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It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra

dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming

that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a

certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This

bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant

in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted

with respect to their standard values. This effect opens up new scenarios where a maximally symmetric

solution in higher dimensions could decay into the compactified spacetime either by tunneling or through

a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra

dimensions and the four-dimensional cosmological constant to be small.
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The original dream of unifying the fundamental inter-
actions through the dimensional reduction of pure general
relativity (GR) with cosmological constant in vacuum is
appealing not least because of its simplicity and economy
of ingredients. However, requiring both the inclusion of
non-Abelian fields and a small four-dimensional cosmo-
logical constant is inconsistent with the fact that the com-
pact ‘‘internal’’ manifold has to be of sufficiently small
size (see, e.g., [1]). Thus, if one keeps GR as the higher-
dimensional theory to begin with, one cannot avoid intro-
ducing new fundamental matter fields in higher dimen-
sions. Albeit that this fact somehow perverts the original
dogma of obtaining bosonic fields from pure geometry in
higher dimensions, matter fields of a higher-dimensional
origin could be welcome in this vein insofar as the arbi-
trariness in their choice was removed by requiring some
basic principle for the fundamental theory to hold, as, for
instance, local supersymmetry. Most of what we have
learned about dimensional reduction has been developed
along this line, mainly within the context of supergravity in
diverse dimensions and string theory (for a review see, e.g.,
[2] and references therein).

We propose to explore whether one could return to the
original dream of having a realistic model for bosonic
fields arising from pure geometry in higher dimensions.
This scenario should then accommodate consistently non-
Abelian gauge fields and small cosmological constant with
a sufficiently small compact internal manifold.

Note that in dimensions higher than 4, GR is not the only
option for the gravity theory to begin with. Indeed, the
same basic requirements that yield the Einstein-Hilbert
action with cosmological constant in four dimensions,

i.e., general covariance and second order field equations
for the metric, give rise to the Lovelock action [3]. This
action contains higher powers in the curvature in a precise
combination and its Kaluza-Klein reduction will always
give field equations for the matter fields of second order.
The simplest modification of GR in higher dimensions
corresponds to the addition of quadratic terms in the so-
called Gauss-Bonnet combination. Thus, it is natural won-
dering whether the Einstein-Gauss-Bonnet (EGB) theory
admits suitable spontaneous compactifications to four di-
mensions. In the case of spontaneous compactifications of
EGB theory in vacuum, the Einstein equations are recov-
ered, but with an additional scalar condition which over-
constrains the four-dimensional gravitational field, so that
even the Schwarzschild solution becomes excluded [4].
Nonetheless, here it is shown that GR with small cos-

mological constant, without any additional constraint on
the four-dimensional geometry, can be recovered from
spontaneous compactifications with small extra dimen-
sions, provided cubic or higher order terms in the
Lovelock series are considered, with a single relation
among the coupling constants. Remarkably, the effective
four-dimensional Newton constant is not proportional to
the gravitational constant in higher dimensions, but instead
shifted with respect to the standard value. This effect opens
up new interesting scenarios which are analyzed below.
The mechanism bounds the higher dimension to be at least
7, since this is the smallest dimension that admits a non-
trivial cubic term in the action. It is instructive to perform
the complete analysis in this case.
Spontaneous compactifications.—In seven dimensions,

the Lovelock action acquires a simple expression when it is

PHYSICAL REVIEW D 80, 044029 (2009)

1550-7998=2009=80(4)=044029(5) 044029-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.044029


written in terms of differential forms, which read

I7 ¼
Z
M7

�ABCDEFG

�
c3R

ABRCDREF þ c2
3
RABRCDeEeF

þ c1
5
RABeCeDeEeF þ c0

7
eAeBeCeDeEeF

�
eG; (1)

where RAB and eA stand for the curvature two-form and the
vielbein, respectively, and the wedge product between
forms is understood. Let us look for spontaneous compac-
tifications of the formM7 ¼ M4 � K3, whereM4 is a four-
dimensional Lorentzian manifold, and K3 is a compact
Euclidean manifold, which for simplicity is assumed to
be of constant curvature Rab ¼ �3e

aeb. Indices are split
into Greek on M4 and lowercase Latin on K3. Then, it is
simple to show that in the vanishing torsion sector, the field
equations along M4 reduce to the Einstein equations with
cosmological constant in vacuum

1

8� ~G4

ðG�� þ�4g��Þ ¼ 0; (2)

where the effect of the quadratic and cubic terms just
amounts to a redefinition of the Newton and cosmological

constants, given by ~�4 :¼ ð16� ~G4Þ�1 ¼ 4!VolðK3Þðc1 þ
c2�3Þ and �4 ¼ �3 5c0þc1�3

c1þc2�3
. Here, VolðK3Þ stands for the

volume of K3. Then, the remaining field equations, corre-
sponding to the projection along K3, generically reduce to
an additional scalar condition on the four-dimensional
geometry, fixing the Euler density of M4 to be a constant,
i.e.,

ðc2 þ 3c3�3ÞðR����R���� � 4R��R�� þ R2Þ

þ 24

�
c0ð5�3c2 � 15c1Þ ��3c1ð5c1 ��3c2Þ

c1 þ c2�3

�
¼ 0:

(3)

This equation conflicts with most solutions of the Einstein
equations. In particular, for the EGB theory (c3 ¼ 0) the
four-dimensional gravitational field becomes overcon-
strained, so that even the Schwarzschild–(anti) de Sitter
(A)dS solution is excluded. In the presence of (3), sponta-
neous compactifications have been found [5]. However, the
obstruction on the four-dimensional metric imposed by (3)
can be eliminated when the cubic term is switched on,
provided the curvature radius of K3 is fixed as �3 ¼
�c2=ð3c3Þ, for the class of theories whose couplings are
related such that the square bracket of (3) vanishes. Since
the cubic term must be present in order for the above
mechanism to work, the coupling c3 can be regarded as

the overall factor of the action, so that it is useful to work
with the rescaled couplings ~ci ¼ ci=c3.
In sum, the class of theories given by

~c 0 ¼ ~c1~c2ð15~c1 � ~c22Þ
15ð9~c1 þ ~c22Þ

; (4)

admits spontaneous compactifications in vacuum where
the four-dimensional geometry fulfills the Einstein field
equations in vacuum with neither corrections nor further
constraints, and the effect of the quadratic and cubic terms
just amounts to a redefinition of the Newton and cosmo-
logical constants, which are given by

~� 4 ¼ 4!VolðK3Þc3
�
~c1 � ~c22

3

�
; �4 ¼ � 6~c1~c2

9~c1 þ ~c22
;

(5)

respectively, and the curvature radius of the extra dimen-
sions turns out to be fixed only in terms of the rescaled
Gauss-Bonnet coupling, �3 ¼ �~c2=3.
This clearly differs from the spontaneous compactifica-

tion of the Einstein theory which fixes both�3 and�4 to be
proportional to the cosmological constant in seven dimen-
sions, preventing the compatibility of a tiny four-
dimensional cosmological constant with small enough ex-
tra dimensions. Remarkably, the obstruction appearing in
GR can be surmounted in the present framework, since the
induced cosmological constant in four dimensions (5)
depends on two parameters. Hence, in this scenario it is
possible to accommodate consistently a tiny cosmological
constant in four dimensions with a sufficiently small com-
pact internal manifold. The condition j�4=�3j � 1
amounts to requiring j9~c1=~c22j � 1, from which it is ap-
parent that the higher curvature terms cannot be regarded
as small corrections of GR in higher dimensions. Note that
it is also possible to have �3 and �4 of opposite signs
without the need of introducing matter fields.
Note that, the effective four-dimensional Newton con-

stant ~�4 in Eq. (5) acquires a shift as compared with the
standard value �4 obtained from Einstein’s theory, which
in our conventions reads �4 ¼ 4!VolðK3Þc1. Remarkably,
the positivity of ~�4 can be guaranteed even if the standard
Newton constant in higher dimensions, given by c1 ¼
ð4!16�G7Þ�1, is negative or even vanishing. In other
words, it is possible to recover GR in four dimensions
from a seven-dimensional theory even without the
Einstein-Hilbert term. This effect opens up new interesting
scenarios where a maximally symmetric solution in higher
dimensions could decay into the spontaneously compacti-
fied spacetime either by tunneling or through a gravita-
tional analog of ghost condensation. Indeed, we now show
that this is what occurs when both the extra dimensions and
the four-dimensional cosmological constant are required to
be small.
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Maximally symmetric spacetimes versus spontaneous
compactifications.—The presence of cubic terms in the
action (1) allows the existence of up to three maximally
symmetric solutions, and each of them, in principle, can be
regarded as an uncompactified ground state. Indeed, in the
case of constant curvature spacetimes, RAB ¼ �7e

AeB, the
field equations reduce to a cubic polynomial in �7 given by

Pð�7Þ :¼ �3
7 þ ~c2�

2
7 þ ~c1�7 þ ~c0 ¼ 0; (6)

and hence the theory admits at most three possible maxi-
mally symmetric ground states whose radii are determined
by the real roots ��7 of (6).

Note that generically, the seven-dimensional Newton
constant is not determined by the coefficient c1 in front
of the Einstein-Hilbert term, which could even be absent
from the very beginning, since the linearized field equa-
tions around any of the maximally symmetric ground states
of curvature ��7 reduce to the standard Fierz-Pauli equation
but with a different overall factor. This can be seen linear-
izing the field equations, expressing the vielbein as eA ¼
�eA þ �eA, where �eA stands for the chosen background. The
linearized field equations then read

c3P
0ð ��7Þ�A1���A6B�ðRA1A2 � ��7e

A1eA2Þ �eA3 � � � �eA6 ¼ 0;

and the corresponding Newton constant is given by

�� 7 :¼ 1

16� �G7

¼ 4!c3P
0ð ��7Þ: (7)

Hence, each ground state possesses its own Newton con-
stant that depends on c3 and the slope of the polynomial (6)
evaluated at the corresponding root. Thus, the linearized
field equations acquire support provided the expansion is
performed around a nondegenerate root. Since the sign of
the second variation of the effective action that defines the
graviton propagator is determined by ��7, for different
uncompactified ground states, the graviton could behave
as a particle or as a ghost, as occurs for the EGB theory [6].

It is worth remarking that the maximally symmetric
spacetimes for which the graviton behaves as a ghost
should not be discarded from scratch. Indeed, from the
point of view of dimensional reduction, one might expect
that they correspond to a sort of false vacua which could
decay to the spontaneously compactified spacetime, where
the graviton has a well-defined propagator, through a
gravitational analog of ghost condensation (see Ref. [7]).
In this case, the transition, instead of being driven by an
additional scalar field, is triggered by the higher-
dimensional graviton in vacuum. Note that even those
vacua whose seven-dimensional graviton behaves as a
particle could still be metastable against decay into the
compactified spacetime by tunneling.

Both possibilities open up new interesting scenarios
which do not occur for spontaneous compactifications of
(super) gravity based on the Einstein-Hilbert action in
higher dimensions, which nevertheless could be compat-
ible with some more recent alternatives to compactification
[8]. Note that for a theory that possesses a maximally
(super)symmetric vacuum with well-defined propagators
around it, it is not simple to explain why the theory does
not prefer this configuration as the ground state, instead of
choosing a compactified spacetime. In the present frame-
work, considering a theory that does not possess a suitable
uncompactified ground state is welcome, since it could
naturally provide a dynamical mechanism of spontaneous
dimensional reduction (see also [9]).
Let us discuss the possible scenarios within the class of

theories defined by (4), which admits spontaneous com-
pactifications consistent with GR in vacuum. The arbitra-
riness in the choice of the coupling constants for this class
of theories is further restricted requiring a few conditions
compatible with a realistic four-dimensional picture. Thus,
requiring both a tiny (preferably positive) four-
dimensional cosmological constant and small enough extra
dimensions implies j�4j � j�3j, which in terms of the
coupling constants reads 9j~c1j � ~c22. Consequently, since
the effective Newton constant in four dimensions ~�4 has to
be positive, Eq. (5) implies that the overall factor in front of
the action must be negative. In other words, the condition
c3 < 0 is necessary in order to have a well-defined propa-
gator for the graviton in four dimensions.
Although it is not necessary, hereafter we restrict to the

case �3 > 0 (i.e., ~c2 < 0) in order to allow the presence of
non-Abelian gauge fields. Note that c2 > 0 is compatible
with string theory [6]. The analysis then splits into three
cases according to the sign of ~c1, which due to the above
requirements, coincides with the sign of �4.
�4 < 0: The polynomial (6) has a positive slope at its

unique real root which is simple and positive. Thus, there is
a single maximally symmetric solution of positive curva-
ture (dS7), and since ��7 < 0 [see Eq. (7)], the seven-
dimensional graviton behaves like a ghost. The spontane-
ous compactification has a well-defined graviton in four
dimensions [see Eq. (5)]. This suggests that dS7 could
spontaneously decay into the less symmetric solution,
AdS4 � S3, through the gravitational analog of ghost
condensation.
�4 ¼ 0: The polynomial Pð�7Þ has two real roots, and it

has a positive slope at the simple one which is positive.
Thus, one of the maximally symmetric vacua corresponds
to dS7, which is expected to decay through gravitational
ghost condensation into the compactified vacuum, M4 �
S3, having a well-defined propagator for the graviton. The
doubly degenerate root vanishes (i.e., ��7 ¼ 0 and ��7 ¼ 0),
so that the maximally symmetric solution is Minkowski
spacetime around which the linearized equation for gravi-
ton has no support. Thus, since the propagator is ill defined,

GENERAL RELATIVITY WITH SMALL COSMOLOGICAL . . . PHYSICAL REVIEW D 80, 044029 (2009)

044029-3



flat spacetime is expected to be a sort of false vacuum. This
scenario is similar to the one in Ref. [9], where it is shown
that in order to have propagation for the graviton, the
spatial components of the curvature cannot be small.
Hence, propagating deviations around flat spacetime are
nonlocal and would require too much energy, since they are
nonperturbative. In this case the spontaneous compactified
spacetime, M4 � S3, is expected to be preferred since it
admits a well-defined low energy limit.

�4 > 0: Pð�7Þ has three real roots, �ð1Þ
7 < 0< �ð2Þ

7 <

�ð3Þ
7 . As the slope of the polynomial at �ð1Þ

7 and �ð3Þ
7 is

positive, the seven-dimensional graviton behaves as a
ghost around the corresponding maximally symmetric
AdS7 and dS7 spacetimes, respectively, which would decay
into the spontaneous compactification dS4 � S3. Since the
slope of the polynomial at the remaining root is negative,
the corresponding Newton constant becomes positive, and
so the graviton in seven dimensions acquires a well-defined

propagator around dS7 with curvature �ð2Þ
7 . Nonetheless,

this seven-dimensional vacuum appears to be metastable
against decay through tunneling into the compactified
configuration dS4 � S3. A crude estimate of the tunneling
rate can be obtained in the semiclassical approximation
through the difference of the Euclidean version of the
action (1) evaluated on the corresponding Eucildean con-
tinuations, S7 and S4 � S3, respectively.

In the case of S4 � S3, for theories with x :¼ 9~c1~c
�2
2 ¼

ð2�3=�4 � 1Þ�1 � 1 (i.e., �4 � �3), the Euclidean ac-
tion, up to an overall positive factor, becomes I4;3 ’
�c3x

�1; while for S7, of curvature given by �ð2Þ
7 ¼

ð~c1=15Þ1=2 þOðxÞ, the action is given by I7 ’ �c3x
�3=4.

Since in our conventions the most likely vacuum is the one
with the larger Euclidean action, for a realistic picture (i.e.,
for small x), the seven-dimensional de Sitter solution turns
out to be metastable against tunneling into the spontane-
ously compactified vacuum dS4 � S3, because the latter
clearly has a larger Euclidean action.

Note that this is not a possibility for the Einstein theory
with positive �7 in vacuum, since not only �3 and �4

are of the same order as �7, but the tunneling mechanism
goes in the opposite way, since dS7 turns out to be
more likely than dS4 � S3. Indeed, as the on-shell value
of the Euclidean action is given by IEHðM7Þ ¼
ð20�G7Þ�1�7VolðM7Þ, and as the seven sphere has a better
distributed volume than S4 � S3, one obtains that

IEHðS7Þ=IEHðS4 � S3Þ ¼ 33=2=4> 1. Therefore, GR in
vacuum prefers the uncompactified spacetime. In our
framework as the action possesses additional fundamental
constants, the tunneling mechanism acquires a control
parameter x, which for a small enough value, allows a
concrete realization of spontaneous breakdown of the vac-
uum symmetry from SOð7; 1Þ to SOð4; 1Þ � SOð4Þ.

In summary, for the class of theories admitting sponta-
neous compactifications consistently with GR in vacuum,
defined by (4), once required to be compatible with a

reasonable four-dimensional picture, the spontaneously
compactified vacuum turns out to be preferred with respect
to the maximally symmetric spacetime, since the latter
would decay either by the gravitational analog of ghost
condensation or by tunneling.
Gauge fields with shifted coupling.—Since the theory (1)

is generally covariant the massless gauge fields are guar-
anteed to be gauge invariant. Switching on only the mass-
less modes for the gauge field, the field equations reduce to
Yang-Mills at the linearized level, i.e.,

4ð3c1 þ c2�3Þ �r�@½�A
ðaÞ
�� ¼ 0: (8)

Hence, as �3 ¼ �c2=ð3c3Þ, the gauge coupling is shifted
by c1 ! c1 � c22=ð9c3Þ, compared with Weinberg’s for-
mula obtained from compactification of GR [10]. Note
that the gauge coupling is neither proportional to the
standard nor the effective Newton constant (5). The gauge
field possesses a well-defined propagator provided the
effective gauge coupling is positive, and it is reassuring
to verify that this is the case for the realistic scenarios
discussed above with j�4=�3j � 1 and ~�4 > 0.
As occurs for the compactifications of GR, the analysis

of the scalar field propagator requires special attention.
This, as well as how the Kaluza-Klein tower differs from
the one obtained from standard (super)gravity in higher
dimensions, is left for future research. It is also worth
mentioning that the fact that Lovelock theories admit
propagating degrees of freedom for torsion in vacuum
[11] may help to obtain realistic chiral fermions from
spontaneous compactifications [12].
The mechanism that leads to spontaneous compactifica-

tions in vacuum consistent with GR in four dimensions
actually carries through in D � 7 dimensions. It would be
interesting to explore compactifications on product spaces,
since as it occurs in standard supergravity, this may im-
prove the stability of the solution, naturally suggesting
time-dependent compactifications [13]. Previous results
[14] indicate that within our framework the compact mani-
fold may shrink in time (related cosmological models have
been studied in [15]). For theories with quartic or higher
powers of the curvature it is possible to have more than one
possible compactification radius, enlarging the class of
theories that admits suitable spontaneous compactifica-
tions. Note that, for theories with quartic or higher even
powers of the curvature, a maximally symmetric vacuum
may not even exist, suggesting that the ground state must
be compactified. This is discussed in a forthcoming
publication.
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