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The behavior of cosmological evolution is studied in the case when a phantom fluid that contributes to

the accelerated expansion of the Universe is introduced in an FðRÞmodel. At the early stages of the history

of the Universe, the dark fluid is seen to give rise to a deceleration of its expansion. For t close to present

time it works as an additional contribution to the effective cosmological constant and, later, it produces the

transition to a phantom era, which could actually be taking place right now in some regions of the cosmos,

and might have observable consequences. For t close to the rip time, the Universe becomes completely

dominated by the dark fluid, whose equation of state is phantomlike at that time. Our model, which is able

to reproduce the dark energy period quite precisely, may still be modified in such a way that the epoch

dominated by an effective cosmological constant—produced by the FðRÞ term and by the dark fluid

contribution—becomes significantly shorter, which is what happens when a matter term is included. The

dark fluid with phantom behavior gives rise to a superaccelerated phase, as compared with the case where

just the viable FðRÞ term contributes. It is also seen explicitly that an FðRÞ theory can be constructed from
a phantom model in a scalar-tensor theory, in which the scalar field does not behave as phantom (in the

latter case the action for FðRÞ would be complex). Promising FðRÞ models that are able to cross the

phantom divide in a convenient way are constructed explicitly.
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I. INTRODUCTION

Our first aim in this paper will be to build a reliable
cosmological model by using, as starting point, modified
gravity theories of the family of the so-called FðRÞ theories
which comprise the class of viable models, e.g., those
having an FðRÞ function such that the theory can pass all
known local gravity tests (see [1–15]). In the next section,
we will investigate cosmological evolution as coming from
FðRÞ gravity. Wewill consider for FðRÞ some candidates to
produce inflation and cosmic acceleration in a unified
fashion. In particular, we investigate in detail the behavior
of FðRÞ gravity as the contribution of a perfect fluid. As a
crucial novelty, an additional matter fluid will be included
that may play, as we shall see, quite an important cosmo-
logical role. In fact, it may decisively contribute to the two
accelerated epochs of the Universe, that is, we will study a
model where dark energy consists of two separate contri-
butions. The possibilities to obtain precision cosmology
are enhanced in this way.

Two main cases will be discussed: FðRÞ cosmology with
a constant equation of state (EoS) fluid, and FðRÞ cosmol-
ogy in the presence of a phantom fluid. In the last case, a
couple of specific examples will be worked through in
detail, namely, one with a phantom fluid with constant
EoS and, as a second example, a fluid with dynamical

EoS of the type proposed in Refs. [16,17]. In this case, a
dark fluid is present that has an inhomogeneous EoS that
can depend on the proper evolution of the Universe, which
opens a number of very interesting possibilities.
As is well known,FðRÞ gravity can bewritten in terms of

a scalar field—quintessence or phantomlike—by redefin-
ing the function FðRÞwith the use of a scalar field, and then
performing a conformal transformation. It has been shown
that, in general, for any given FðRÞ the corresponding
scalar-tensor theory can, in principle, be obtained,
although the solution is going to be very different from
one case to another. Also, attention will be paid to the
reconstruction of FðRÞ gravity from a given scalar-tensor
theory. It is known [18] that the phantom case in scalar-
tensor theory does not exist, in general, when starting from
FðRÞ gravity. In fact, the conformal transformation be-
comes complex when the phantom barrier is crossed, and
therefore the resulting FðRÞ function becomes complex.
We will see that to avoid this hindrance a dark fluid can be
used in order to produce the phantom behavior in such a
way that the FðRÞ function reconstructed from the scalar-
tensor theory continues to be real. We will prove, in an
explicit manner, that an FðRÞ theory can indeed be con-
structed from a phantom model in a scalar-tensor theory,
but where the scalar field does not behave as a phantom
field (in which case the action for FðRÞwould be complex).
Moreover, we will explicitly show that very interesting and
quite simple FðRÞ models crossing the phantom divide can
be constructed.
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II. FRAMEWORK

Our first aim in this paper will be to construct reliable
cosmological models by using, as a starting point, modified
gravity theories of the family of the so-called FðRÞ theories
that comprise the class of viable models, e.g., those having
an FðRÞ function such that the theory can pass all known
local gravity tests. We now consider the action correspond-
ing to one of these theories which, aside from the gravity
part, also contains a matter contribution, namely,

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½Rþ FðRÞ þ Lm�: (1)

Here, �2 ¼ 8�G, and Lm stands for the Lagrangian corre-
sponding to matter of some kind. Note that the first term in
(1) is just the usual Hilbert-Einstein action, and the FðRÞ
term can be considered, as will be shown below, as the
dynamical part of some kind of perfect fluid (see [19,20]),
which may constitute an equivalent to the so-called dark
fluids. The field equations corresponding to action (1) are
obtained by variation of this action with respect to the
metric tensor g��, which yields

R�� � 1
2g��Rþ R��FðRÞ � 1

2g��FðRÞ
þ g��hF0ðRÞ � r�r�F

0ðRÞ ¼ �2T��: (2)

Here, the primes denote derivatives with respect to R. We
assume a flat Friedmann-Robertson-Walker metric, then
the Friedmann equations are obtained as the 00 and the ij
components. They take the form

3H2 ¼ �2�m � 1
2FðRÞ þ 3ðH þ _HÞF0ðRÞ � 18F0ðRÞðH2 _H

þH €HÞ;
�3H2 � 2 _H ¼ �2pm þ 1

2FðRÞ � ð3H2 þ _HÞF0ðRÞ
�hF0ðRÞ;

(3)

where HðtÞ ¼ _a=a. Note that both equations are written in
such a way that the FðRÞ terms are put on the matter side;
thus, we may define an energy density and a pressure
density for these FðRÞ terms, as follows:

�FðRÞ ¼�1
2FðRÞþ3ðHþ _HÞF0ðRÞ�18F0ðRÞðH2 _HþH €HÞ;

pFðRÞ ¼ 1
2FðRÞ�ð3H2þ _HÞF0ðRÞ�hF0ðRÞ: (4)

Then, the Friedmann Eqs. (3) take a simple form, with two
fluids contributing to the scale factor dynamics. From the
energy and pressure densities defined in (4), one can obtain
the EoS for the dark fluid, defined in terms of the FðRÞ
components. This is written as

wFðRÞ ¼
1
2FðRÞ�ð3H2þ _HÞF0ðRÞ�hF0ðRÞ

�1
2FðRÞþ3ðHþ _HÞF0ðRÞþhF0ðRÞ�r0r0F0ðRÞ

!pFðRÞ
¼��FðRÞ þ2 _HF0ðRÞ�r0r0F0ðRÞ: (5)

The EoS, Eq. (5), defines a fluid that depends on the

Hubble parameters and its derivatives, so it may be con-
sidered as a fluid with inhomogeneous EoS (see [16] or
[17]). In absence of any kind of matter, the dynamics of the
Universe are carried out by the FðRÞ component, which
may be chosen so that it reproduces (or at least contributes)
to the early inflation and late-time acceleration epochs. In
order to avoid serious problems with known physics, one
has to choose the FðRÞ function in order that the theory
contains flat solutions and passes also the local gravity tests
(see [2,3]). To reproduce the whole history of the Universe,
the following conditions on the FðRÞ function have been
proposed (see [2–4]):
(i) Inflation occurs under one of the following condi-

tions:

lim
R!1FðRÞ ¼ ��i (6)

or

lim
R!1FðRÞ ¼ �Rn: (7)

In the first situation (6), the FðRÞ function behaves as
an effective cosmological constant at early times,
while the second condition yields accelerated expan-

sion where the scale factor behaves as aðtÞ � t2n=3.
(ii) In order to reproduce late-time acceleration, we can

impose on function FðRÞ a condition similar to the
one above. In this case, the Ricci scalar has a finite
value, which is assumed to be the current one, so that
the condition is expressed as

FðR0Þ ¼ �2R0 F0ðR0Þ � 0: (8)

Hence, under these circumstances, the FðRÞ term is able to
reproduce the two different accelerated epochs of the
history of the universe. An interesting example that satis-
fies these conditions has been proposed in Ref. [7]:

FðRÞ ¼ �2

2�2

c1ðRc1Þk þ c3

c2ð R�2Þk þ 1
: (9)

This model is studied in detail in Ref. [8], where it is
proven that the corresponding Universe solution goes, in
its evolution, through two different de Sitter points, one of
them being stable and the other unstable and which can be
identified as corresponding to the current accelerated era
and to the inflationary epoch, respectively. Thus, the model
(9) is able to reproduce both accelerated epochs when the
free parameters are conveniently chosen—as was done in
Ref. [8]—in such way that the FðRÞ theory in (9) produces
two de Sitter epochs and graceful exit from the inflationary
stage is achieved. In the same way, from a similar example
given in Ref. [4], we can consider the function

FðRÞ ¼ Rnð�Rn � �Þ
1þ �Rn : (10)

This function, represented in Fig. 1, gives rise to inflation
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at the early stages of the Universe, assuming the condition
(7) holds, while for the current epoch it behaves as an
effective cosmological constant. This is explicitly seen in
Fig. 1, where function (10) is represented for the specific
power n ¼ 2.

Function (10) leads, at the current epoch, to a perfect-
fluid behavior with an EoS given by pFðRÞ � ��FðRÞ. In the
next section such kind of FðRÞ functions will be consid-
ered, with the inclusion of a matter Lagrangian in the
action (1), and the corresponding cosmological evolution
will be studied. We will see that both inflation and the
current acceleration can indeed be produced by the FðRÞ
fluid, provided other components are allowed to contribute
too.

III. COSMOLOGICAL EVOLUTION FROM
VIABLE FðRÞ GRAVITY WITH A FLUID

In this section we will discuss cosmological evolution as
coming from FðRÞ gravity. We consider the function FðRÞ
as given by (10). Functions of this kind have been shown to
yield viable models that comply with all known local
gravity tests (see, e.g., [3]), and they are good candidates
to produce inflation and cosmic acceleration in a unified
fashion. We will study in detail the behavior of FðRÞ
gravity, by considering it as the contribution of a perfect
fluid in the way already explained in the preceding section.
As a crucial novelty, an additional matter fluid will be
incorporated herein, which may play, as we shall see, an
important cosmological role. It may decisively contribute
to the two accelerated epochs of the Universe, which is to
say that we study a model where dark energy consists of
two separate contributions. Some examples of phantom
evolution will then be discussed, in which the FðRÞ con-
tribution acts as a cosmological constant and the additional

fluid behaves as a phantom field, which once again open
interesting new venues.

A. FðRÞ cosmology with a constant EoS fluid
pm ¼ wm�m

We consider a Universe governed by action (1), where
the FðRÞ function is given by (10). The matter term is
represented by a perfect fluid, whose equation of state is
pm ¼ wm�m (where wm ¼ cons) In this case, by consid-
ering this FðRÞ term as a perfect fluid—with energy and
pressure densities given by (4)—the Friedmann equations
reduce to Eqs. (3). For simplicity, we will study the case
where n ¼ 2; then, the function FðRÞ of our specific model
reads (the study can be extended to other values of n
without much problem)

FðRÞ ¼ R2ð�R2 � �Þ
1þ �R2

: (11)

First of all, let us explain qualitatively what the aim of this
model is. For simplicity, we neglect the contribution of
matter, so the first Friedmann equation yields

3H2 ¼�R2ð�R2��Þ
2ð1þ�R2Þ þ 3ðH2þ _HÞ

� 2Rð��R4� 2�R2��Þ
ð1þ�R2Þ2 � 18F0ðRÞðH2 _HþH €HÞ

� 2��2R6þ 20��R4þ 6ð����ÞR2� 2�

ð1þ�R2Þ3 ; (12)

where R ¼ 6ð2H2 þ _HÞ. It can be rewritten as a dynamical
system (see Ref. [8])

_H ¼ C; _C ¼ F1ðH;CÞ; (13)

and it can be shown that its critical points are those that
give a constant Hubble rate ( _H ¼ 0), i.e., the points that
yield a de Sitter solution of the Friedmann equations. We
can now investigate the existence of these points for the
model (11) by introducing the critical pointsH ¼ H0 in the
Friedmann Eq. (12)

3H2
0 ¼ �R2ð�R2 � �Þ

2ð1þ �R2Þ þ 3H2
0

2Rð��R4 � 2�R2 � �Þ
ð1þ �R2Þ2 :

(14)

To simplify, it can be rewritten in terms of the Ricci scalar
R0 ¼ 12H2

0 , which yields

�

4
R5
0 � ��R4

0 þ
�

2
R3
0 þ

1

4
R0 ¼ 0: (15)

This can be solved, so that the viable de Sitter points
(positive roots) are found explicitly. A very simple study
of Eq. (15), by using Descartes’ rule of signs, leads to the
conclusion that Eq. (15) can have either two or no positive
roots. As shown below, one of these roots is identified as an
effective cosmological constant that produces the current

0 Ro
R

0

-2Ro

F(
R

)

FIG. 1. The function FðRÞ as given by (10) for n ¼ 2. We see
that at the current epoch (R� R0), FðRÞ behaves as a cosmo-
logical constant, while for R ! 1 (inflation) its values grow as a
power law.
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accelerated expansion of the Universe, while the second
root can produce the inflationary epoch under some initial
conditions. Then, the model described by the function (11)
is able to unify the expansion history of the Universe. In
order to get a graceful exit from the inflationary epoch,
stability in the vicinity of the critical points needs to be
studied: the corresponding de Sitter point during inflation
must be unstable. This can be achieved, as is already
known for the function (9), by choosing specific values
of the free parameters. Even in the case of stable de Sitter
inflation, exit from it can be achieved by coupling it with
matter, by the effect of a small nonlocal term (or by some
other mechanism).

Let us now study the details of this same model at the
current epoch, when it is assumed that FðRÞ produces the
cosmic acceleration and where the matter component is
taken into account. Function (11) is depicted in Fig. 1; its
minimum is attained at R ¼ R0, which is assumed to be the
current value of the Ricci scalar. Further, FðRÞ as given by
(11) behaves as a cosmological constant at present time.
Imposing the condition ��=� � 1 on the otherwise free
parameters, the values of R0 and FðR0Þ are then given by
[4]

R0 �
�
�

��

�
1=4

; F0ðR0Þ ¼ 0;

FðR0Þ ¼ �2 ~R0 ���

�
:

(16)

For simplicity, we shall study the cosmological evolution
around the present value of the Ricci scalar R ¼ R0, where
(11) can be expressed as FðRÞ ¼ �2 ~R0 þ f0ðR� R0Þ2 þ
OððR� R0Þ3Þ, the solution for the Friedmann Eqs. (3) can
be written as HðtÞ ¼ H0ðtÞ þ 	H, where at zero order the
solution is the same as in the case of a cosmological
constant, namely,

HðtÞ ¼
ffiffiffiffiffiffi
~R0

3

s
coth

�ð1þ wmÞ
ffiffiffiffiffiffiffiffi
3 ~R0

q
2

t

�
: (17)

As pointed out in Ref. [4], the perturbations 	H around the
current point R ¼ R0 may be neglected. Therefore, we can
study the evolution of the energy density (4) for the FðRÞ
term as the EoS parameter defined by (5) around the
minimum of the FðRÞ function, which is assumed to be
the present value of the Ricci scalar. For such purposes, it is
useful to rewrite the Hubble function (17) as a function of
the redshift z, instead of t. The relation between both
variables can be expressed as

1

1þ z
¼ a

a0
¼

�
A sinh

�ð1þ wmÞ
ffiffiffiffiffiffiffiffi
3 ~R0

q
2

t

��
2=ð3ð1þwmÞÞ

;

(18)

where a0 is taken as the current value of the scale parame-

ter, and A2 ¼ �0ma
�3ð1þwmÞ
0 , being �0m the current value of

the energy density of the matter contribution. Hence, the
Hubble parameter (17) is expressed as a function of the
redshift z, as

H2ðzÞ ¼ ~R0

3
½A2ð1þ zÞ3ðwmþ1Þ þ 1�: (19)

Thus, the model characterized by the action (1) with the
function (11) and a matter fluid with constant EoS, depends
on the free parameters (�, �, �) contained in the expres-
sion of FðRÞ and also on the value of the EoS parameter
(wm). When imposing the minimum value for the function
FðRÞ to take place at present time (z ¼ 0), the free pa-
rameters can be adjusted with the observable data. Then we
study the behavior of our model close to z ¼ 0, where the
contributions of nonlinear terms produced by the function
(11) are assumed not to modify the solution (19). In spite of
the Hubble parameter being unmodified, for z close to zero,
the energy density �FðRÞ will in no way remain constant for

small values of the redshift. To study the behavior of the
FðRÞ energy density given by (4) it is convenient to express
it as the cosmological parameter�FðRÞ ¼ �FðRÞ

3H2ðzÞ , which can
be written as

�FðRÞðzÞ ¼ � FðRÞ
6H2ðzÞ þ

�
1þ _HðzÞ

H2ðzÞ
�
F0ðRÞ

� 18F0ðRÞ
�
_HðzÞ þ €HðzÞ

HðzÞ
�
; (20)

where the Ricci scalar is given by R ¼ 6½2H2ðzÞ þ _HðzÞ�.
This expression (20) can be studied as a function of the
redshift. As we are considering the solution (19), which has
been calculated near z ¼ 0, where the FðRÞ function has a
minimum, the second term in the expression (20) is negli-
gible as compared with the other two terms

(F0ðR0ÞR0=F
0ðR0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
��=�

p � 1). This approximation,
as the solution (19), is valid for values of the Ricci scalar
close to R0, where the higher derivatives of FðRÞ are small
compared with the function. The approximation is no
longer valid when the FðRÞ derivatives are comparable
with FðRÞ. Then, as discussed above, the free parameters
of the model can be fitted by the current observational
values of the cosmological parameters, and by fixing the
minimum of FðRÞ to occur for z� 0.
We shall use the value for the Hubble parameter H0 ¼

100h km s�1 Mpc�1 with h ¼ 0:71� 0:03 and the matter
density�0

m ¼ 0:27� 0:04 given in Ref. [21]. In Fig. 2, the
evolution of the FðRÞ energy density (20) is represented for
the model described by (11), where the matter content is
taken to be pressureless (wm ¼ 0). The cosmological evo-
lution shown corresponds to redshifts from z ¼ 1:8 to z ¼
0. For redshifts larger than z ¼ 1:8 perturbations around
the solution (17) are non-negligible, and the expression for
the Hubble parameter (17) is no longer valid. However, in
spite of the fact that the evolution shown in Fig. 2 is not a
complete picture of the FðRÞ model given by (11), it still
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provides an illustrative example to compare it to the stan-
dard �CDM model, which is also represented in Fig. 2,
around the present time. As shown in Fig. 2, both models
have two common points for z ¼ 0 and z ¼ 1:74, while the
behavior of each model between such points is completely
different from one another. This result shows the possible
differences between FðRÞ models of the type (10) and the
�CDM model, although probably other viable models for
FðRÞ gravity may give a different adjustment to the�CDM
model (see [3–7]). Furthermore, the effective EoS parame-
ter for the FðRÞ fluid, wFðRÞ, given by the expression (5), is
plotted in Fig. 3, again as a function of redshift. It is shown
there that wFðRÞ is close to �1 for z ¼ 0, where the FðRÞ
fluid behaves like an effective cosmological constant,
while it grows for redshifts up to z ¼ 1:5, where it reaches
a zero value. According to the analysis of observational

dataset from Supernovae (see Ref. [22]), the results ob-
tained for the evolution of the EoS parameter, represented
in Fig. 3, are allowed by the observations.
As a consequence, the FðRÞ model given by (11), and

where the FðRÞ fluid behaves as an effective cosmological
constant, is able indeed to reproduce the same behavior at
present time as the �CDM model. On the other hand, as
was pointed out in the section above, the FðRÞmodel given
by (11) also reproduces the accelerated expansion of the
inflation epoch, so that the next natural step to undertake
with these kind of models should be to study their complete
cosmological histories, and the explicit details allowing for
a grateful exit from inflation, what should demonstrate
their true potential. Also note that in order to obtain a
realistic well-behaved model, further analysis should be
carried out, as the comparison with the luminosity distance
from Supernovae, or the data from CMB surveys, although
this is a major task, that will be left for future work.
Furthermore, FðRÞ functions of this kind might even lead
to a solution of the cosmological constant problem, by
involving a relaxation mechanism of the cosmological
constant, as was proposed in Ref. [23]. The effective
cosmological constant obtained could eventually adjust
to the observable value. This will also require deeper
investigation.

B. FðRÞ cosmology in the presence of a phantom fluid

According to several analyses of observational data (see
[24,25]), the effective EoS parameter of the physical theory
that governs our Universe should quite probably be less
than�1, which means that we should be ready to copewith
phantom behavior. This possibility has been explored in
FðRÞ theory [18], where the possibility to construct an
FðRÞ function that reproduces this kind of behavior has
been demonstrated, and where the possible future singu-
larities envisaged, as the big rip, so common in phantom
models, do take place. An example is given by (see [19])

fðRÞ � R1��=2;

where � ¼ H0 þ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0ðH0 þ 10Þ þ 1

p
2

; (21)

being H0 is a positive constant, and fðRÞ ¼ Rþ FðRÞ. In
this case, the solution, neglecting other possible compo-
nents, is the following:

HðtÞ � H0

ts � t
; (22)

where the Hubble parameter diverges at the rip time ts.
Another kind of FðRÞ gravity that reproduces a phantom
behavior, but avoids the big rip singularity, is

fðRÞ ¼ ½R� 6H0ðH0 þ 1Þ þ 5=2Þ�

� R� 2H0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð1� 2H0Þ

p
2

; (23)

FIG. 2. Evolution of the cosmological parameter from dark
energy versus redshift, such for FðRÞ theory as for �CDM
model.

FIG. 3. Effective EoS parameter wFðRÞ versus redshift. It takes
values close to �1 for z ¼ 0, and it grows for higher redshifts.
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whereH0 is a positive constant (for other FðRÞmodels with
transient phantom behavior, see [26]). The solution ob-
tained is

HðtÞ ¼ H0tþ 1

2t
: (24)

In this last example, the Universe has a phantom behavior
at large time but there is no big rip singularity. However,
the main problem of those models is that the corresponding
FðRÞ function is not well constrained at small scales.

We will now study the behavior of the cosmological
evolution when a phantom fluid is introduced that contrib-
utes to the accelerated expansion. A phantom fluid can be
described, in an effective way, by an EoS pph ¼ wph�ph,

where wph <�1. This EoS can be achieved, for example,

with a negative kinetic term or in the context of scalar-
tensor theory. The microphysical study of this kind of fluid
is a problem of fundamental physics that has been studied
in several works (see for example [27,28]), as it is also the
study of stability of the solutions. But it is not the aim of
this paper to discuss, in this depth, the features of phantom
fields, and it will suffice for our purpose to consider the
effective EoS that describes a phantom fluid. The FðRÞ
function we will consider is the same as above, given by
(10), which will contribute as an effective cosmological
constant at present time. The motivation for this case study
comes, as will be further explored, from the difficulty one
encounters in constructing viable FðRÞ functions that pro-
duce phantom epochs, and this problem has a translation in
the scalar-tensor picture in the Einstein frame too. As
recent observational data suggest (see [24,25]), the effec-
tive EoS parameter for dark energy is around �1, so that
the phantom case is allowed (and even still favored) by
recent, accurate, and extensive observations.

Example 1. First, we consider a phantom fluid with
constant EoS, e.g., pph ¼ wph�ph, where wph <�1 is a

constant. As in the case above, the FðRÞ function will be
given by (11), and it will be assumed that its current value

is attained at the minimum R0 ¼ ð�=��Þ1=4. Here, we
neglect other contributions, as the dust term studied pre-
viously. Friedmann equations take the form

H2 ¼ �2

2
�ph þ

~R0

3
; _H ¼ ��2

3
�phð1þ wphÞ: (25)

An expanding solution (note that a contracting solution can
be obtained from the above equations too) for these equa-
tions is given by

HðtÞ ¼ 3

2j1þ wphjðts � tÞ þ
ffiffiffiffiffiffi
~R0

3

s
; (26)

where ts is called the rip time, which means the instant
where a future big rip singularity will take place. Although
for tmuch bigger than the present time, the solution (26) is
not valid anymore—because perturbations, due to the de-

rivatives of the function FðRÞ, become large—and as the
Ricci scalar R ¼ 6ð2H2 þ _HÞ grows with time, this model
will behave as FðRÞ � R2 for large times, which is known
to produce accelerated expansion, and whose behavior is
described by (see [1])

HðtÞ / h0
ts � t

; (27)

where h0 ¼ 4
3jwphþ1j . And the effective EoS parameter for

large time is

weff ¼ �1� 4

3h0
: (28)

That is to say, the Universe will go through a super-
accelerated expansion stage due to the phantom fluid and to
the contribution coming from FðRÞ, until it reaches the big
rip singularity. In this case where no other contribution,
such as dust matter or radiation, is taken into account, late-
time acceleration comes from the phantom behavior when
the dark fluid component dominates, while the Universe
behaves as dark energy when the FðRÞ term is the dominant
one (as was in absence of this phantom fluid). In other
words, the Universe would not accelerate as a phantom one
alone, but it will as a dark energy fluid with weff � �1.
This is a fundamental point: the additional dark fluid is
essential for the Universe described by the FðRÞ function
given in (11) to display a phantom transition.
We can study the evolution of this phantom fluid by

using the continuity equation

_� ph þ 3H�phð1þ wphÞ ¼ 0; (29)

which can be solved, at the present time, when the Hubble
parameter is expressed by Eq. (26). Then, the following
solution is obtained:

�ph ¼ �0ph

ej1þwphj
ffiffiffiffiffiffi
3 ~R0

p
t

ðts � tÞ9=2 ; (30)

where �0ph is an integration constant. As we can see, the

energy density for the phantom fluid grows with time until
the rip value is reached where the energy density becomes
infinite. On the other hand, the evolution of the FðRÞ term
may be studied qualitatively by observing the expression
given for the energy density of this fluid in (4), so that this
evolution is similar to the one in the above case. That is, as
the value of the Ricci scalar increases with time, it is
natural to suppose that in the past the energy density
belonging to FðRÞ had smaller values than at present, so
that the matter dominated epoch could occur when the
FðRÞ fluid and the phantom fluid were much less important
than they are now. Again, for this kind of model the FðRÞ
contribution amounts currently to an effective cosmologi-
cal constant, which drives the Universe’s acceleration.
Example 2. As a second example of a phantom fluid, we

consider one with a dynamical EoS of the type proposed in
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Refs. [16,17]. Here, a dark fluid is present that has an
inhomogeneous EoS that may depend on the proper evo-
lution of the Universe. This kind of EoS can be derived
from the dynamics of an scalar field with some character-
istic potential and a variable kinetic term (see [17]), or
either it may be seen as the effective EoS corresponding to
the addition of various components that fill up our
Universe. An EoS of this kind can be written as

pph ¼ w�ph þ gðH; _H; €H . . . ; tÞ; (31)

where w is a constant and g an arbitrary function. The
interesting point is that it is possible to specify a function g
so that a complete solution of the Friedmann equations is
obtained. In this case, our aim is to study a fluid that at
present (or in the near future) can behave as phantom; to
that purpose we choose w ¼ �1, and the role of the g
function will be to determine when exactly the phantom
barrier is crossed. Thus, our model will be described by the
phantom fluid in (31) and the function FðRÞ of (11), while
the matter component can be neglected. As an example, the
EoS for the dark fluid is given by

pph ¼ ��ph �
�
4

�2
h0ðtÞ þ pFðRÞ þ �FðRÞ

�
; (32)

where the prime denotes derivative with respect to time,
and pFðRÞ and �FðRÞ are the energy densities defined in (4).

As it is shown, through the EoS defined in (32), the dark
fluid will contribute to the acceleration of the Universe as a
dark energy, and subsequently as a phantom fluid when it
crosses the barrier wph <�1. We thus see that in this

model accelerated expansion comes from two contribu-
tions, the FðRÞ term (11) and the dark fluid one (32), so
that the accelerated expansion stage could cross the phan-
tom barrier if the dark fluid dominates and contributes as a
phantom one. The difference with respect to the former
model is that in the present case the dark fluid changes its
behavior in the course of the expansion history (this will be
seen again in an example below). As the EoS given in (32)
can be rewritten in terms of the Ricci scalar R, it can be
seen as additional terms to our FðRÞ function, in order to
get the transition to the phantom epoch in the context of
FðRÞ gravity. With the EoS (32), the Friedmann equations
can be solved, the following solution being found:

HðtÞ ¼ hðtÞ: (33)

Different solutions can be constructed by specifying the
function hðtÞ. We are here interested in those solutions that
give rise to a phantom epoch; for those cases the following
splitting of the Hubble parameter is relevant:

HðtÞ ¼ H0

t
þ H1

ts � t
; (34)

where H0, H1, and ts (rip time) are positive constants. This
function describes a Universe that starts in a singularity at
t ¼ 0—which may be identified with the big bang one—

then evolves to a matter dominated epoch, after which an
accelerated epoch starts which is dominated by an effective
cosmological constant and, finally, the Universe enters into
a phantom epoch that will end in a big rip singularity. As in
the cases above, the condition (16) remains, that is
F0ðR0Þ ¼ 0, where R0 is the present value of the Ricci
scalar. Figure 4 is an illustration of how this model works:
we see there that the Universe goes through a decelerated
epoch until it enters a region where the evolution of its
expansion has constant Hubble parameter and the FðRÞ
term behaves as an effective cosmological constant.
Finally, at tph the Universe enters into a superaccelerated

phase, which is dominated by the dark fluid of Eq. (32),
until it eventually reaches the big rip singularity at t ¼ ts.
The aim of this model is that the crossing phantom barrier
takes place very softly, as it is seen in Fig. 4, due to the two
contributions to the acceleration of the expansion of
Universe .
Alternatively, the evolution of the EoS parameter for the

dark fluid (32) can be written as

wph ¼ �1�
4
�2 h

0ðtÞ þ pFðRÞ þ �FðRÞ
6
�2 h

2ðtÞ � �FðRÞ
; (35)

and we may look at its asymptotic behavior,

0 tph ts

t

0

dH(t)/dt
F ’ (R)

FIG. 4. The first derivative of the Hubble parameter is shown
here to illustrate the different epochs of the Universe evolution
(full curve). Also, the first derivative of the FðRÞ term with
respect to R is represented as a function of time (dotted curve);
the constant Hubble parameter region is given by a constant
FðRÞ, which plays the role of an effective cosmological constant.
Starting at t ¼ tph, the Universe enters into a phantom region

dominated by the dark fluid, which ends at t ¼ ts when the big
rip singularity takes over.
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For 0< t � t0 ! wph ��1þ 2ðH0 þ 4Þ
3ð3� 2H2

0Þ
:

For t� t0 ! wph ��1� 4

�2
_H:

For t0; tph � t < ts ! wph ��1� 2

9ð37H2
1
�4H1þ18

H1
Þ
: (36)

We thus see that, at the starting stages of the Universe, the
dark fluid contributes to the deceleration of its expansion.
For t close to the present time t0, it works as a contribution
to an effective cosmological constant and, after t ¼ tph, it

gives rise to the transition to a phantom era of the cosmos,
which could actually be taking place nowadays at some
regions of it. Our hope is that it could even be observable
with specific measurements. Finally, for t close to the rip
time, the Universe becomes completely dominated by the
dark fluid, whose EoS is phantom at that time. This model,
which is able to accurately reproduce the dark energy
period, may still be modified in such a way that the epoch
that is dominated by the effective cosmological constant,
produced by the FðRÞ term and by the dark fluid contribu-
tion, becomes significantly shorter. This is supposed to
happen when a matter term is included.

To finish this section, the inclusion of a dark fluid that
behaves as a phantom one gives rise to a superaccelerated
phase, as compared with the case where just the viable
FðRÞ term contributes. In the two examples here studied,
we have proven that while the FðRÞ term contributes as an
effective cosmological constant, the dark fluid contribution
produces the crossing of the phantom barrier, and it con-
tinues to dominate until the end of the Universe in a big rip
singularity. In other words, both the contribution of FðRÞ
and of the phantom fluid are needed. This is very clearly
seen before, and the nice thing is that because of this
interplay, we have shown the appearance of nice properties
of our model that no purely phantom model could have.
Specifically, for our models above, FðRÞ gravity together
with phantom matter, the effective w value becomes in fact
bigger than �1, so that we are able to show that FðRÞ
gravity can solve the phantom problem simply by making
the phantom field to appear as a normal one.

IV. SCALAR-TENSOR THEORIES AND FðRÞ
GRAVITY WITH A FLUID

We now turn to the study of the solutions given above in
the alternative, and more commonly used, scalar-tensor
picture. In Refs. [18,20,26,29–31], it was pointed out that
FðRÞ gravity can be written in terms of a scalar field—
quintessence or phantomlike—by redefining the function
FðRÞ with the use of a convenient scalar field and then
performing a conformal transformation. The scalar-tensor
theory thus obtained provides a solution that is character-
ized by this conformal transformation, whose expression
depends on the precise form of the FðRÞ function. It has

been shown that, in general, for any given FðRÞ, the
corresponding scalar-tensor theory can in principle be
obtained, although the solution is going to be very different
from case to case. Also, attention has been paid to the
reconstruction of FðRÞ gravity from a given scalar-tensor
theory. It is also known (see [18]) that the phantom case in
scalar-tensor theory does not allow, in general, the corre-
sponding picture in FðRÞ gravity. In fact, the conformal
transformation becomes complex when the phantom bar-
rier is crossed, and then the resulting FðRÞ function be-
comes complex too. To avoid this hindrance, a dark fluid
can be used, as in the models of the preceding section, in
order to produce the phantom behavior in such a way that
the reconstructed FðRÞ function continues to be real. This
point is important, and will be clearly shown below. Also to
be remarked is the fact that scalar-tensor theories, com-
monly used in cosmology to reproduce dark energy (see for
example [32]) provide cosmological solutions whose
stability should be studied in order to demonstrate the
validity of the solution found. This has been investigated,
e.g., in Ref. [28] and requires a very deep and careful
analysis. For the purpose of the current paper, we will
here concentrate in the proof the existence of the solution
in the scalar-tensor counterpart, and the corresponding
stability study will be left for future work.
We start with the construction of the scalar-tensor theory

from FðRÞ gravity. The action (1) can be written as

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½Pð
ÞRþQð
Þ þ Lm�; (37)

which is known as the Jordan frame. Here, FðRÞ has been
written in terms of a scalar field. To recover the action (1)
in terms of FðRÞ, the scalar field equation resulting from
the variation of the action (37) with respect to 
 is used,
which can be expressed as follows:

P0ð
ÞRþQ0ð
Þ ¼ 0; (38)

where the primes denote derivatives with respect to 
.
Then, by solving Eq. (38) we get the relation between
the scalar field 
 and the Ricci scalar, 
 ¼ 
ðRÞ. In this
way, the original FðRÞ function and the action (1) are
recovered:

Rþ FðRÞ ¼ Pð
ðRÞÞRþQð
ðRÞÞ: (39)

Finally, the scalar-tensor picture is obtained by performing
a conformal transformation on the action (37). The relation
between both frames is given by

gE�� ¼ �2g��; where �2 ¼ Pð
Þ; (40)

where the subscript E stands for Einstein frame. A quin-
tessencelike action results in the Einstein frame
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SE ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�gE

p �
RE � 1

2
!ð
Þd�
d�
�Uð
Þ

þ �ð
ÞLmE

�
;

where

!ð
Þ ¼ 12

Pð
Þ
�
d

ffiffiffiffiffiffiffiffiffiffiffi
Pð
Þp
d


�
2
;

Uð
Þ ¼ Qð
Þ
P2ð
Þ and �ð
Þ ¼ Pð
Þ

(41)

are the kinetic term, the scalar potential, and the coupling
function, respectively. Hence, by following the steps enum-
erated above, we can reconstruct the scalar-tensor theory
described by the action (41) for a given FðRÞ gravity. By
redefining the scalar field 
 ¼ R, and after combining
Eqs. (38) and (39), the form of the two functions Pð
Þ
and Qð
Þ are found
Pð
Þ ¼ 1þ F0ð
Þ; Qð
Þ ¼ F0ð
Þ
� Fð
Þ: (42)

Hence, for a given solution in the Jordan frame (37), the
solution in the corresponding quintessence/phantom scalar
field scenario—i.e., in the Einstein frame (41)—is obtained
by the conformal transformation (40), and it is given by

aEðtEÞ ¼ ½1þ F0ð
ðtÞÞ�1=2aðtÞ
where dtE ¼ ½1þ F0ð
ðtÞÞ�1=2dt:

(43)

Here, we will be interested in the phantom case. With that
purpose, we analyze the model described in the above
section by the FðRÞ function (11) and the dark fluid with
EoS (32), and whose solution is (34). For simplicity, we
restrict the reconstruction to the phantom epoch, when the

solution can be written as HðtÞ � H1

ts�t , and FðRÞ � �
� R

2.

Using (42), the function Pð
ðtÞÞ takes the form PðtÞ �
2 �
� R

2 ¼ 2�H1ðH1þ1Þ
�

1
ðts�tÞ as a function of time t in the

Jordan frame. Then, using (43), the solution in the
Einstein frame is found

tE ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�H1ðH1 þ 1Þ

�

s
lnðts � tÞ ! aEðtEÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�H1ðH1 þ 1Þ

�

s
exp

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2�H1ðH1 þ 1Þ
s

tE

�
: (44)

Through the relation between the time coordinates in both
frames, we see that while for the Jordan frame there is a big
rip singularity, at t ¼ ts, this corresponds in the Einstein
frame to t ! 1, so that the singularity is avoided, and there
is no phantom epoch there. By analyzing the scale parame-
ter in the Einstein frame, we realize that it describes a
de Sitter universe, while in the Jordan frame the Universe
was described by a phantom expansion. As a consequence,
we have shown that a phantom Universe in FðRÞ gravity

may be thoroughly reconstructed as a quintessencelike
model, where the phantom behavior is lost completely.
This has been achieved in a fairly simple example and
constitutes an interesting result.
Let us now explore the opposite way. In this case, a

phantom scalar-tensor theory is given and it is FðRÞ gravity
that is reconstructed. As was pointed out in Ref. [18], when
a phantom scalar field is introduced, then the correspond-
ing FðRÞ function—which is reconstructed, close to the big
rip singularity, by means of a conformal transformation
that deletes the kinetic term for the scalar field—is in
general complex. As a consequence, there is no correspon-
dence in modified gravity when a phantom scalar produces
a big rip singularity. However, in our case wewill analyze a
scalar-tensor theory that includes a phantom fluid that is
responsible for the phantom epoch and for the big rip
singularity. In this situation a real FðRÞ gravity will be
generically reconstructed, as we are going to see.
The action that describes the scalar-tensor theory is

SE ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�gE

p �
RE � 1

2
!ð
Þd�
d�
�Uð
Þ

þ �ð
ÞLphE

�
; (45)

where�ð
Þ is a coupling function and LphE the Lagrangian

for the phantom fluid in the Einstein frame. In our case, we
consider a phantom fluid with constant EoS pphE ¼
wph�phE, with wph <�1. The Friedmann equations in

this frame are written as

H2
E ¼ �2

3

�
1

2
!ð
Þ _
2 þ Vð
Þ þ �ð
Þ�phE

�
;

_HE ¼ ��2

2
ð!ð
Þ _
2 þ �ð
Þ�phEð1þ wphÞÞ:

(46)

To solve the above equations, it turns out to be very useful
to redefine the scalar field as 
 ¼ tE. Then, for a given
solution HEðtEÞ, the kinetic term for the scalar field can be
written as follows:

!ð
Þ ¼ �
4
�2 ð _HE þ 3ð1þ wphÞH2

EÞ � ð1þ wphÞVð
Þ
1� wph

:

(47)

To reconstruct FðRÞ gravity, we perform a conformal trans-
formation that deletes the kinetic term, namely,

g��E ¼ �2g��;

where �2 ¼ exp

�
�

ffiffiffi
2

3

s
�
Z

d

ffiffiffiffiffiffiffiffiffiffiffiffi
!ð
Þ

q �
: (48)

Note that for a phantom scalar field that is defined by a
negative kinetic term, the above conformal transformation
would be complex, as remarked in Ref. [18] and as will be
shown below. Thus, the reconstructed action would be
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complex, and no FðRÞ gravity could be recovered. By
means of the above conformal transformation, action (45)
is given by

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
e½�

ffiffiffiffiffiffiffiffi
ð2=3Þ

p
�
R

d

ffiffiffiffiffiffiffiffi
!ð
Þ

p
�

2�2
R

� e½�2
ffiffiffiffiffiffiffiffi
ð2=3Þ

p
�
R

d

ffiffiffiffiffiffiffiffi
!ð
Þ

p
�Vð
Þ þ Lph

�
; (49)

where Lph is the Lagrangian for the phantom fluid in the

Jordan frame, whose energy-momentum tensor is related

with the one in the Einstein frame by Tph
�� ¼ �2TphE

�� , and
where we have chosen a coupling function �ð
Þ ¼ ��4,
for simplicity. By varying now the action (49) with respect
to 
, the scalar field equation is obtained

R ¼ e½�
ffiffiffiffiffiffiffiffi
ð2=3Þ

p
�
R

d

ffiffiffiffiffiffiffiffi
!ð
Þ

p
�
�
4�2Vð
Þ 	

ffiffiffiffiffiffiffiffiffiffiffiffi
6

!ð
Þ

s
V 0ð
Þ

�
;

(50)

which can be solved as 
 ¼ 
ðRÞ, so that by rewriting
action (49), the following FðRÞ gravity picture result

FðRÞ ¼ e½�
ffiffiffiffiffiffiffiffi
ð2=3Þ

p
�
R

d

ffiffiffiffiffiffiffiffi
!ð
Þ

p
�

2�2
R

� e½�2
ffiffiffiffiffiffiffiffi
ð2=3Þ

p
�
R

d

ffiffiffiffiffiffiffiffi
!ð
Þ

p
�Vð
Þ: (51)

Hence, for some coupling quintessence theory described
by action (45), it is indeed possible to obtain a real FðRÞ
theory, by studying the system in the Jordan frame through
the conformal transformation (48).

To demonstrate this reconstruction explicitly, an ex-
ample will now be given. As we are interested in the case
of a phantom epoch close to the big rip singularity, we will
start from a solution in the Einstein frame HE � 1

ts�tE
, and

a scalar potential given by Vð
Þ � ðts �
Þn, with n > 0.
Then, the kinetic term (47) is written as

!ð
Þ � � 2
�2 ð2þ 3ð1þ wphÞÞ

1� wph

1

ðts �
Þ2 : (52)

The solution in the Jordan frame is calculated by perform-
ing the conformal transformation (48)

ðts � tEÞ ¼
��

1	 k

2

�
t

�
1=ð1	k=2Þ

! aðtÞ �
��

1	 k

2

�
t

��ðð1�kÞ=ð1	kÞÞ
; (53)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 8ð1þ3ð1þwphÞÞ

3ð1�wphÞ

r
and wph <�1. Note that in

this case we can construct two different solutions, and
correspondingly two different FðRÞ models, depending
on the sign selected in Eq. (48). It is easy to see that the
big rip singularity is thereby transformed, depending on the
case, into an initial singularity (þ ), or into an infinity

singularity (� ). By using (50) and (51), the following
function FðRÞ is recovered:

FðRÞ � ð R
4�2Þð�kÞ=ðn�kÞ

2�2
R�

�
R

4�2

�ðn�2kÞ=ðn�kÞ
: (54)

To summarize, we have here shown, in an explicit manner,
that an FðRÞ theory can be actually constructed from a
phantom model in a scalar-tensor theory where the scalar
field does not behave as a phantom one (in that case the
action for FðRÞ would become complex). Moreover, very
interesting FðRÞ models crossing the phantom divide can
also be constructed explicitly [26]. The above reconstruc-
tion procedure, where we have taken the FðRÞ function of
(11), can be generalized to other types of modified gravity
models (for recent reviews see [33,34]).

V. DISCUSSION

We have seen in this paper that the FðRÞmodel given by
(11), and where the FðRÞ fluid behaves as an effective
cosmological constant, is able to reproduce the same be-
havior, at present time, as the �CDM model. On the other
hand, this model gives rise to the accelerated expansion of
the inflation epoch too, so that the natural next step to
undertake with those models would be to study the com-
plete cosmological history, in particular, (what is very
important) the explicit details for a graceful exit from
inflation, which would demonstrate their actual potential.
What is more, FðRÞ functions of this kind might even lead
to a solution of the cosmological constant problem by
involving a relaxation mechanism of the cosmological
constant, as was indicated in [23] (see also the very recent
paper [35]). The effective cosmological constant thus ob-
tained could eventually adjust to its precise observable
value. This issue is central and deserves further
investigation.
We have studied the behavior of the cosmological evo-

lution when a phantom fluid is introduced that contributes
to the accelerated expansion of the Universe. The FðRÞ
function we have considered is the one given in (10), which
contributes as an effective cosmological constant at present
time. The motivation for this case study comes, as it will be
further explored, from the difficulty one encounters to
construct viable FðRÞ functions that produce phantom
epochs, and this has a representation in the scalar-tensor
picture in the Einstein frame. As recent observational data
suggest (see [24,25]), the effective EoS parameter for dark
energy is around�1, so that the phantom case is allowed—
and actually favored by recent, extensive observations.
We thus have seen that at the early stages of the history

of the Universe, the dark fluid contributes to the decelera-
tion of its expansion. For t close to present time t0, it works
as a contribution to an effective cosmological constant and,
after t ¼ tph, it gives rise to the transition to a phantom era

of the Universe, which could actually be taking place right
now in some regions of it. Our hope is that it could be
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actually observable. Finally, for t close to the rip time, the
Universe becomes completely dominated by the dark fluid,
whose EoS is phantomlike at that time. This model, which
is able to reproduce the dark energy period quite precisely,
may still be modified in such a way that the epoch domi-
nated by the effective cosmological constant, produced by
the FðRÞ term and by the dark fluid contribution, becomes
significantly shorter. This is the case when a matter term is
included.

The inclusion of a dark fluid with phantom behavior
gives rise to a superaccelerated phase, as compared with
the case where just the viable FðRÞ term contributes. In the
two examples investigated in the paper we have proven that
while the FðRÞ term contributes as an effective cosmologi-
cal constant, the dark fluid term produces the crossing of
the phantom barrier, and it continues to dominate until the
end of the Universe in a big rip singularity. It is for this
reason that the contribution of FðRÞ and of the phantom
fluid are both fundamental. This has been clearly explained
in the paper, and the nice thing is that because of this
interplay, we have shown the appearance of very nice
properties of our model that no purely phantom model
could have. This eliminates in fact some of the problems
traditionally associated with phantom models and makes
this study especially interesting. In particular, for some of
our models of FðRÞ gravity together with phantom matter,
the effective w value becomes in fact bigger than �1, so

that we were able to show that FðRÞ gravity can solve the
phantom problem simply by making the phantom field to
appear as a normal field.
To summarize, we have shown here, in an explicit

manner, that an FðRÞ theory can indeed be constructed
from a phantom model in a scalar-tensor theory in which
the scalar field does not behave as a phantom one (in the
latter case the action for FðRÞ would be complex).
Moreover, very promising FðRÞ models that cross the
phantom divide can be constructed explicitly (see also
[26]). The above reconstruction procedure, where we
have taken (11) for the FðRÞ function, can be generalized
to other classes of modified gravity models.
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[17] D. Sáez-Gómez, Gravitation Cosmol. 15, 134 (2009).
[18] F. Briscese, E. Elizalde, S. Nojiri, and S. D. Odintsov,

Phys. Lett. B 646, 105 (2007).
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EMILIO ELIZALDE AND DIEGO SÁEZ-GÓMEZ PHYSICAL REVIEW D 80, 044030 (2009)

044030-12


