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A systematic study of the different phases of Lorentz-breaking massive gravity in a curved background

is performed. For tensor and vector modes, the analysis is very close to that of Minkowski space. The most

interesting results are in the scalar sector where, generically, there are two propagating degrees of freedom

(DOF). While in maximally symmetric spaces ghostlike instabilities are inevitable, they can be avoided in

a FRW background. The phases with less than two DOF in the scalar sector are also studied. Curvature

allows an interesting interplay with the mass parameters; in particular, we have extended the Higuchi

bound of de Sitter to Friedman-Robertson-Walker and Lorentz-breaking masses. As in dS, when the

bound is saturated there is no propagating DOF in the scalar sector. In a number of phases the smallness of

the kinetic terms gives rise to strongly coupled scalar modes at low energies. Finally, we have computed

the gravitational potentials for pointlike sources. In the general case we recover the general relativity

predictions at small distances, whereas the modifications appear at distances of the order of the

characteristic mass scale. In contrast with Minkowski space, these corrections may not spoil the linear

approximation at large distances.
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I. INTRODUCTION

Massive gravity has recently received a lot of attention
mainly due to its relation to large distance modifications of
the gravitational force (for recent reviews, see e.g. [1,2]).
Even if the addition of a Lorentz-invariant mass term to the
standard action for the graviton in a flat background ac-
complishes the desired modification, it also implies the
appearance of new problems, such as the van Dam-
Veltman-Zakharov (vDVZ) discontinuity and the strong
coupling of the scalar mode of the massive graviton [3–
6]. It was realized in [7] (see also [8]) that some of these
problems may be softened if the mass term breaks the
Lorentz invariance to rotational invariance.

It is also known that some of the features of Lorentz-
breaking (LB) massive gravity are peculiar to Minkowski
space and do not hold in other backgrounds [9] (see also
[10,11]). In this note, we will study the behavior of the
gravitational perturbations in a curved background with a
mass term breaking linearized general covariance.

A caveat to this restriction has to do with the choice of
action for the graviton fluctuations in curved spacetime.
Normally, one considers the perturbations of the general
relativity (GR) action to second order around a background
which solves the equations of motion (EOM). This ensures
gauge invariance under linearized diffeomorphisms (diff)
at the quadratic level. In this work, we modify GR by
adding a mass term which breaks explicitly gauge invari-

ance, but other diff-breaking corrections are possible. In
particular, also the kinetic term may be modified once one
relaxes the constraint of general covariance.1 The motiva-
tion for considering only mass terms is that we want to
focus on large distance (infrared) modifications of gravity.
Besides, there are known physical examples generating
this kind of mass terms for gravitational perturbations.
A first example is a model where the matter sector

includes four scalar fields that condense, breaking sponta-
neously the symmetry of the background metric [13] (see
also [14] for related previous work and [15] for some
cosmological implications). In the gauge where those sca-
lar modes are frozen (unitary gauge), the spectrum of the
perturbations reduces to the gravitational modes with a
mass term that violates the symmetry of the background.
In this sense, the scalars are the Goldstones modes of the
broken diff invariance. Another interesting example is
bigravity, where a second rank-2 tensor interacts with the
metric g�� [16]. In this case, there are exact flat back-

grounds where the metrics do not share the whole group of
invariance, but preserve a common SO(3). The spectrum of
fluctuations around these backgrounds includes a Lorentz-
breaking massive graviton which is a combination of both

1Recently, there has been some interest in modifying the
kinetic structure of GR as a way to improve its UV behavior [12].
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metrics [17,18] (see also [19] for some phenomenology
and [20,21] for spherically symmetric solutions).

Inspired by the previous models2 we will consider the
presence in the action of a generic mass term (function of
the metric) which breaks general covariance. This term
both allows for FRW backgrounds (see e.g. [24,25]) and
generates the LB mass terms for the gravitational pertur-
bations. Thus, the analysis of just the gravitational degrees
of freedom is consistent in this setup where diff invariance
is broken, while in a diff-invariant context this is possible
only in a de Sitter (dS) space.3

The paper is organized as follows: In Sec. II we intro-
duce our notations and the setup of our investigations.
Then we analyze the perturbations with LB terms in curved
backgrounds for the tensor (Sec. IV), vector (Sec. V) and
scalar modes (Sec. VI and appendix A). In Sec. VII we
study the generalized Newton-like potentials and their
deviations from GR. We present the conclusions in
Sec. VIII.

II. ACTION, BACKGROUND, AND
PERTURBATIONS

Our starting point is the Einstein-Hilbert (EH)
Lagrangian with the addition of mass terms for the gravi-
tational perturbations, breaking general covariance. In the
flat limit these terms also break Lorentz invariance, and we
will refer to them as LB terms.

This setup describes, at quadratic level, infrared mod-
ifications of gravity where only gravitational degrees of
freedom are present. At full nonlinear level these deforma-
tions of the EH theory may be parametrized by adding to
the Lagrangian a nonderivative function of the metric
components, breaking general covariance:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
M2

P½R� 2Fðg��Þ�: (2.1)

General covariance can be restored [4,8] by introducing
extra (Stückelberg) fields,4 which in the equivalent of the
unitary gauge yield the form (2.1).

It is clear that the term F will contribute to the back-
ground EOM, and exact solutions are known for certain F
functions. For example, when F ¼ � ¼ const, the back-
ground will be maximally symmetric and the theory will be
gauge (diff) invariant. For F � const, FRW solutions can
be found, which can modify the standard cosmological
solutions of GR. For certain classes of F, solutions that

exhibit late-time cosmic acceleration were studied in [13]
(see also [25]).
Accordingly, we assume that the dynamics of modified

gravity admits a spatially flat isotropic and homogeneous
background (FRW henceforth)

�g�� ¼ að�Þ2��� with ��� ¼ diagð�1; 1; 1; 1Þ;
(2.2)

where � is the conformal time. We will useH ð�Þ ¼ a0=a
and Hð�Þ ¼ a0=a2, where 00000 is the derivative with
respect to � (therefore aH0 ¼ H 0 �H 2).
We define the metric perturbations as

g�� ¼ a2ð��� þ h��Þ: (2.3)

The second-order expansion of S can then be written as

S ¼ Sð2ÞGR þ Sð2ÞLB; (2.4)

where5

SGR ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
M2

PðR� 6H2Þ (2.5)

and the term F gives rise also to LB masses for h.
Assuming rotations are preserved, these can be parame-
trized as

Sð2ÞLB ¼ M2
P

4

Z
d4x

ffiffiffiffiffiffiffi� �g
p ½m2

0h
2
00 þ 2m2

1h
2
0i

� ðm2
2 � 4H0a�1Þh2ij þ ðm2

3 � 2H0a�1Þh2ii
� 2m2

4h00hii�: (2.6)

Here spatial indices are contracted with �ij, and mi �
mið�Þ represent effective time-dependent masses. The
terms proportional to H0 in (2.6) are conveniently chosen
to cancel similar contributions coming from the expansion
of (2.5) in backgrounds different from dS. Notice that the
parametrization in (2.6) is completely general as the mass
parameters are arbitrary functions of the conformal time.
Diff gauge invariance is restored taking the limit mi ¼

0, H0 ¼ 0 and it corresponds to the case F ¼ � ¼ const.
On the other hand, for a FRW background and vanishing
masses the action is invariant only under longitudinal
spatial diffs. This is a consequence of the fact that a generic
FRW background is never a consistent background for GR
without matter. A non–maximally-symmetric background
breaks the time diffs, and accordingly in the limit of
vanishing masses one recovers the invariance under spatial
diffs.
In the Lorentz-invariant case the masses can be ex-

pressed in terms of two parameters �, �

2Other related models include theories with extra dimensions
[22] and theories with condensing vector fields [23].

3We leave the analysis of gravitational perturbations coupled
to additional fields in a FRW background for a forthcoming
publication [26].

4This implies the addition of (at most) four scalar fields, but
invariant actions can also be found by adding vector or tensor
fields.

5We stress that in this expression, H depends only on the
background.
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m2
0 ¼ �þ �; m2

1 ¼ ��; m2
2 � 4a�1H0 ¼ ��;

m2
4 ¼ �; m2

3 � 2a�1H0 ¼ �; (2.7)

and the mass term (2.6) can be written in terms of con-
tractions of h�� with �g��. The Fierz-Pauli (FP) choice, free

of ghosts in flat space, corresponds to �þ � ¼ 0. In
curved space also the ‘‘non-Fierz-Pauli’’ case �þ � � 0
can be free of ghosts (see Sec. VI).

The setup introduced here is suitable to describe a rather
general class of massive gravity theories, and exhibits a
rich set of phases, depending on the masses mi and Hð�Þ.
In general we can have the following scenarios:

(i) The F term in the action (2.1) does not affect neither
the background (dS limit) nor the propagation of the
perturbations. This is the case forH0 ¼ 0 andmi ¼ 0
and is realized, e.g., when F ¼ �.

(ii) Only the perturbations are modified. This corre-
sponds to H0 ¼ 0 and mi � 0. Writing Fðg��Þ ¼
�þ fðg��Þ, this happens when the scale of � is

much larger than the scale related to f.
(iii) Only the background is modified. This happens for

H0 � 0 and mi ¼ 0. As we will see, it can also be
realized in less trivial situations.

(iv) Finally, in general both the background and the
perturbations are modified by F.

In order to study the dynamics of the perturbations, it is
convenient to decompose the metric fluctuations as irre-
ducible representations of the rotation group6

h00 ¼ c ; h0i ¼ ui þ @iv; @iui ¼ 0;

hij ¼ �ij þ @isj þ @jsi þ @i@j	þ �ij
;

@isi ¼ @j�ij ¼ �ij�ij ¼ 0:

(2.8)

From those fields one can define two scalar and one vector
gauge invariant quantities

� � 
þH ð2v� 	0Þ;
� � c � 2v0 þ 	00 �H ð2v� 	0Þ; Wi ¼ ui � s0i;

(2.9)

while the transverse-traceless spin two field �ij is already

gauge invariant. It is also convenient to define the field
� ¼ 	=�.

We will couple the gravitational fields to a conserved7

energy-momentum tensor T��,

ST ¼ �
Z

d4xa2h���
�����T��

¼ �
Z

d4xa2ð�ijTij þ�T00 � 2T0iWi þ�TiiÞ;
(2.10)

with �g�� �r�T�� ¼ 0, where �r is the covariant derivative

associated to the background metric. The field � is the
generalization of Newtonian potential around the source in
the linearized approximation. For FRW, the EMT conser-
vation is equivalent to

T0
00 ¼ @iT0i �H ðT00 þ Tij�ijÞ;

@jTij ¼ T0
i0 þ 2HTi0 ¼ a�2ða2Ti0Þ0:

(2.11)

III. STABLE PERTURBATIONS IN CURVED
BACKGROUNDS?

Our goal is to study the dynamics of perturbations in
curved backgrounds and determine when one can get a
theory free of instabilities. These instabilities can be of
ghost or Jeans type. The ghostlike instabilities are related
to an infinite phase-space volume. If they are present, the
decay rate of the perturbative vacuum will be infinite
unless a cutoff is introduced in the theory [28] (see also
[29]). In the Lorentz-breaking case, the different masses
provide a natural energy scale to place the cutoff. If we
admit a hierarchy inside the mass scales we may freeze the
nonstable degrees of freedom, while still keeping some of
the masses below the cutoff. In an expanding universe,
there is also another important dimensional parameter, H.
We will focus on modifications such that at least some of
the mass scales are inside the horizon scale mi � H. In
this case, there is a natural hierarchy inside the set of
dimensional parameters, which allows to define a large
momentum cutoff �c keeping the masses small,

j�j � m2

�
m

H

�
� ��2

c; (3.1)

with �> 0. Even if the addition of a cutoff may unveil
phenomenologically acceptable phases, to keep the discus-
sion simple we will consider theories free from ghostlike
instabilities in the quadratic Lagrangian (see however
[2,17]).
Jeanslike instabilities can be also present. By this we

mean instabilities that appear in a certain finite range of
momenta. They are the signature of the growth with time of
the perturbation at certain scales, and may even be inter-
esting phenomenologically as a contribution to the cluster-
ing of matter at large distances (see, e.g. [30]). Further-
more, in an expanding universe, they may be settled be-
yond the horizon, where they are presumably frozen.
Again, we leave the study of this possibility for future
research [26], and concentrate on Lagrangians with a stable
spectrum.

6Here, we follow the notation of [7].
7Energy-momentum tensor(EMT) conservation is not strictly

required in massive gravity. A study of nonconserved EMT in FP
can be found in [27].
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It is also important to recall that in a FRW universe,
energy is not a conserved quantity, and its positivity does
not guarantee stability. Nevertheless, for scales smaller
than the horizon, we can still use the positivity of the
energy associated to the conformal time as a necessary
requirement for stability (see also [31,32]). As we will
focus on these length scales, we will not discuss any global
issue.

Finally, there are two concerns for massive gravity be-
yond the linear theory [4]. The first one is the strong
coupling that emerges when one or more propagating states
have their kinetic terms suppressed by a small parameter.
In this case, the range of validity of the linear theory is
drastically reduced. Furthermore, if we consider the action
(2.1) as an effective action with a cutoff, one expects the
contributions of higher order operators to become impor-
tant at much lower energies than the initial cutoff scale. To
study this behavior one should analyze the scaling of
relevant interaction terms [33] which is beyond the scope
of this paper. Here we just point out that when Lorentz
invariance is violated, the strong coupling cutoff can be
present in energy and/or momentum independently. We
will accordingly speak of time and space cutoff �t, �s,
by making canonical the relative quadratic terms in the
action.

Besides, when the functions mi satisfy certain condi-
tions, there is a reduction of the phase-space, i.e. not all the
six degrees of freedom (DOF) of the gravitational pertur-
bations propagate. It turns out that in Minkowski those are
the only ghost-free possibilities [8]. In general, unless there
exists a symmetry that enforces them (see, for example, the
case of bigravity [18], or the case described in [13]) these
conditions are only satisfied for the quadratic Lagrangian
in very finely tuned backgrounds. This means that the
analysis is very sensitive to small changes in the back-
ground and probably to the interaction terms and higher
order operators [1,8,10]. In the following we show how the
generalization of LB massive gravity to curved back-
grounds is useful to circumvent both concerns.

In the next sections we analyze the spectrum of tensor,
vector, and scalar perturbations, that at linearized level are
not coupled, by SO(3) symmetry.

IV. TENSOR MODES

The action for the tensor perturbations is

SðTÞ ¼ M2
P

4

Z
d4xa2½����@��ij@��ij � a2m2

2�ij�ij�;
(4.1)

from which the EOM read

���@�@��ij � 2H�0
ij � a2m2

2�ij ¼ 0: (4.2)

The absence of tachyonic instabilities requires

m2
2 � 0: (4.3)

One can also readily check from (4.1) that there are no
ghost or gradient instabilities.8

V. VECTOR MODES

Extracting the vector part from (2.4) we get

SðvÞ ¼ M2
P

2

Z
d4xa2f�ðui � s0iÞ�ðui � s0iÞ

þ a2½m2
1uiui þm2

2sj�sj�g: (5.1)

The field ui is not dynamical and it can be integrated out
through its equation of motion,

�ðui � s0iÞ � a2m2
1ui ¼ 0; (5.2)

to yield

SðvÞ ¼ M2
P

2

Z
d4xa4

�
m2

1s
0
i

�

�� a2m2
1

s0i þm2
2si�si

�
:

(5.3)

Therefore, the dispersion relation of the vector field si
breaks Lorentz invariance at any scale (provided m1 �
m2). The action is free from instabilities for

m2
1 � 0 and m2

2 � 0; (5.4)

in complete analogy to what happens in Minkowski space.
The case m1 ¼ 0 is particularly interesting, as it implies

the cancellation of the time-derivative term in (5.3), so that
there is no propagating vector mode. As we will see in
Sec. VI C, this case is also important for the scalar sector.
The canonically normalized field sci can be defined by a

rescaling:

sci � �vð�Þ2si; �vð�Þ2 ¼ a2m1MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�� a2m2
1

s
;

(5.5)

with the action

SðvÞ ¼ 1

2

Z
d4xfðsci Þ0ðsci Þ0 þ

m2
2

m2
1

sci�s
c
i

� ½a2m2
2 þ�2

vð��2
v Þ00�sci sci g: (5.6)

Therefore, the canonical field has a LB dispersion relation
and a time dependent mass.
From (5.5) we can also read the naive temporal strong

coupling scale of the vectors, that is momentum (and time)
dependent. At large momenta, j�j>m2

1a
2, we expect the

physical strong coupling scale to be given by �t ¼
�v=a� ffiffiffiffiffiffiffiffiffiffiffiffiffi

m1MP

p
, that is also the expected cutoff for a

8In an expanding universe, the friction term appearing in (4.2)
implies that the perturbation is frozen at large distance. When
imposing m2

2 � 0, we are assuming that the mass scale is well
inside the horizon and unless otherwise stated, we will assume
this to be the case.
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gauge theory explicitly broken by a mass term m. This
implies that the theory can be trusted only if the horizon
scale does not exceed the cutoff,H <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1MP

p
. In Sec. VIII

we will comment on some physical consequences of this
bound. A similar spatial strong coupling scale can be
defined by making canonical the spatial gradients.

VI. SCALAR MODES

The scalar sector of the theory is the most interesting
one. In flat space with the FP Lorentz-invariant mass term
it is a scalar mode which has the lowest strong coupling

scale, and it is this sector that shows crucial differences
when Lorentz symmetry is violated or spacetime is curved
[7,9]. As we will see later, it is also here that the difference
between the maximally symmetric spacetimes and generic
FRW spaces arises. The analysis will show that generically
there are two scalar degrees of freedom, while the only
possibilities with less degrees of freedom are m1 ¼ 0 or
m0 ¼ 0.
The scalar part of (2.4) can be written as (modulo total

derivatives)

SðsÞ ¼ M2
P

4

Z
d4xa2f�6ð
0 þH c Þ2 þ 2ð2c � 
Þ�
þ 4ð
0 þH c Þ�ð2v� 	0Þ

þ a2½m2
0c

2 � 2m2
1v�v�m2

2ð	�2	þ 2
�	þ 3
2Þ þm2
3ð�	þ 3
Þ2 � 2m2

4c ð�	þ 3
Þ�g; (6.1)

where the H, H0 terms have canceled as promised.
In the de Sitter background, when all masses are set to zero, the action reduces to the first line of (6.1) and it is gauge

invariant.9 As previously remarked, for a FRW background and vanishing masses the action is invariant only under
longitudinal spatial diffs (only 	 is undetermined).

From (6.1) it is clear that c and v are Lagrange multipliers enforcing the following constraints

c ¼ m2
1m

2
4ð�þ 3
Þa3 þ 2Hm2

1ð�0 þ 3
0Þa2 � 2�m2
1
a� 8H�
0

8H2a�þ ðm2
0 � 6H2Þm2

1a
3

;

v ¼ 2Ha2m2
4ð�þ 3
Þ þ 4H2a�0 þ 2m2

0a

0 � 4H�


8H2a�þ ðm2
0 � 6H2Þm2

1a
3

:

(6.2)

Notice that the behavior of these fields in FRW is qualita-
tively different from Minkowski space. In particular,
whereas in flat space, the cases m0 ¼ 0 and m1 ¼ 0 are
singular and must be treated separately, in curved space-
time, c and v are always determined by Eqs. (6.2). After
integrating out v and c we are left with a Lagrangian for
’ ¼ ð�; 
Þt:

L �;
 ¼ 1
2’

0tK’0 þ ’tB’0 � 1
2’

tA’; (6.3)

where

K ¼ �M2
Pa

2

8H2�þ ðm2
0 � 6H2Þm2

1a
2

� 2H2a2m2
1 a2m2

0m
2
1

a2m2
0m

2
1 m2

0ð3a2m2
1 � 4�Þ

� �
; (6.4)

B ¼ M2
P�Hðm2

1 � 2m2
4Þ

8H2�þ ðm2
0 � 6H2Þm2

1a
2

0 1
�1 0

� �
: (6.5)

We will first study the dynamics of (6.3) through the
Hamiltonian, for which the explicit expression of the ma-
trix A is not needed.10 The conjugate momenta � are

�i ¼ @L
@’0

i

¼ Kij’
0
j �Bij’j: (6.6)

Thus, two DOF will propagate when the matrix K is
nondegenerate, i.e. when

detjjKjj / m0m1 � 0: (6.7)

In this case one can express the velocities in terms of
momenta, and the resulting Hamiltonian is

H �;
 ¼ 1
2�

tK�1�þ 1
2’

tM’;

M ¼ ðAþBK�1BÞ;
(6.8)

with a rather simple kinetic term

9The first line of (6.1) differs from the standard action of the
graviton in a FRW background by a term proportional to ðH 0 �
H 2Þc 2 which cancels in dS (cf. [34]).

10As the form of this matrix in the general case is quite
cumbersome and not particularly illuminating, we will not write
it explicitly in this work.
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K�1 ¼ 1

M2
Pa

2

3� 4�
a2m2

1

�2

�2 2H2

m2
0

0
@

1
A: (6.9)

The theory is free of ghosts when the kinetic energy matrix
K�1 is positive definite, that translates into the following
conditions:

m2
1 > 0; 0<m2

0 � 6H2: (6.10)

Therefore, contrary to the flat space case, we can still have
a well-defined kinetic term with two propagating degrees
of freedom. In fact a window for m2

0 opens up, and this

allows even for a ‘‘non-FP’’ Lorentz-invariant mass term
free of ghosts (and vDVZ discontinuity, see Sec. VII).11

It is also instructive to look at the no-ghost conditions in
the low and high momentum regimes. We find,

no ghost

�
at large momenta: m2

1 > 0; m2
0 > 0

at small momenta: m2
1 > 0; 0<m2

0 � 6H2:

(6.11)

Therefore, a nonzero curvature allows the scenario where
the theory is free of ghosts in the ultraviolet but there is one
ghost mode at large wavelengths; this happens for m2

1 > 0
and m2

0 > 6H2. Such a ghost mode at very large distances

would not necessarily render the theory phenomenologi-
cally sick, but would indicate a large scale instability of
backgrounds with curvature smaller than m2

0=6, including
the limiting case of Minkowski (Jeanslike instability, in the
language of Sec. III).

From (6.9) one can find when the scalar sector suffers
from strong coupling due to a small kinetic term. As
happens for the vector modes, one of the strong coupling
scales is related to the smallness of m1, whereas the other
one depends on the ratio m2

0=H
2. When this ratio is not

small [and compatiblewith the ghost-free condition (6.10)],
both the scalar and vector sector become strongly coupled
at the same time scale �t �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1MP

p
.

The analysis of the positivity of the ‘‘mass’’ term M is
rather cumbersome and we will consider just the high
momentum limit (larger than the rest of the scales: mi,
H, and H0). In this case, requiring that the mass matrix in
(6.8) is positive definite gives

m2
3 �m2

2 <
ðm2

1 � 2m2
4Þ2

16m2
0

;

H0a�1 <�
�
m2

1

4
þ ðm2

1 � 2m2
4Þ2

16m2
1

�
;

(6.12)

(where we have used m2
1 > 0, m2

0 > 0 and H2 > 0.) When

the previous conditions are satisfied there is no gradient
instability at small distances. Notice that the right-hand
side(r.h.s.) in the last condition is always negative, mean-
ing that only a FRW background with an expanding hori-
zon can be stable. Besides, one can easily check that the
previous conditions are inconsistent in the Lorentz-
invariant case.
To summarize, in the nondegenerate case of m0;1 � 0,

we found two DOF where
(i) there is no ghost provided m2

1 > 0, 6H2 � m2
0 > 0

(ii) there is no gradient instability when (6.12) are sat-
isfied (so H0 is negative).

The difference that we found with the maximally symmet-
ric case, where there is necessarily a gradient instability,
implies the presence of a spatial strong coupling problem
in this limit. In fact in approaching the dS background the
spectrum of the Hamiltonian must pass through the case in
which one of the modes is frozen, because the determinant
of M vanishes and accordingly the ‘‘spatial’’ part of its
dispersion relation will vanish.12

In the degenerate cases, whenm0 orm1 vanish, there are
less DOF and a separate analysis is given in the following
sections. Them0 ¼ 0 case is related to the Fierz-Pauli case
[36], whereas the case m1 ¼ 0 appears naturally in the
ghost condensate and bigravity theories [13,17,18].

A. The phase m0 ¼ 0

For m0 ¼ 0, the field 
 is an auxiliary field as one can
check from the action (6.3). Even if there is only one
remaining DOF, the general treatment is quite involved
and it is presented in appendix A. In this section we will
just state the results and study some particular cases.
The EOM for 
 yield the constraint (A1), which once

substituted in the action gives a (quite complicated) effec-
tive Lagrangian for �. Its kinetic part is

K
a4M2

P

¼ 3a3m2
1½aðm2

4Þ2 þ 2ðam2
�H

2 �Hðm2
4Þ0 þm2

4H
0Þ� � 4½am2

4ðm2
1 �m2

4Þ þm2
1H

0��
am2

1ð2�� 3a2m2
4Þ2 � 2ð4�� 3a2m2

1Þ½3a2HðaHm2
� � ðm2

4Þ0Þ � ð2�� 3a2m2
4ÞH0� ; (6.13)

where m2
� ¼ 3ðm2

3 �m2
4Þ �m2

2. The positivity of the kinetic energy (no ghost) for large momenta gives

11Recently, non-Fierz-Pauli Lagrangians with scale-dependent masses were also considered in [35]. Notice, though, that in that case
Lorentz invariance made the masses depend on both space and time, whereas in this work we are dealing only with time-dependent
masses.
12See [8] for a discussion of the modifications to these dispersion relations coming from higher order operators.
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am2
4ðm2

1 �m2
4Þ þm2

1H
0

am2
1 þ 4H0 > 0: (6.14)

On the other hand at small momenta the kinetic term
reduces to

K j�¼0 ¼ a2M2
P=3;

which is, remarkably, always positive.
One can show (cf. appendix A) thatK is positive also at

any intermediate momenta in the variable � provided that,
in addition to (6.14), one has

m2
1 � 0;

�
aðm4

4 þ 2H2m2
�Þ þ 2m2

4H
0 � 2Hðm2

4Þ0
am2

4ðm2
1 �m2

4Þ þm2
1H

0

�
> 0:

(6.15)

When these conditions are saturated we are led to a case
with a vanishing kinetic term, as discussed below [see
(6.24)]. Because of its analogy with the special case dis-
cussed in [32], we will refer to this case as partially
massless.

The condition (6.15) refers to modes at large distances
(eventually outside the horizon) and is not present in the
Minkowski spacetime. In dS, taking the Lorentz-invariant
FP limit (2.7) withm2 � � ¼ ��, the previous conditions
reduce to the Higuchi bound [37],

2H2 � m2: (6.16)

Contrary to this case, the LBmass terms allow for a unitary
massless limit. In fact, if the mass is an appropriate func-
tion of the conformal time, this limit can be free from
ghosts also in the Lorentz-invariant case (see Sec. VI B 3).

From the same kinetic term we can also estimate the
strong coupling scale of the field �, since the canonical
field �c is defined at high momentum by the rescaling

�c ¼ ���; �� ¼ a
MPm1ffiffiffiffiffiffiffiffi��
p

�
am2

1xð1� xÞ þH0

am2
1 þ 4H0

�
1=2

;

(6.17)

where x ¼ m2
4=m

2
1.

Concerning the potential term M, it can be written as

M ¼ m2
2b

2 þ c�þ d�2 þ e�3 þ ðm2
2 �m2

3Þ�4

q2

(6.18)

where b, c, d, e are functions of mi andH , whereas q is a
second-order polynomial in �.

The absence of gradient instabilities, equivalent to the
positivity of M, requires in the ultraviolet and infrared
regimes the following simple conditions:

at large momenta m2
2 >m2

3

at small momentam2
2 > 0:

(6.19)

We see that form2
2 � m2

3 the potential is free from gradient

instabilities that would be as dangerous as ghost instabil-
ities as they would imply an infinitely fast instability [29].
Notice also that at zero momentum, the condition m2

2 > 0
required for the stability of tensors and vectors, enforces
positivity of the potential. This implies, together with the
stability of the kinetic term, that at small momentum the
theory is always stable.
At intermediate scales, the analysis becomes very tech-

nical, and a method to check for the positive definiteness is
presented in the appendix A.

B. Particular cases with m0 ¼ 0

Some interesting subcases of the m0 ¼ 0 dynamics can
be found looking at the numerator and denominator of
Eq. (6.13). When the denominator vanishes, the field 

disappear from the EOM and the constraint (A1) does
not hold anymore. The analysis of this situation is pre-
sented in Sec. VIB 1.
When the mass parameters are fine-tuned in such a way

that the numerator of (6.13) vanishes, the � field does not
propagate and it becomes an auxiliary field. This possibil-
ity is examined in Sec. VI B 2, where we also show its
relation to a gauge invariance related to conformal invari-
ance. Finally, the Fierz-Pauli Lagrangian in dS is a subcase
of the phase m0 ¼ 0 where this fine-tuning can occur. We
study this possibility in Sec. VIB 3.

1. Time diffeomorphisms in FRW

From the constraint (A1) for 
 as a function of�, we see
that it is singular for specific values of the masses. This
happens when

m2
1 ¼ 2m2

4 ¼ �4a�1H0; m2
� ¼ aðH2Þ0 � 2H00

a2H
:

(6.20)

[If only the first condition holds, the constraint for 
 (A1)
reduces to 
 ¼ ��=3.]
In this case, and away from dS (we are assuming m1 �

0), the field 
 does not appear at all in the action. This
corresponds to a restoration of the gauge symmetry corre-
sponding to time diffeomorphisms, �ð2v� 	0Þ ¼ 2�0.
The final Lagrangian in terms of � is then given by

L ¼ M2
pa

2

2

�
aH0

�þ 3aH0 �
02

� 1

3

�
m2

2 þ �
3ðaH0Þ2 þ ð2aH0 þH00=HÞ�

ð�þ 3aH0Þ2
�
�2

�
:

(6.21)

Notice that in Minkowski this phase hasm0 ¼ m1 ¼ m4 ¼
0 and features an enhanced gauge invariance mentioned in
[18]. In contrast to the case of Minkowski, and to the case
of dS, in a FRW background the field � propagates. It is
also clear from (6.21) that the kinetic term is positive
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definite provided that H0 < 0. Concerning the potential
term, let us consider scales well inside the horizon. The
requirement of positive energy at these scales gives the
condition

m2
2 � �ð2aH0 þH00=HÞ; (6.22)

When inequality (6.22) is exactly saturated, the scalar
degree of freedom has vanishing speed in the at high
momenta. Its dispersion relation is then !2 ’ constþ
1=�.

Finally, let us note that if for H0 < 0 the scalar mode is
well behaved, the limit of vanishingH0 leads to a vanishing
kinetic term and thus to strong coupling once interactions
are taken into account. The resulting time strong coupling
scale can be estimated as

�s ¼ aMP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aH0

�þ 3aH0

s
: (6.23)

that is clearly more dangerous at short distances j�j �
jaH0j, where it may become sensibly lower than MP.

2. Partially massless

Another particular case appears when, after integrating
out 
, the kinetic term of� cancels. This happens when the
inequalities (6.14) and (6.15) are saturated,

m2
1 ¼

am4
4

am2
4 þH0 ;

aðm4
4 þ 2H2m2

�Þ þ 2m2
4H

0 � 2Hðm2
4Þ0 ¼ 0: (6.24)

In the Fierz-Pauli limit this expression reduces to the
partially massless case of de Sitter space (cf. [32]) and
corresponds to a situation without propagating scalar de-
grees of freedom. In the Lorentz-invariant case with con-
stant masses in de Sitter space, this fact is related to a
conformal invariance [38]. In the most general case, one
can prove that the system is invariant under the transfor-
mation

�c ¼ �2ð�0 þH�Þ þt; �v ¼ ��þ � 0;

�
 ¼ 2H�þs; �	 ¼ 2�;
(6.25)

with

� ¼ �a24ðam2
4� þH0� þH� 0Þ

Hðam2
4 þ 2H0Þ ; s ¼ m2

4�

t ¼ �m2ðam4ðm2
4 � 4H2Þ þ 2m4H

0 � 4Hm0
4Þ

2aH2
;

(6.26)

only when the extra condition

a½m4
4 þ 2H2ð2m2

2 � 3m2
4Þ� þ 2½m2

4H
0 �Hðm2

4Þ0� ¼ 0

(6.27)

is satisfied. The previous condition implies the cancellation
of the potential part once (6.24) is satisfied. In the Lorentz-
invariant limit with constant masses and dS background
(6.27) is always satisfied when (6.24) holds. Notice also
that the existence of this sort of scale invariance is general
even if the kinetic term is not invariant under diff away
from de Sitter.

3. Lorentz-invariant FP limit with time dependent masses

In the Fierz-Pauli limit [(2.7) with m2 ¼ � ¼ ��] the
mode � propagates. However, the conditions (6.24) can be
still be satisfied in dS (and only for this background)
provided that m satisfies the differential equation

4Hm0 ¼ ða2m2 � 2H 2Þm: (6.28)

This equation can be integrated to yield

m2ð�Þ ¼ 2H2m2
I

m2
I þ ð2H2 �m2

I Það�Þ
; (6.29)

wheremI is the value of the mass at the time corresponding
to að�Þ ¼ 1. The resulting mass runs fromm2

I to 2H
2 when

a runs from 0 to 1. Notice that choosing the initial con-
ditions corresponding to a constant mass, m2

I ¼ 2H2, we
recover the partially massless case discussed in [32]. A
similar situation could be studied for the non-Fierz-Pauli
(Lorentz-invariant) case (m1 ¼ m2 � m3 ¼ m4, m0 ¼
m3 �m2).

C. The phase m1 ¼ 0

The case m1 ¼ 0 is particularly interesting in the
Minkowski background, as only the tensor modes propa-
gate. As wewill show, there is a corresponding effect in dS,
while one scalar mode starts to propagate in a FRW back-
ground. When m1 ¼ 0 the fields � is not dynamical as one
can check in action (6.3). Accordingly, its EOM is

H ðm2
2 �m2

3Þ� ¼ m2
4


0 �H ðm2
2 � 3m2

3Þ
: (6.30)

Notice that again the Minkowski space limit H ¼ 0 is
peculiar and the degree of freedom associated to 
 is not
present.13 In curved space, generically � is determined by
(6.30) and when it is substituted back in the action, after
integration by parts, yields the Lagrangian

13Also, the case m2 ¼ m3 should be treated differently.
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L ¼ M2
Pa

2

H2

�
m4

�

2ðm2
2 �m2

3Þ

02 �

�
H0

a
�þm2

2½H 2ðm2
2 � 3m2

3 þ 3m2
4Þ �m2

4H
0a�

m2
2 �m2

3

�H ½m2
4ðm2

3ðm2
2Þ0 �m2

2ðm2
3Þ0Þ þm2

2ðm2
3 �m2

2Þðm2
4Þ0�

ðm2
2 �m2

3Þ2
�

2
�
: (6.31)

where m4
� ¼ m2

0ðm2
2 �m2

3Þ þm4
4. From the previous ex-

pression we discover that in dS, the phase m1 ¼ 0 has no
propagating degrees of freedom (in the sense that the
action is � independent so that there is no dynamics in ~x
space), even if, in comparison to the Minkowski case, the
scalar sector has a kinetic term from which we expect a
ghost condensate like dispersion relation coming from
higher derivatives [8]. Besides, the potential strong cou-
pling scales�s and�t are easily read out from the previous
expression.

Thus, in general the phase m1 ¼ 0 is quite rich, and
particularly simple. Ghostlike instabilities are avoided im-
posing m4

�ðm2
2 �m2

3Þ � 0. To get rid of gradient instabil-

ities in this case, it is enough to impose H0 < 0, whereas
the tachyon free condition can also be read from (6.31). For
the case with constant masses, it reduces to m2

2½H 2ðm2
2 �

3m2
3 þ 3m2

4Þ �m2
4H

0a� � 0.

D. Particular cases with m1 ¼ 0

A direct inspection of (6.31) and (6.30) shows some
interesting subcases for the mass parameters. First, when
the r.h.s. of Eq. (6.30) cancels, this equation is no longer a
constraint for �. Besides, for m� ¼ 0, the kinetic term for


 cancels in the action. We devote the rest of this section to
the analysis of these possibilities.

1. The case m2
2 ¼ m2

3

Whenm2
2 ¼ m2

3 the kinetic term of 
 is zero. In this case

 is nondynamical and can be eliminated from the action.
The only degree of freedom now is � with a Lagrangian

L ¼ a4M2
P

2

ð6m2
2m

4
4 � 9m6

4 þ 4m2
0m

4
2Þm4

4

ð2m2
2 � 3m2

4Þð2m2
0m

2
2 � 3m4

4Þ2

�
�

m4
4

2ð2m2
2 � 3m2

4ÞH 2
�02 þm2

2�
2

�
: (6.32)

Again, this mode has no dynamics in space. From direct
inspection we can derive the strong coupling scale, and the
region of parameters where this mode disappears.

2. The case m� ¼ 0

Finally, for m� ¼ 0 we are back to a situation without

scalar propagating degrees of freedom but still with a
potential part at the linear level. In Minkowski also this
part vanishes and the field 
 is not determined (indeed,
there is an additional gauge invariance). In dS, this happens
when

m� ¼ 0;

H ðm2
2 � 3m2

3 þ 3m2
4Þ � ðm2

4Þ0
m2

4

¼ m2
3ðm2

2Þ0 �m2
2ðm2

3Þ0
m2

2ðm2
2 �m2

3Þ
;

(6.33)

and outside this region of the parameter space, the EOM
gives 
 ¼ 0.

VII. COUPLING TO MATTER AND VDVZ
DISCONTINUITY

Though the vDVZ discontinuity is one of the main
phenomenological difficulties of FP massive gravity in
flat space, it is known that it may be circumvented in
curved backgrounds [9] or when one considers Lorentz
violating mass terms [7]. For AdS or dS, the vDVZ dis-
continuity is avoided by hiding the effects of the mass at
distances larger than the horizon, and as a consequence
there is no modification of gravity at scales smaller than the
Hubble radius. In this section we will see that some of the
massive gravity phases we have studied allow for a modi-
fication of gravity at scales shorter than the horizon scale
and still compatible with GR at linear order. We will focus
on the gravitational potentials produced by a ‘‘pointlike’’
conserved source.
The tensor part is described by a massive graviton with

mass given by m2
2. Phenomenologically, this mass is con-

straint by cosmological and astrophysical observations (see
e.g. [13,39]), and has no impact on the gravitational po-
tentials for pointlike sources. Also vectors modes do not
affect these potentials (for cosmological constraints see
[40]). For our purposes only scalar perturbations are
relevant.
Let us briefly review the situation of standard GR in

presence of ‘‘pointlike’’ conserved sources, in Minkowski
or dS background:

T00 ¼ �ðrÞ
a

; T0i ¼ Tij ¼ 0: (7.1)

In GR, there is no scalar propagating DOF and the gauge
invariant potentials are determined from the sources as

�GR ¼ �GR ¼ 1

M2
P�

T00: (7.2)

Recall that the perturbations are defined with respect to a
nonflat metric. Thus, both the background and the pertur-
bations play a role in the gravitational dynamics around
local sources.
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As described in Sec. VI, the generic massive gravity case
has two propagating DOF in the scalar sector. In this
section we are interested in static solutions in the presence
of static sources. More concretely, we will consider time
scales short enough such that we can consider the back-
ground metric constant.14 By inspecting the EOM’s in this
limit, time derivatives can be neglected provided that !,
!H 	 k2; !H 	 m2

i , and !H 	 E2 where !�1 is the
typical time scale for the variation of the gravitational
perturbations and E is the energy scale of the sources.

Once that time derivatives of the two dynamical fields �
and 
 are neglected, and in the regimeH2,H0,m0

i 	 m2
i 	

�, the EOM can be solved in a straightforward though
lengthy way. The generalization of the Newtonian potential
is the quantity � and we get

� ¼ n2�
2 þ n1�þ n0

d3�
3 þ d2�

2 þ d1�þ d0
; (7.3)

where the ni and di are polynomials in the masses. The
physics relevant for the vDVZ discontinuity is captured by
expanding � in powers of 1=�, e.g. � � m2

i .

� ¼ Tii þ T00

M2
P�

� uT00 þ vTii

2M2
p�

2ðm2
2 �m2

3Þ
þO

�
1

�3

�
;

u ¼ a2½m4
� þm2

2ð6m2
3 � 4m2

4 � 2m2
2Þ�;

v ¼ a2½m4
� � 2m2

2m
2
4�:

(7.4)

Thus, at small distances we get the GR result plus correc-
tions.15 Also�, that is important for post-Newtonian tests,
has the same structure:

� ¼ T00

M2
P�

� a2

2M2
P�

2

�
T00

m4
� � 2m2

2m
2
4

m2
2 �m2

3

þ Tii

m4
�

m2
2 �m2

3

�

þO

�
1

�3

�
: (7.5)

Clearly, no discontinuity is present at small distances
provided that m2

2 � m2
3 (notice also that m1 has disap-

peared from the previous expression). When m2
2 ¼ m2

3,

the previous expressions are not valid and a discontinuity
is present, as it can be established by noting that in the UV
the EOM imply

2m2
3� ¼ m2

4�; (7.6)

which does not hold in GR.

A. Coupling to matter for m1 ¼ 0

The case m1 ¼ 0 is of particular interest, as in flat space
there is no scalar DOF and the potential features a correc-
tion linear with r, invalidating the linearized approxima-
tion at large distances. In a curved space the scalar 

propagates and the gauge invariant potentials � and �
can bewritten as a combination of the source, 
 and its time
derivatives as

� ¼ �GR þ a

�
2aHm2

2m
2
4
þm4

�

0

2�Hðm2
2 �m2

3Þ
�
;

� ¼ �þ am2
2

�
2aHðm2

2 � 3m2
3Þ
�m4

4

0

�Hðm2
2 �m2

3Þ
�
:

(7.7)

Here we have used the expression for 
00 obtained from the
EOM, namely


00 ¼ 2ðm2
2 �m2

3ÞH0

am4
�M

2
P

ðT00 �M2
P�
Þ þ q1ðmi;HÞ


þ q2ðmi;HÞ
0; (7.8)

where q1;2 are functions of the background and the masses,

finite in the limit mi ! 0. From these expressions one can
study the behavior of potentials in the limit mi ! 0.
First, consider the dS background, H0 ¼ 0. In this case,

the first term in the r.h.s.of (7.8) vanishes. As a result, the
only particular solution (vanishing for zero sources) is 
 ¼
0, and the potentials (7.7) coincide with those of GR.
Remarkably, also the linear term appearing in Minkowski
[8] is absent in dS.
A similar situation happens in FRW background: when

H0 � 0, the first term in the r.h.s. dominates in the mi ! 0
limit, and 
 remains finite:


� T00

�M2
P

þOðm2Þ: (7.9)

This implies that the corrections to� and�with respect to
GR vanish in this limit, and there is no vDVZ discontinuity.
Further insight can be gained by looking at explicit

solutions of (7.8). These can be found by assuming a
special time dependence of the masses and the scale factor:

a ¼
�
�

�0

�
‘
; m2

i ð�Þ ¼ as�i; (7.10)

where �i are constants of dimension two. The EOM for 

(7.8) then reduces to

14In this limit the standard Fourier analysis is well suited to
analyze the EOM and energy is a conserved quantity. It is also
clear that if the limit is not singular the results are equivalent to
those of Minkowski space considered in [7,8].
15The expression (7.4) is valid for distances smaller than the
inverse of mass. For distances of the order of the inverse of the
mass, the appearance of a pole in (7.3) makes the series ill
defined. The exact solution can be easily found and one can see
that the perturbations acquire a Yukawa tail. Thus, this modifi-
cation of Newtonian potential has the desirable feature of keep-
ing the perturbations small at large distances.
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00 þ 2þ ‘ð4þ sÞ
�


0 þ 2a�s�3‘ð‘þ 1Þ�ðrÞð�2 � �3Þ
M2

P�
2
��

2

þ 2a�s�2‘

�2
�

ð�ð‘þ 1Þð�2 � �3Þ�

þ a2þs�2½�4 þ ‘ð�2 � 3�3Þ þ �4‘ðsþ 4Þ�Þ
 ¼ 0;

(7.11)

where �2
� ¼ �2

4 þ �0ð�2 � �3Þ.
For a general background one can easily find an exact

solution of (7.11) when s ¼ �2. The solution that is rele-
vant to us can be written as16


P ¼ T00

M2
Pð���2Þ ;

�2 ¼ 2�2�4ð1þ 2‘Þ � ð‘þ 1Þ�2
� þ 2‘ð�2

2 � 3�2�3Þ
2ð‘þ 1Þð�2 � �3Þ :

(7.12)

In this case, the potentials (7.7) are

� ¼ �GR þ
�
2�2�4 � �2

�

2�ð�2 � �3Þ
�

P;

� ¼ �þ �2

�
�2 � 3�3 þ �4

�ð�2 � �3Þ
�

P:

(7.13)

and one can check that there is no discontinuity in the
massless limit. As recalled in appendix B one can work out
the explicit expression for the potentials in position space
to get (we assume �2 > 0)

� ¼ �GR

�
1þ ð 2�2�4 � �2

�

2�2ð�2 � �3Þ
Þðe��r � 1Þ

�
;

� ¼ �GR

�
1þ ð2�

2
2 � 6�2�3 þ 4�2�4 � �2

�

2�2ð�2 � �3Þ
Þðe��r � 1Þ

�
;

(7.14)

where � can be read from (7.12). This result differs from
the one found in flat space (see e.g. [24]) in some essential
facts: first, instead of the linear correction to� that appears
in Minkowski, we found an exponential function that
decays to a constant at large values of r (r � ��1). This
is an infrared modification of GR whose magnitude de-
pends on a ratio of masses, i.e. it gives finite Oð1Þ value in
the generic m ! 0 limit. Second, also � is modified at

large distances, and the modification decays to a different
constant. This implies that the modification is not simply a
redefinition of MP. Finally, in FRW 
 is an ordinary
propagating DOF (see footnote 16) and, in contrast to the
Minkowski case (see e.g. [24]), there is no free time-
independent function in the solution. At short distance
both potentials reduce to GR and there is no discontinuity.
With the above explicit solution one can check that in

the dS limit (‘ ! �1) the potentials reduce to GR, because
� ! 1 and 
 ! 0, in agreement with the previous dis-
cussion. On the other hand, also the flat limit ‘ ! 0 can be
safely taken in the last expression, but the result is not the
Minkowski one. We conclude that the presence of a curved
background removes the linearly growing term at large
distance, or in other words regulates the infrared modifi-
cation of the gravitational force.
One can also find the exact expression for the potential

in the phases where there is no scalar DOF, e.g. m� ¼ 0

(see section VID 2). As we have seen, in this case the
kinetic term of 
 is zero and we can explicitly solve for
its EOM for any source obtaining an expression similar to
(7.7). Moreover, 
 will be of the form


 ¼ T00

M2
Pð��M2Þ ; M2 ¼ q½mi; a�

ðm2
2 �m3

3Þ2H0 ; (7.15)

where q½mi; a� is an analytic function of the masses, a and
their derivatives. The correction to Newtonian potential
can then be written in the form

� ¼ �GR

�
1þ a2m2

2k1
ðm2

2 �m2
3ÞM2

�
e�Mr � 1

þ
�ðm2

2 � 3m2
3 þ 2m2

4Þ
k1

� 1

�
Mre�Mr

��
;

� ¼ �GR

�
1þ a2m2

2m
2
4

ðm2
2 �m2

3ÞM2
ðe�Mr � 1Þ

�
;

(7.16)

where

k1 ¼ ðm2
2 � 3m2

3 þ 2m2
4Þ þ

m2
4ðM2Þ0
aHM2

:

Again we see that the presence of a non trivial background
gives rise to a modification of GR at large distances r�
M�1 (pushed to infinity for vanishing masses).
At short distances, the potential reduces to GR plus

corrections:

� ¼ �GR þ a2m2
2T00ðm2

2 � 3m2
3 þ 2m2

4Þ
ðm2

2 �m2
3Þ�2M2

P

þO

�
1

H0�3

�
:

(7.17)

On the other hand taking the dS limit carefully we recover
� ¼ �GR.

16The general solution is of the form


 ¼ t�1=2�‘ðC1t
�½��=2 þ C2t

��½��=2Þ þ 
P:

Stability requires j�ð�Þj � ð2lþ 1Þ< 0, which at high energies
implies lðlþ 1Þ�2

�ð�2 � �3Þ / �H0�2
�ð�2 � �3Þ> 0. This con-

dition was readily derived in Sec. VI C from direct inspection of
the Lagrangian. One can also check that the solution is stable at
any scale if in addition l >�1=2 and �2�

2
�f�4 þ lð�2 � 3�2 þ

2�4Þg< 0.
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B. Coupling to matter for m0 ¼ 0

For the m0 ¼ 0 case, one can express the potentials in a
way similar to (7.7) and (7.8), this time in terms of �. The
resulting expressions turn out to be very complicated, and

here we will consider explicitly only the ‘‘partially mass-
less’’ case discussed in Sec. VI B 2, where no DOF is
present. In this case, we can write the gravitational poten-
tials as

� ¼ �GR þ a

�ð3T00 þM2
P��Þðam4

4 þ 2m2
4H

0 � 2Hðm2
4Þ0Þ � 2að3T00 þ 2M2

P��ÞH2m2
4

4�2H2M2
P

�
;

� ¼ �GR þ a2m2
4

�
3T00 þM2

P��

2�2M2
P

�
;

(7.18)

where � is

M2
P�� ¼ � 3T00ðam4

4 þ 2m2
4H

0 � 2Hðm2
4Þ0 � 4aH2m2

4Þ
a½m4

4 þ 2H2ð2m2
2 � 3m2

4Þ� þ 2½m2
4H

0 �Hðm2
4Þ0�

: (7.19)

The previous two equations indicate that there is no vDVZ
discontinuity and we recover GR in the massless limit.

Some care is needed in the special cases when the
numerator or the denominator of (7.19) vanishes. If the
denominator vanishes the theory has an extra gauge invari-
ance (cf. Sec. VI B 2). As a result the EMT is coupled
consistently only if T00 ¼ 0 unless also the numerator
vanishes. In any case, � can be set to zero by a gauge
transformation, and the potentials can be read from (7.18).

One can readily see from these expressions that the
corrections to the Newtonian potential simply amount to
a linear correction (see appendix B), that invalidates the
linear approximation at large distance. This modification
vanishes for m4 ¼ 0, which also gives m1 ¼ 0 and
Hð3m2

3 �m2
2Þ ¼ 0 [cf. (6.24)].

VIII. DISCUSSION AND CONCLUSIONS

In this work we have performed a systematic study of
Lorentz-breaking massive gravity in a FRW background.
For the tensor and vector sectors, the analysis is very close
to that of Minkowski space: both sets of modes acquire
independent masses constrained by phenomenological
bounds. For vector modes, the naive strong coupling scale
is similar to that of flat space (see also below).

The most interesting results are in the scalar sector
where generically there are two propagating degrees of
freedom. For maximally symmetric spaces, the study of
the dispersion relations at high energy reveals the appear-
ance of ghostlike instabilities, i.e. instabilities associated to
an infinite volume phase-space, that can be cured only by
introducing a momentum space cutoff. Remarkably, this is
not necessarily the case in arbitrary spacetimes: high en-
ergy instabilities can be absent in a FRW background with
expanding horizon, i.e. H0 < 0, see (6.10) and (6.12).
Indeed, at high energies the sign of the determinant of
the mass matrix M [see (6.8) for the definition] is fixed
in Minkowski and dS, whereas in FRW H0 enters in the
game allowing a region in the parameter space whereM is

positive definite. As a drawback, in the limit H0 ! 0, the
theory is strongly coupled in the scalar sector.
The scalar sector also features a number of phases with

less than two DOF. Generically, in a FRW background the
phasem0 ¼ 0 (which includes the FP phase) has one scalar
DOF. We found the conditions that make the kinetic term
of this mode positive definite, generalizing the Higuchi
bound to LB masses in FRW spaces [see (6.14) and
(6.15)]. Moreover, provided that m2

2 � m2
3, high energy

instabilities are absent. We also sketched the method to
avoid instabilities at intermediate momenta (which may be
even interesting for cosmological perturbations).
In the presence of curvature there exist situations where

the Lagrangian for the scalar modes becomes particularly
simple as discussed in Sec. VI B 1. In particular the invari-
ance under time diff can be recovered even when m1 � 0.
More interesting is the case where the absence of scalar
DOF is due to a residual gauge invariance which is absent
in flat space (partially massless case). Taking the FP limit
in dS, the condition for having residual gauge invariance
can be solved, and as a result all masses are determined in
terms of the curvature scale [cf. (6.29)].
Also interesting is the phase m1 ¼ 0 where in general

there is again a single propagating scalar DOF. For maxi-
mally symmetric backgrounds, the EOM for this scalar do
not contain any gradient term and this mode effectively has
no dynamics (zero velocity): it behaves as a collective
mode. For generic FRW with expanding horizon, the prop-
agating scalar has a dispersion relation that can be made
free of instabilities.
We have then analyzed how the Newtonian potentials

generated by conserved pointlike sources are modified. In
the general case they agree with GR modulo corrections at
scales related to the massive gravity scale. A typical form
of the gauge invariant gravitational potentials is, for ex-
ample, [see Eqs. (7.3), (7.14), and (7.16)]

� ¼ �GR½1þ c1ðe��1r � 1Þ þ c2�2re
��2r�; (8.1)

where the mass scales �i are combinations of curvature
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and mass parameters while ci are dimensionless combina-
tions. This form is valid also for the� potential. Therefore
in the massless limit or for scales r 	 ðaHÞ�1, m�1 the
potentials reduce to the GR result, which makes these
phases potentially very interesting. Comparing for instance
to them1 ¼ 0 phase in flat space, where a linearly growing
term invalidates perturbation theory at large distance [13],
in curved space the potential (8.1) is well behaved at large
distance without imposing any fine-tuning in the mass
parameters. In this sense, the presence of a curved back-
ground regularizes many of the peculiarities of Minkowski
(also the casem� ¼ 0, singular in Minkowski, is regular in

FRW). At short distance, the corrections with respect to
GR in (8.1) can be estimated by expanding the
exponentials.

In our analysis we found that some of the propagating
states can have small kinetic terms (typically proportional
to mass or H0) giving rise to strongly coupled sectors at
very low energy. This fact can be relevant for its possible
cosmological implications. For instance, already in the
vector sector when m1 � 0, perturbation theory is reliable
only for H <

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m1MP

p
. This casts serious doubts on the

possibility to use massive gravity in standard inflation,
while keeping small the LB masses. In fact, to trust the
linear approximation at the standard inflation scale
Hinflation ’ 1013 GeV one would need m1 * 1016 eV, and
this would require a severe fine-tuning with respect to the
other masses that are constrained by various gravitational
tests (pulsar, solar system tests) to be much smaller (typi-
cally 10�21 eV). On the other hand, the value ofHinflation is
very model dependent, the only real upper bound comes
from BBN, TRH * 10 MeV, i.e. H * 10�16 GeV. This
gives the limitm1 > 10�30 eV, well below any other gravi-
tational constraints on the masses. The cosmological con-
straints coming from the analysis of the modified
gravitational perturbation’s dynamics are presently under
study [26].

Let us close with a comment on exact solutions. Besides
the large distance modifications to GR found in this work at
linearized level, some modifications have also been found
in exact (spherically symmetric) solutions of massive grav-
ity [20,41]. These solutions exist in dS space and feature a
nonanalytic r� term in the gravitational potential.17 Thus,
they differ also asymptotically from the linearized gravi-
tational potentials found in this work, which may be under-
stood from the presence of long-range instantaneous
interactions at linearized level. Therefore also for many
of the phases analyzed in the present work, one may expect
important nonlinear effects even at large distances.

Finally, our study suggests that the analysis of perturba-
tions around other nontrivial backgrounds may also unveil
phases where the perturbations have a stable spectrum, and
is thus of definite interest. Of main importance would be a
dedicated study addressing perturbations and their stability
in the (exact) gravitational background produced by a star.
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APPENDIX A: THE PHASE m0 ¼ 0 IN THE
GENERIC CASE

In this appendix we present the explicit analysis of the
dynamical degrees of freedom of the case m0 ¼ 0 dis-
cussed in Sec. VIA. The EOM for 
 yield the constraint


 ¼ a2

D
f�0½4�ðm2

1 � 2m2
4ÞH� þ�½2ð4�� 3a2m2

1Þ
� ðam2

�H
2 � ðm2

4Þ0Hþm2
4H

0Þ
þ am2

4m
2
1ð2�� 3a2m2

4Þ�g;
D ¼ 4�2½am2

1 þ 4H0� � 12�½2am2
�H

2 � 2ðm2
4Þ0H

þ am2
1m

2
4 þ ðm2

1 þ 2m2
4ÞH0�a2

þ 9m2
1½2am2

�H
2 þ aðm2

4Þ2 þ 2ðm2
4H

0 � ðm2
4Þ0HÞ�a4;

(A1)

where m2
� ¼ 3ðm2

3 �m2
4Þ �m2

2. Once 
 is substituted in

the action, we get a (quite involved) effective action for �
whose kinetic part is written in (6.13). Requiring the pos-
itivity of the kinetic energy (no ghost) for large momenta
we find the condition (6.14). As we saw, the kinetic term is
always positive at small momenta.
To understand when K is positive also at intermediate

momenta, first notice that K is expressed as a fraction of
two polynomials with different roots18 in the variable �.
For the fraction to keep its sign those roots must be either at
�> 0 or be absent. The numerator is a linear polynomial,

17As well as a 1=
ffiffiffi
r

p
term in a would-be gauge direction (i.e. for

a Goldstone field). This is verified explicitly in bigravity (where
m1 ¼ 0) [20], and in a decoupling limit in the FP case (Lorentz-
invariant m0 ¼ 0) [41]. In [42], the solutions of [20] have been
translated in the Goldstone formalism and extended numerically
to other nonlinear Lagrangians.

18The two roots coincide only when

m2
1ðm2

1 � 2m2
4Þ2½aðm4

4 þ 2H2m2
�Þ þ 2m2

4H
0 �Hðm2

4Þ0� ¼ 0:

(A2)

If the second factor cancels, we find a very simple kinetic term
which is always positive. When the last factor cancels, the
kinetic term is positive at any scale provided that (6.14) holds.
Finally, when both terms cancel, the constraint (A1) reduces to

 ¼ 0 and the whole action is much simpler.
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and setting its root at positive � corresponds to the condi-
tion (6.15). The denominator is a second-order polynomial
that, once the coefficient of�2 is taken as a common factor,
has a the zeroth order term

9a4m2
1

�
aðm4

4 þ 2H2m2
�Þ þ 2m2

4H
0 � 2Hðm2

4Þ0
am2

1 þ 4H0

�
; (A3)

which, from (6.14) and (6.15) is positive. Thus, the product
of the roots of the polynomial is positive. Besides, the term
proportional to � in the denominator reads

� 12

�
aðm4

4 þ 2H2m2
�Þ þ 2m2

4H
0 � 2Hðm2

4Þ0
9a2ðam2

1 þ 4H0Þ
�

� 12a2
�
am2

4ðm2
1 �m2

4Þ þm2
1H

0

am2
1 þ 4H0

�
; (A4)

which from (6.14) and (6.15) is negative definite for m2
1 �

0. This finally means that in the case m2
1 � 0 (required for

stability of the vector sector), both roots are positive and
instabilities in the kinetic term are absent at any scale
provided that the inequalities (6.14) and (6.15) are satisfied.

Concerning the potential term, the analysis is more
involved. The expansion in � provides a useful tool to
analyze the absence of instabilities at any momentum
scale. The potential term M can be written as (6.18).
The absence of gradient instabilities in the ultraviolet and
infrared regimes, equivalent to the positivity ofM in these
regimes, requires

at large momenta m2
2 >m2

3

at small momenta m2
2 > 0:

(A5)

At intermediate scales, the instabilities are Jeanslike. The
potentialLV is quartic in�which does not allow to find its

zero exactly. Nevertheless, imposing that it is free from
instabilities at high energy scales and at zero momentum
we know that it will be positive definite at any scale
provided that its minima in the interval � 2 ð�1; 0� are
below zero. These minima can be exactly localized as they
corresponds to the solutions of

cþ 2d�þ 3e�2 þ 4ðm2
2 �m2

3Þ�3 ¼ 0: (A6)

From the fact that we have at much two minima localized
in the interval� 2 ð�1; 0�, and yet some extra freedom in
the choice of the mass functions, we expect to find a large
class of Lagrangians with a well-defined potential (see [2]).

APPENDIX B: GRAVITATIONAL GREEN’S
FUNCTIONS

Once the Newtonian potentials are worked out in mo-
mentum space, they can easily be Fourier-transformed to
the physical position r-space (r ¼ j ~xj). The potentials �
and � found in this work are always of the kind

� ¼ Polynomialð�n þ 
 
 
Þ
Polynomialð�nþ2 þ 
 
 
Þ ¼

X
i

Zi

ð��M2
i Þi

(B1)

where Zi andMi are functions of the background and mass
parameters. Once the fraction has been decomposed in
poles, we can use the following correspondence to directly
read the r dependence:

1

�
! 1

r
;

1

�2
! r;

1

��m2
! e�mr

r
;

1

ð��m2Þ2 !
e�mr

m
; etc;

(B2)

for suitable choices of integration constants.

[1] V. A. Rubakov and P. G. Tinyakov, Phys. Usp. 51, 759
(2008).

[2] D. Blas, arXiv:0809.3744.
[3] H. van Dam and M. J. Veltman, Nucl. Phys. B22, 397

(1970); V. I. Zakharov, JETP Lett. 12, 312 (1970); Y.
Iwasaki, Phys. Rev. D 2, 2255 (1970).

[4] N. Arkani-Hamed, H. Georgi, and M.D. Schwartz, Ann.
Phys. (N.Y.) 305, 96 (2003).

[5] C. Deffayet, G. R. Dvali, G. Gabadadze, and A. I.
Vainshtein, Phys. Rev. D 65, 044026 (2002).

[6] G. Dvali, New J. Phys. 8, 326 (2006).
[7] V. A. Rubakov, arXiv:0407104.
[8] S. L. Dubovsky, J. High Energy Phys. 10 (2004) 076.
[9] M. Porrati, Phys. Lett. B 498, 92 (2001); A. Karch, E.

Katz, and L. Randall, J. High Energy Phys. 12 (2001) 016;
I. I. Kogan, S. Mouslopoulos, and A. Papazoglou, Phys.
Lett. B 503, 173 (2001); G. Gabadadze, A. Iglesias, and Y.

Shang, arXiv:0809.2996.
[10] P. Creminelli, A. Nicolis, M. Papucci, and E. Trincherini,

J. High Energy Phys. 09 (2005) 003.
[11] V. P. Nair, S. Randjbar-Daemi, and V. Rubakov,

arXiv:0811.3781.
[12] P. Horava, Phys. Rev. D 79, 084008 (2009).
[13] S. L. Dubovsky, P. G. Tinyakov, and I. I. Tkachev, Phys.

Rev. Lett. 94, 181102 (2005).
[14] N. Arkani-Hamed, H. C. Cheng, M.A. Luty, and S.

Mukohyama, J. High Energy Phys. 05 (2004) 074.
[15] M.V. Bebronne and P.G. Tinyakov, Phys. Rev. D 76,

084011 (2007).
[16] T. Damour and I. I. Kogan, Phys. Rev. D 66, 104024

(2002).
[17] D. Blas, C. Deffayet, and J. Garriga, Phys. Rev. D 76,

104036 (2007).
[18] Z. Berezhiani, D. Comelli, F. Nesti, and L. Pilo, Phys. Rev.

D. BLAS, D. COMELLI, F. NESTI, AND L. PILO PHYSICAL REVIEW D 80, 044025 (2009)

044025-14



Lett. 99, 131101 (2007).
[19] N. Rossi, Eur. Phys. J. Special Topics 163, 291 (2008); Z.

Berezhiani, L. Pilo, and N. Rossi, J. High Energy Phys. 07
(2009) 083; Z. Berezhiani, F. Nesti, L. Pilo, and N. Rossi,
arXiv:0902.0144; M. Banados, A. Gomberoff, D. C.
Rodrigues, and C. Skordis, Phys. Rev. D 79, 063515
(2009).

[20] Z. Berezhiani, D. Comelli, F. Nesti, and L. Pilo, J. High
Energy Phys. 07 (2008) 130.

[21] C. Deffayet, Classical Quantum Gravity 25, 154007
(2008).

[22] P. Koroteev and M. Libanov, Phys. Rev. D 79, 045023
(2009).

[23] M.V. Libanov and V.A. Rubakov, J. High Energy Phys. 08
(2005) 001.

[24] S. L. Dubovsky, P. G. Tinyakov, and I. I. Tkachev, Phys.
Rev. D 72, 084011 (2005).

[25] L. Grisa, J. High Energy Phys. 11 (2008) 023; S.
Mukohyama, J. Cosmol. Astropart. Phys. 10 (2006) 011;
T. Damour, I. I. Kogan, and A. Papazoglou, Phys. Rev. D
66, 104025 (2002).

[26] D. Blas, D. Comelli, F. Nesti, and L. Pilo (unpublished).
[27] L. H. Ford and H. Van Dam, Nucl. Phys. B169, 126

(1980).
[28] J.M. Cline, S. Jeon, and G.D. Moore, Phys. Rev. D 70,

043543 (2004).

[29] S. Dubovsky, T. Gregoire, A. Nicolis, and R. Rattazzi, J.
High Energy Phys. 03 (2006) 025.

[30] M.V. Libanov, V. A. Rubakov, O. S. Sazhina, and M.V.
Sazhin, J. Exp. Theor. Phys. 108, 226 (2009).

[31] L. F. Abbott and S. Deser, Nucl. Phys. B195, 76 (1982).
[32] S. Deser and A. Waldron, Phys. Lett. B 508, 347

(2001).
[33] J. Polchinski, arXiv:9210046.
[34] V. F. Mukhanov, H. A. Feldman, and R.H. Brandenberger,

Phys. Rep. 215, 203 (1992).
[35] G. Dvali, O. Pujolas, and M. Redi, Phys. Rev. Lett. 101,

171303 (2008).
[36] M. Fierz and W. Pauli, Proc. R. Soc. A 173, 211 (1939).
[37] A. Higuchi, Nucl. Phys. B282, 397 (1987).
[38] S. Deser and R. I. Nepomechie, Ann. Phys. (N.Y.) 154,

396 (1984).
[39] K. G. Arun and C.M. Will, Classical Quantum Gravity 26,

155002 (2009); M. Pshirkov, A. Tuntsov, and K.A.
Postnov, Phys. Rev. Lett. 101, 261101 (2008).

[40] D. Bessada and O.D. Miranda, Classical Quantum Gravity
26, 045005 (2009).

[41] E. Babichev, C. Deffayet, and R. Ziour, J. High Energy
Phys. 05 (2009) 098.

[42] M.V. Bebronne and P. G. Tinyakov, J. High Energy Phys.
04 (2009) 100.

LORENTZ-BREAKING MASSIVE GRAVITY IN CURVED SPACE PHYSICAL REVIEW D 80, 044025 (2009)

044025-15


