singularity towards the bifurcative horizon. The
time coordinate cannot be extended past the horizon in this
formalism, since at the horizon the homogeneous initial
data surface becomes null.

Given Eqs. (19) and (20), we have now a complete
solution in terms of a single arbitrary function of time
and two dimensionless integration constants 	 and 
.
This is consistent with the fact that this is a parametrized
Hamiltonian system with a two-dimensional physical
phase space. It is illustrative to write the solution using �
as the time coordinates since � represents the area of the
throat of the Einstein-Rosen wormhole in the extended
Schwarzschild spacetime. We first solve for the lapse
function,

�2 ¼ 4l2 _�2

	2
e�4�; (21)

and substitute this, together with (19), into (11) to obtain
the physical metric in ‘‘interior Schwarzschild’’ form:

ds2 ¼
�
lG	2


L0

� jð�Þ
��1

l2d�2

�
�
lG	2


L0

� jð�Þ
��
2dx

	

�
2
: (22)

This line element is, up to a rescaling of the spatial coor-
dinate x, equivalent to (2) with a choice 	2
 ¼ 2L0M,
which identifies the combination of phase space parame-
ters that corresponds to the ADM mass. The conjugate to
M can be interpreted by noting that the following trans-
formation is canonical:

M ¼ 	2


2L0

; (23a)

PM ¼ 2L0

	
: (23b)

It is clear from the solution, PM ¼ 2L0=	 is related to a
residual rescaling of the Schwarzschild ‘‘time’’ x. This is
consistent with the Hamiltonian analysis of the exterior in
which the conjugate to M corresponds to the
Schwarzschild time separation of the spatial slice [26,34].
To summarize, Eqs. (19) and (20) provide the general

solution to the theory in terms of L0 and two integration
constants 	 and 
. 	 parametrizes the arbitrary rescaling
of the coordinate x, which is the residual coordinate in-
variance after imposing homogeneity. There is also one
arbitrary function in the solution reflecting the time pa-
rametrization invariance still present in the theory. The
Hamilton-Jacobi method will be used below to find the
solutions in various polymerized versions of the theory.

III. EFFECTIVE POLYMER DYNAMICS

In the polymer representation of quantum mechanics
[1,2] one effectively studies the Hamiltonian dynamics
on a discrete spatial lattice. The basis states are taken to
be normalizable eigenstates jxi of the position operator,
such that

hx0jxi ¼ �x0;x ; (24)

where �x0;x is the Kronecker delta and not the usual delta

function. While in principle all real numbers are possible
for the eigenvalues x, the momentum operator that gener-
ates infinitesimal translations cannot be defined on this
space as a self-adjoint operator. Instead one considers the

action of a finite translation operator Û� ¼ dei�p:

Û �jxi ¼ jxþ�i: (25)

The operators Û� and x̂ are self-adjoint with commutator

½x̂; Û�� ¼ �Û�: (26)

In order to construct a quantum Hamiltonian, one defines a
momentum operator: [1]:

p̂ ¼ 1

2i�
ðÛ� � Ûy

�Þ: (27)

The discretization parameter �> 0 is considered to be
fixed so that the Hamiltonian is defined on a discrete subset
of all possible spatial points and the theory effectively lives
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on a lattice with edge length �. In principle � can be a
function of x, but in the following we assume that it is
constant. In the limit � ! 0, Eq. (27) reduces to the
standard momentum operator p̂ ¼ �i@x and one recovers
the usual Schrödinger quantized system [35].

In many cases the full polymer theory is rather challeng-
ing to analyze but fortunately one can get interesting
results by investigating the effective limit of the theory,
which corresponds formally to considering the limit in
which quantum effects are small, but the polymerization
scale � stays finite. In this limit the right-hand side of
Eq. (27) can be written in terms of a sine function of the
classical momentum operator:

p̂ ! sinð�pÞ
�

: (28)

This effective polymerization approximation is the basis
for recent analyses of black hole interiors [9–12]. It can be
derived [36,37] by studying the action of the fully quan-
tized operators on coherent states and expanding in the
width of the states. The end result is to simply replace the
classical momentum variable p in the classical
Hamiltonian function by sinð�pÞ=�. After the replace-
ment, one studies the (semi)classical dynamics of the
resulting polymer Hamiltonian by means of standard
techniques.

IV. POLYMERIZED SCHWARZSCHILD INTERIOR

In order to be specific we now investigate spherically
symmetric Einstein gravity in D ¼ nþ 2 dimensions, so
that the dilaton potential, given explicitly by Eq. (5c),

behaves as V / ��1=n. In our considerations, we choose
to work with a constant polymerization scale, despite the
fact that in the context of loop quantum cosmology con-
sistency with predictions requires a discreteness scale
which depends explicitly on the polymerized variable(s)
[5]. Here we choose the simplest approach that produces
reasonable semiclassical behavior and leave the study of
other choices for future research. Implications of nonconst-
ant polymerization scale in some LQG inspired black hole
scenarios have been considered, for instance in
Refs. [10,13].

A. Partial polymerization

We first polymerize only the generalized area variable
�. This is a somewhat ‘‘minimalist’’ approach in which we
introduce fundamental discreteness for the geometrical
variable that is proportional to area in the spherically
symmetric theory while leaving the coordinate dependent
conformal mode of the metric continuous. Ultimately, the
real justification for this procedure is the intriguing
quantum-corrected black hole spacetime that emerges. As
we shall see, the partial polymerization has the advantage

of yielding single-horizon solutions which are not fre-
quently encountered in semiclassical gravity.
The partially polymerized Hamiltonian constraint is

G ¼ G

L0

sinð���Þ
�

�� þ L0e
2� V

2l2G
� 0; (29)

and the equations of motion are given by

sinð���Þ
�

¼ �L0 _�

�G
; (30a)

�� cosð���Þ ¼ �L0
_�

�G
; (30b)

_�� ¼ �L0

2l2G
e2�

dV

d�
; (30c)

_�� ¼ �L0e
2� V

l2G
: (30d)

The key mechanism for singularity resolution via polymer-
ization is already evident in the above. Loosely speaking,
_� now vanishes at two turning points: the ‘‘classical’’
turning point when �� ¼ 0 and the semiclassical turning

point: cosð���Þ ¼ 0. The former condition will turn out

to be satisfied at the horizon as expected. In order to realize
these turning points concretely and rigorously, it is of
course necessary to find solutions and fix a time coordinate.
As in the classical theory, we search for a solution to the

corresponding Hamilton-Jacobi equation in the form S ¼
fð�Þ þ gð�Þ to find

S ¼ �	L0

4lG
e2� þ 1

�

Z
arcsin

�
L0�V

	lG

�
d�þ C; (31)

where 	 and C are constants. As before, we take 	> 0.
The expressions for the momenta are now

�� ¼ @S

@�
¼ 1

�
arcsin

�
L0�V

	lG

�
; (32a)

�� ¼ @S

@�
¼ �	L0

2lG
e2�: (32b)

Since the absolute value of the argument of arcsine cannot
be greater than one, the polymerization imposes a condi-
tion on �. Using expression (5c) for Vð�Þ,

� � �min :¼ cðnÞ
�
L0�

	lG

�
n
; (33)

where

cðnÞ :¼ nðn� 1Þn�1

8
: (34)

The minimum value of � is located at the roots of the
cosine function, as expected from (30b). An inspection of

the derivative €� verifies that this turning point is indeed a
minimum.
To find the relationship between � and �, we again

differentiate S with respect to 	:
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@S

@	
¼ �
: (35)

As before, 
 is a constant of motion that is conjugate to 	.
The explicit form of Eq. (35) depends on the given branch
of the arcsine function. Equation (35) can be written as

L0

4lG
e2� þ 1

�
IðnÞð�Þ ¼ 
; (36)

where

IðnÞ :¼ ��
cðnÞn
an	

Z dz

zn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ¼ � cðnÞn
an	

Z dð���Þ
sinnð���Þ ;

(37)

and we have defined

z :¼ V

a
¼ sinð���Þ; (38a)

a :¼ 	lG

L0�
: (38b)

In Eq. (37), the value of � ¼ �1 depends on the given
branch of ���. The upper sign is valid in the branches

where the cosine function is positive, which include the
principal branch ð��=2; �=2Þ, whereas the lower sign is

used elsewhere. The integral IðnÞ, in turn, can be evaluated
in terms of z in n dimensions via the recursive formula
[38]:

Z dz

zn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
ðn� 1Þzn�1

þ n� 2

n� 1

Z dz

zn�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p :

(39)

For even values of n, the integral takes a rather compact
form [38]:

IðnÞ ¼ �
cðnÞn
an	

Xðn=2Þ�1

k¼0

ðn2�1
k Þ

n�2k�1

�
a2
�
�

cðnÞ

�
2=n�1

�ðn�2k�1Þ=2
:

(40)

Note that in the above equation we have fixed the value of

the integral by the requirement IðnÞð�minÞ ¼ 0. This in
effect makes the constant 
 independent of � so that e2�

is continuous at a branch cut of ��� where � changes its

sign.

B. Singularity avoidance

In order to examine the properties of the interior solu-
tion, we now again write the physical metric using� as the
time coordinate:

ds2phys ¼
1

jð�Þ
� �4l2d�2

	2e2�ð1� V2=a2Þ þ e2�dx2
�

þ rð�Þ2d�2: (41)

Equation (41) illustrates that as before, the solution has a

horizon when e2� ¼ 0, i.e. at �H such that

L0

4lG
e2�H ¼ 
� 1

�
IðnÞð�HÞ ¼ 0: (42)

We take �H to be the initial value of � so that the
corresponding initial value of �� is

��H
�
:¼ arcsin

�
L0�

	lG

�
cðnÞ

�H

�
1=n

�
: (43)

Without loss of generality, we fix ��H
� to be in the

principal branch and, because 	 is positive, ��H
� takes

its values between ð0; �=2Þ. Note that by choosing the
principal branch, and assuming again that t increases to-
ward the future, the negative values of � correspond to
black hole solutions and the positive values of � corre-
spond to white hole solutions, as in the unpolymerized
theory.
Taking�� as the time variable, one can deduce, generi-

cally, the following time evolution. At �� ¼ �H
�, the

solution starts at the horizon. As �� increases, � de-

creases until it reaches its minimum value at ��� ¼
�=2. At this stage, � starts increasing again. However,
when ��� is in the range ð�=2; �Þ, � in (37) necessarily

changes sign. Thus after the bounce e2� does not vanish
again, and the throat area expands to � ! 1 in finite
coordinate time. However, it can be verified that the ex-
pansion takes an infinite amount of proper time. Thus, our
quantization scheme has produced a solution that avoids
the singularity, but does not oscillate. The time evolution of
the physical conformal mode, e2�=jð�Þ, is illustrated in
Fig. 1 for various dimensions.

C. Asymptotics

In order to examine the asymptotic behavior of the
solutions we now write them in terms of the areal radius
r. A straightforward calculation reveals that

ds2phys ¼ � dr2

AðnÞðr;M; kÞð1� k2

r2
Þ þ AðnÞðr;M; kÞ

�
2dx

	

�
2

þ r2d�2
n; (44)

where we have defined

AðnÞ :¼ n� 1

rn�1

�
16GlnM

n2
� IðnÞr ðrÞ

�
¼ n� 1

rn�1

�
rn�1
S

n� 1
� IðnÞr ðrÞ

�
: (45)

In these equations

IðnÞr :¼ �
Z rn�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2=r2
p dr; (46)

and
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M :¼ 	2


2L0

; (47a)

k :¼ L0�ðn� 1Þ
	G

¼ L0 ~�ðn� 1Þ
ln	G

; (47b)

and rS is the location of the horizon in unpolymerized

theory, given by Eq. (10). Note that in (47b) ~� ¼ ln� is
the discretization scale of the physical area variable ln� /
rn. In the dimensions D ¼ 4, D ¼ 5, D ¼ 6, and D ¼ 7,

the explicit form of AðnÞ is, respectively,

Að2Þ ¼ 2Gð4ÞM
r

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

r2

s
; (48a)

Að3Þ ¼ 8Gð5ÞM
3�r2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

r2

s
� �

k2

r2
ln

�
r

k
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

k2
� 1

s �
; (48b)

Að4Þ ¼ 3Gð6ÞM
2�r3

� �

�
1� k2

r2

�
3=2 � �

3k2

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

r2

s
; (48c)

Að5Þ ¼ 16Gð7ÞM
5�2r4

� �

�
1þ 3k2

2r2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

r2

s
� �

3k4

2r4
ln

�
r

k
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

k2
� 1

s �
: (48d)

Hence the metric depends on two parameters, M and k,
which determine the physical properties of the solution.M
is the mass while k gives the minimum radius of the
spacetime and can be chosen independently of M. The
fact that k depends on both the fiducial length scale L0

and on the scale parameter 	 raises potentially important
questions about the predictive power of the model that will
be addressed in detail in the next subsection. We first
describe the general properties of the solution under the
assumption that k is microscopically small.
One can verify that the solution evolves from the horizon

at rH to the minimum radius k in finite proper time, and
then expands to r ¼ 1 in infinite proper time (see Fig. 2
for qualitative behavior). The fact that the expansion in the
interior requires an infinite amount of proper time can be
readily seen by integrating the proper time  of a freely
falling observer using (44), which shows that for large r the
proper time grows with a rate proportional to r. As the
radius r expands in the interior, the metric (44) approaches

ds2phys ¼ �dr2 þ dx2 þ r2d�2
n: (49)

This asymptotic interior solution does not obey the vacuum
Einstein equations, but has nonvanishing stress tensor with

Tx
x ¼ Tr

r ¼ � 1

8�Gðnþ2Þ
nðn� 1Þ

r2
; (50a)

T�i
�i
¼ � 1

8�Gðnþ2Þ
ðn� 1Þðn� 2Þ

r2
: (50b)

It is possible to continue the metric (44) analytically
across the horizon to the exterior region. The validity of
this extension is an open question given that our chosen
foliation does not extend to the exterior, but the procedure
seems natural in the present context as a method for con-
structing a complete semiclassical black hole spacetime. A

FIG. 1 (color online). Physical conformal mode plotted as a
function of �� in the models where n ¼ 2 (solid [red] curve),

n ¼ 3 (dashed [green] curve), n ¼ 4 (dashed and dotted [yellow]
curve) and n ¼ 10 (dotted [blue] curve). In every model the
solution begins from zero (the horizon), increases monotonically
to its maximum value, and then decreases until it reaches the end
point at ��� ¼ � (where � ! 1). It can be verified that for

every n the solution extends toward the same end point,
e2�=jð�Þ ¼ 4=	2, which is strictly positive. Hence, there is no
horizon after the bounce. For numerical convenience, we have
taken l equal to the Planck length so that Gðnþ2Þ ¼ ln, and we
have used the numerical values 	 ¼ l ¼ L0 ¼ 1, � ¼ 0:1, and

 ¼ 2.
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similar approach has been recently used, for instance, in
[9]. In the following, we therefore assume that the metric

(44) describes the exterior region as well, with r as a
spacelike and x as a timelike coordinate. As we shall see,
in 4D the resulting black exterior closely approximates the
Schwarzschild solution whereas in higher dimensions the
exterior solution differs from Einstein gravity at large
(cosmological) distances.
The fact that r ¼ k is a coordinate singularity can be

explicitly verified by defining a new coordinate y:

r

k
¼ coshðyÞ: (51)

The metric then takes the form

ds2phys ¼ �BðnÞðy;M; kÞdx2 þ k2cosh2ðyÞ
BðnÞðy;M; kÞ dy

2

þ k2cosh2ðyÞd�2
n; (52)

where we have again absorbed 2=	 into x and defined

BðnÞ :¼ n� 1

coshn�1ðyÞ
Z

coshn�1ðyÞdy

� 16�Gðnþ2ÞM
n�ðnÞkn�1coshn�1ðyÞ : (53)

This coordinate system describes in a natural way one-half
of the complete spacetime: the exterior asymptotic region
of the black hole corresponds to the limit y ! 1, the

horizon is located where BðnÞ ¼ 0, and the minimum radius
on the interior occurs at y ¼ 0. The asymptotic interior
region corresponds to y ! �1.
An important consequence of the form of (46) is that the

metric function AðnÞ is only dominated by the classical term
M=rn�1 in the large r limit for n ¼ 2 (D ¼ 4). This is true
both for the interior asymptotic region as well as the
exterior. In five spacetime dimensions, the leading term
goes like k2 lnðrÞ=r2, whereas in higher dimensions it is
k2=r2. This is not a problem in the interior which is not
asymptotically flat in any case and does not have a counter-
part in the classical solution. However, in order to have a
viable model for a quantum-corrected black hole, one
would like the exterior to be asymptotically flat in the
usual sense. In D> 4 dimensions our semiclassical poly-
merized solutions do have vanishing curvature asymptoti-
cally, but they do not have a Newtonian limit as r ! 1
since the Poincaré generators diverge with the given falloff
conditions. The ‘‘microscopic’’ quantum corrections to the
interior dynamics have a highly nontrivial effect on the
global properties of the solutions. This is a somewhat
surprising result. It is nonetheless reassuring that for D ¼
4, which is the only case for which the corrections are well
motivated by LQG considerations, the asymptotics are well
behaved. We will provide more details of the four-
dimensional solution in the next section.

(a)

(b)

FIG. 2 (color online). (a) Radial coordinate r plotted as a
function of the proper time  of an observer in a radial free
fall (4D). The observer falls from the horizon to the minimum
radius k within finite proper time. After the bounce the areal
radius r expands without limit, reaching infinity in infinite
proper time. Despite its appearance, there is no cusp at the
bounce. (b) Close-up near the bounce radius illustrates that the
curve is smooth at the bounce. In both figures M ¼ 1 and k ¼
0:1.
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D. Auxiliary structures

The importance of auxiliary structures in polymerized
minisuperspace models has been emphasized in Ref. [14]
and now we turn our attention to these matters. In that
article the authors propose, in the context of loop quantum
cosmology, a series of well-grounded requirements which
should be satisfied by a consistent cosmological model.
These requirements include independence from any choice
related to the auxiliary structures, e.g. the choice of coor-
dinates or the choice of the fiducial cell, as well as the
existence of a well-defined classical limit and Planckian
regime. It was found that, out of the existing models of flat
isotropic cosmology, only [5] was able to satisfy all the
above conditions. Recently these ideas have also been
reexamined and expanded in the context of anisotropic
Bianchi I cosmology [15].

Analogous requirements in the context of black hole
interiors, however, have not been easy to fulfill. For ex-
ample, in the work of [11], the quantum-corrected space-
time depended on an extra integration constant which was
fixed by the requirement that the bounce be symmetric. In
[10], the quantization yielded a bounce that also depended
on a scale invariant integration constant, so an alternative
quantization scheme was proposed that yielded a bounce
independent of extra parameters. In this case, however,
there were quantum corrections of the (macroscopic) hori-
zon properties, which violates another of the conditions in
[14]. Our approach is no exception to these difficulties. The
parameter k given by Eq. (47b) determines not only the
scale at which the bounce occurs but also the curvature
invariants at the bounce. It is therefore problematic that
such a fundamental physical quantity depends on the fidu-
cial length L0 as well as the parameter 	. In fact it is
interesting to note that the dependence of k is on the ratio
L0=	, which in the classical theory is proportional to PM

[see Eq. (23b)], the momentum conjugate to the ADM
mass. In the canonical theory of the full spherically sym-
metric spacetime PM is a Dirac observable that is ex-
pressed as an integral over the spatial slice and invariant
only under local gauge transformations (i.e. those that
vanish on the boundaries of the spatial slice). It is therefore
not surprising that in the present context it depends on both
L0 and 	, the latter, according to (44) parametrizing the
residual coordinate freedom to rescale the homogeneous
coordinate x.

In this regard, it is important to note that the particular
combination L0=	 is invariant under rescalings of the
homogeneous coordinate x [39]. It is perhaps worth going
through the argument in some detail: an examination of the
metric parametrization (11) reveals that under the rescaling
x ! bx, the conformal mode e2� ! b�2e2�, so that in the
solution 	 ! b	 [see for example (41)]. Moreover, from
the definition of L0 it is clear that rescaling the coordinate x
but leaving the limits of integration unchanged results in
L0 ! bL0. Thus, L0=	 is invariant as claimed. It is also

useful to examine the scaling properties of the other metric
components and phase space variables. The lapse function
scales as � ! b�, while the dilaton (area) � is invariant.
Applying the above information to the right-hand side of
the expressions for the canonical momenta, e.g. (30), one
finds that they are invariant. One can also verify that the
observables M and PM as defined in (23) are invariant as
well. Note that for the solution analytically continued to
the exterior x becomes the time coordinate so	 determines
the lapse at infinity, or equivalently the relationship of the
coordinate time to the proper time of an observer at infinity.
This is normally taken to be unity in the Hamiltonian
analysis of spherically symmetric gravity (see Ref. [34]),
but this need not be the case. The scale invariance of k
implies that once k is determined for one such observer, it
is in fact determined for all such observers.
This nonetheless leaves a residual (scale invariant) de-

pendence on the initial choice of fiducial cell size, which
can be interpreted in one of two ways. The first is that this
dependence renders the model inconsistent, as implied in
[14]. One would then have to find a suitable choice of
variables and corresponding quantization scheme, as done
in [14,15], which produces a model in which physical
observables do not depend on arbitrary fiducial structures.
Alternatively, one can speculate that the dependence on

L0=	 is due to the incompleteness of the model which has
not been derived directly from a microscopic theory of
quantum gravity. Certainly a more complete theory would
require a quantum description of the auxiliary structures,
and these features cannot be fully captured by this simpli-
fied minisuperspace model. The downside of this interpre-
tation is that one cannot make a precise prediction for the
value of k, even if the discreteness scale for area, �, is
known. However, if one is interested mostly on the quali-
tative aspects of semiclassical black holes, it is reasonable
as well as mathematically consistent to assume that k is of
the order of the Planck scale, in the hope that its actual
value can be derived later from a more complete theory.
While this approach is the one we adopt in the subsequent
discussion, it is an important open question worthy of
further study as to whether or not it can be justified at a
more fundamental level.

E. Fully polymerized theory

For completeness we shall now present the results of the
fully polymerized theory, where we introduce fundamental
discreteness not only to the dilaton � but also to the
variable �. The fully polymerized Hamiltonian constraint
is

G ¼ G

L0

sinð ����Þ
��

sinð���Þ
�

þ L0e
2� V

2l2G
� 0; (54)

where �� denotes the dimensionless polymerization scale
associated with the variable �. From this equation the time
derivatives of � and � are obtained as
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cosð ����Þ
sinð���Þ

�
¼ �L0 _�

�G
; (55a)

sinð ����Þ
��

cosð���Þ ¼ �L0
_�

�G
: (55b)

The time derivatives of the momenta are unchanged.
We again search for a solution to the corresponding

Hamilton-Jacobi equation in the form S ¼ fð�Þ þ gð�Þ
to find

S ¼ � 1

��

Z
arcsin

�
L0 ��	e2�

2lG

�
d�

þ 1

�

Z
arcsin

�
L0�V

	lG

�
d�þ C; (56)

where 	 and C are constants as before. The expressions for
the momenta are now

�� ¼ @S

@�
¼ 1

�
arcsin

�
L0�V

	lG

�
; (57a)

�� ¼ @S

@�
¼ � 1

�
arcsin

�
L0 ��	e2�

2lG

�
: (57b)

Note that in the fully polymerized theory � has the same
lower bound as before, Eq. (33), whereas e2� is bounded
above:

e2� � 2lG

L0 ��	
: (58)

The solution for � in terms of � can be extracted from the
equation

I2ð�Þ þ 1

�
I1ð�Þ ¼ 
; (59)

where I1ð�Þ is given in Eq. (37) while

I2ð�Þ :¼ 1

2 ��	
arcsin

�
L0 ��	e2�

2lG

�
¼ � 1

2	
��: (60)

Hence we have

e2� ¼ 2lG

L0	 ��
sinð2 ��	
� 2 ��	I1ð�Þ=�Þ: (61)

All other � dependence is unchanged, so we can write
down the metric directly in terms of r:

ds2phys ¼ � dr2

CðnÞðr;M; kÞð1� k2

r2
Þ þ CðnÞðr;M; kÞ

�
2dx

	

�
2

þ r2d�2; (62)

where

CðnÞ :¼ 1

4 �kM

rn�1
S

rn�1
sin

�
4 �kM� 4 �kM

ðn� 1Þ
rn�1
S

IðnÞr

�
; (63)

M and k are again given by (47), and we have defined �k ¼
4 ��L0=	 which is again scale invariant. As before, the
dependency on the fiducial cell size persists, so this solu-
tion is subject to the same criticism as the partially poly-
merized solution.
The emergence of the sine function in the fully poly-

merized metric gives rise to a black hole spacetime that is
qualitatively different from the partially polymerized case.
There will be horizons whenever the argument of the sine
function in (63) equals multiples of �. Taking the initial
value of ��� to be in the principal branch, the event

horizon is located at the surface where the argument of
the sine is zero. (For consistency with the previous section,
the initial value of ��� is also taken to be in the principal

branch.) After the initial condition at the event horizon has
been fixed, the qualitative behavior of the solution depends
on the relative magnitude of M, k, and �k.

Because IðnÞr is an increasing function of r, the solution
has at least one inner horizon if 4 �kM > �. To be more
precise, the number of the inner horizons is equal to the
largest positive integer m which satisfies 4 �kM >m�. The
inner horizons may be unstable due to mass inflation [40].
Again, there is a ‘‘bounce’’ at the minimum value of the
radius, k, as well as a new interior region, corresponding to
the values �=2<��� < � (where � ¼ �1). Note, how-

ever, that the new interior region consists of an infinite
sequence of static and nonstatic regions separated by hori-
zons. This makes it rather difficult to analyze the structure
of the interior spacetime in detail, and because of this one
may rather wish to construct a Reissner-Nordström type of
spacetime by analytically joining together two copies of
the interior. Such black hole scenarios have been recently
considered in LQG [9,12].
We also note that there is no obvious way to extend the

fully polymerized metric (62) to the exterior region outside
the black hole. Indeed, because of the sine function in the
metric, the resulting exterior spacetime would also consist
of an infinite sequence of static and nonstatic regions
separated by horizons, in a similar way as in the case of
the interior region after the bounce. We leave this matter
open for future consideration.

V. 4D SCHWARZSCHILD BLACK HOLE

Much of the current research in singularity avoidance
concentrates on four-dimensional black holes, which have
particular physical relevance. We therefore now review and
expand on our earlier results [16] for the partially poly-
merized solution specifically in four spacetime dimen-
sions. This solution has certain properties, most notably
the asymptotic behavior, which differ in crucial ways from
those of the higher dimensional solutions. After describing
the details of the solution, we shall derive the corrections to
the black hole temperature and entropy caused by partial
polymerization.
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A. The solution

In terms of the radial coordinate r, the metric of the
partially polymerized 4D spacetime is

ds2phys ¼ � dr2

ð2MGð4Þ
r � �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

r2

q
Þð1� k2

r2
Þ

þ
�
2MGð4Þ

r
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

r2

s �
dx2 þ r2d�2; (64)

which has a single bifurcative horizon at

rH :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2MGð4ÞÞ2 þ k2

q
: (65)

As before, the solution evolves from the horizon at rH to
the minimum radius k in finite proper time, and then
expands to r ¼ 1 in infinite proper time. For large r in
the interior, the metric approaches

ds2phys ¼ �
�
1þ 2MGð4Þ

r

��1
dr2 þ

�
1þ 2MGð4Þ

r

�
dx2

þ r2d�2: (66)

The asymptotic interior solution has a nonvanishing stress
tensor with Tr

r ¼ Tx
x / �1=r2. Note that the angular com-

ponents of the stress tensor are zero. This corresponds to an
anisotropic perfect fluid that has been recently considered
in a model of the Schwarzschild interior [41].

It is again convenient to represent the metric of the
complete spacetime in terms of the coordinate y of (51),
for which the metric takes the form

ds2phys ¼ �
�
sinhðyÞ
coshðyÞ �

2MGð4Þ

k coshðyÞ
�
dx2 þ k2cosh2ðyÞ

�
��

sinhðyÞ
coshðyÞ �

2MGð4Þ

k coshðyÞ
��1

dy2 þ d�2

�
: (67)

The exterior asymptotic region of the black hole corre-
sponds to the limit y ! 1, and the asymptotic interior
region corresponds to y ! �1. The Ricci and
Kretschmann scalars are nonsingular for all y and vanish
rapidly for large, positive y. A conformal diagram of the
complete quantum-corrected spacetime is given in Fig. 3.

The nonzero components of the Einstein tensor in the
above coordinates are

Gx
x ¼��1 ��2; Gy

y ¼��2; G�
� ¼G�

� ¼�1
4�1;

(68)

where

�1 ¼ 4MGð4Þ � 2k sinhðyÞ
k3cosh5ðyÞ ; �2 ¼ e�y

k2cosh3ðyÞ : (69)

For large y, we have �1 ! �2k2=r4 with the þ, � signs
corresponding to the interior and exterior, respectively.
Moreover, �2 ! k2=ð2r4Þ in the exterior, whereas it goes

to 2=r2 in the interior. Hence, the violations of the classical
energy conditions are of order k2=r4 which makes them
vanishingly small far from the bounce radius r ¼ k.
However, the quantum stress energy in the interior space-
time does not vanish in the limit where k ! 0. Instead, the
asymptotic region ‘‘pinches off’’ in this limit at the curva-
ture singularity at r ¼ 0, leaving behind the standard,
complete but singular Schwarzschild spacetime and two
disconnected, time-reversed copies of the (singular) cos-
mological spacetime.

B. Temperature and entropy

One of the advantages of partial polymerization is that
the polymerized metric can be naturally extended across
the black hole horizon to the exterior region, giving rise to
a complete, quantum-corrected black hole spacetime. The
exterior region of the resulting spacetime is static and
spherically symmetric, which makes it rather straightfor-
ward to obtain expressions for black hole temperature and
entropy.
The general derivation of black hole temperature in

spherically symmetric 4D spacetimes has been considered
by several authors. Recent studies include Ref. [42], where
the temperature has been obtained using the Hamilton-
Jacobi tunneling method, as well as Ref. [43], which uses
an analysis based on the Bogoliubov transformations.
Defining a new radial coordinate R by

dr

dR
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

r2

s
; (70)

the metric in the exterior region of the partially polymer-

FIG. 3. Conformal diagram of the partially polymerized
Schwarzschild spacetime. The complete spacetime includes
two exterior regions (I an I’), the black hole and the white
hole interior regions (II and II’), and two ‘‘quantum-corrected’’
interior regions (III and III’). The classical singularity is replaced
by a bounce at r ¼ rmin and subsequent expansion to r ¼ 1.
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ized 4D spacetime becomes

ds2phys ¼ �FðRÞdt2S þ
dR2

FðRÞ þ rðRÞ2d�2; (71)

where tS 	 2x=	 is a Minkowski time coordinate at
asymptotical infinity and

FðRÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

rðRÞ2
s

� 2Gð4ÞM
rðRÞ : (72)

The temperature of a corresponding macroscopic black
hole can be written as [42–44]:

T ¼ 1

4�

�
dF

dR

�
r¼rH

; (73)

which represents the temperature measured by an inertial
observer at asymptotic infinity. Note that this temperature
can be also obtained by considering the Euclidean section
of the metric (71) and requiring periodicity.

A straightforward calculation now shows that

T ¼ M

2�r2H

�
1� k2

r2H

�
1=2 þ k2

4�r3H

¼ 1

8�M
� k2

64�M3
þO

�
k4

M5

�
; (74)

where we have, for the sake of brevity, taken Gð4Þ ¼ 1. It is
natural to interpret the ADM mass M as the energy of the
black hole so that the entropy S can be obtained from the
relation:

dS

dM
¼ 1

T
: (75)

As expected, the lowest order correction to the Bekenstein-
Hawking entropy law is logarithmic:

S ¼ 1

4
AS þ �k2

2
lnðASÞ þ S0 þOðA�1

S Þ; (76)

where

AS ¼ 4�r2S ¼ 16�M2 (77)

is the area of the horizon in the unpolymerized theory, and
S0 is a constant.

Note that the positive sign of the prefactor is nonstan-
dard and disagrees with the corrections arising from LQG
[21], as well with some other approaches [22,23].
Interestingly, it does agree with the results found in [25].
The precise correspondence with [25] is obtained by

choosing k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=�

p
, where m is a natural number and

it should be recalled that k is given in Planck units.

VI. CONCLUSIONS

We have presented analytic solutions to the effective
polymerized dynamics of higher dimensional

Schwarzschild black hole interiors using the formalism
of generic dilaton gravity as a starting point. The
quantum-corrected solutions generically contain two inde-
pendent physical parameters, the mass M and the bounce
radius k. Both are invariant under rescalings of the homo-
geneous coordinate, but the latter does depend on the
choice of fiducial cell length L0. As argued in [14] this
suggests that further study is needed to obtain completely
satisfactory singularity resolution. However, the model
may turn out useful in the study of qualitative behavior
of semiclassical black hole spacetimes. Under the assump-
tion that k is of the order of the Planck scale, one obtains a
4D solution with compelling features: there is a single
bifurcative horizon. On the interior the solution reaches a
minimum radius k before expanding into a Kantowski-
Sachs type cosmological solution. The exterior black
hole spacetime has quantum corrections due to the semi-
classical polymerization that drop off as Oðk2=r2Þ and
hence are very small near the horizon of macroscopic black
holes.
In higher dimensions the quantum corrections in the

exterior spacetime solution do not drop off fast enough to
allow a straightforward definition of the Poincaré gener-
ators. They are not asymptotically flat in the usual sense. It
is interesting that the polymerization seems to yield a
sensible quantum-corrected black hole spacetime only in
4D. Given that the polymerization is primarily motivated
by loop quantum gravity, which in turn has only been
formulated in four dimensions, perhaps this is to be
expected.
Finally, we note that the angular part of the spacetime

metric is irrelevant when calculating the temperature of a
macroscopic black hole, and because of that it should be
straightforward to generalize the temperature (73) for ar-
bitrary dimension D. Indeed, Euclidean arguments imme-
diately show that (73) holds regardless of the spacetime
dimension, and using (45) we find that

T ¼ n� 1

4�rH
; (78)

where rH is given implicitly by the solution to (42). A
complete treatment of the thermodynamical properties for
D> 4 must however be treated with caution, given the
nonstandard asymptotic behavior of the solution. This will
be left for future consideration.
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