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We reconsider the possibility of violating the generalized second law of thermodynamics in theories

with spontaneous Lorentz violation. It has been proposed that this may be accomplished in particular with

a black hole immersed in a ghost condensate background, which may be taken to break Lorentz invariance

without appreciably distorting the space-time geometry. In this paper we show that there in fact exist

solutions explicitly describing the flow of negative energy into these black holes, allowing for violation of

the second law in a very simple way. This second law violation is independent of any additional

assumptions such as couplings of the ghost condensate to secondary fields, and suggests that violation

of the null energy condition may be the true source of pathology in these theories.
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I. INTRODUCTION

In [1], Dubovsky and Sibiryakov discussed a relation-
ship between theories with spontaneous violation of
Lorentz invariance, and violation of the generalized second
law of thermodynamics (GSL) [2] in the presence of black
holes. That paper continues an intriguing line of inquiry in
which one attempts to place bounds on possibilities for low
energy physics, coming from what appear to be fundamen-
tal principles of quantum gravity. Other recent results in
this direction have included an upper bound on particle
masses in theories with large numbers of species [3,4], and
a possible upper limit to the permitted size of the fine
structure constant [5,6]. See also [7–12].

The specific setup discussed in [1] involved a ‘‘ghost
condensate’’ background surrounding a Schwarzschild
black hole. The ghost condensate is defined by a scalar
field with an expectation value for its kinetic term
hr�’r�’i> 0, singling out a specific timelike direction

for a breaking of Lorentz symmetry [13–17]. With some
assumed couplings of the ghost condensate to secondary
fields, it then becomes possible to construct a perpetual
motion machine around the black hole, violating the sec-
ond law. In this paper, we will reexamine this setup, the
details of which will be reviewed in Sec. II. We will note
that, in order to conclude that the GSL is actually violated,
one must carefully examine the energy flowing into the
black hole in the ghost condensate background under
consideration. Although naively this energy flow vanishes,
we will point out that even seemingly small corrections to
this statement, from various possible sources, could ruin
the purported GSL violation and must be checked
carefully.

With this motivation, in Sec. III we will turn to an
examination of possible ghost condensate flows into black
holes. Using a perturbative approach, we will confirm the
numerical result of [18] that, contrary to the expectation
from fluid dynamics, there is a one parameter family of
static spherically symmetric ghost condensate flows, rather

than a unique one. We will discuss the range of parameters
for which these flow solutions may be trusted, including
possible effects from higher derivative operators.
In Sec. IV, we will calculate the energy-momentum

tensor for these solutions, and show that they describe
regions of either positive or negative energy flowing into
the black holes. The negative energy solutions allow one to
violate the GSL in a very simple way, independent of the
couplings to secondary fields. Wewill also comment on the
time scale for an instability in these flows, and argue that
they should be sufficiently long-lived to easily allow vio-
lation of the GSL.
We will conclude in Sec. V, including a discussion of

whether it is really violation of the null energy condition,
rather than Lorentz invariance, which causes the difficul-
ties with thermodynamics in these theories.

II. GENERALIZED SECOND LAW VIOLATION

The ghost condensate may be defined by a Lagrangian
taking a form such as

L ¼ 1

2�4
ðX ��4Þ2; (1)

where X � r�’r�’. The energy-momentum tensor is

T�� ¼ 2

�4
ðX ��4Þr�’r�’� 1

2�4
ðX ��4Þ2g��; (2)

and the equation of motion is

r�

�
2

�4
ðX ��4Þr�’

�
¼ 0: (3)

It follows that there are zero-energy solutions for which
X ¼ �4, and which therefore violate Lorentz invariance
spontaneously. In flat space these solutions may be taken to
have the form ’ ¼ �2t, with t identifying the timelike
direction singled out for a breaking of Lorentz symmetry.
It is important to note that these X ¼ �4 zero-energy

solutions exist not only in flat space-time, but in general

PHYSICAL REVIEW D 80, 044020 (2009)

1550-7998=2009=80(4)=044020(8) 044020-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.044020


curved backgrounds as well. In particular, we may set up
such a configuration in a black hole background without
affecting the underlying geometry [19]. The net effect is
that we may construct an ordinary looking black hole,
except that at each point there is a preferred direction as
chosen by the ghost condensate field.

We write the Schwarzschild black hole geometry in the
form

ds2 ¼
�
1� 2M

r

�
d�2 � 2

ffiffiffiffiffiffiffiffi
2M

r

s
d�dr� dr2 � r2d�2: (4)

Here M is the mass of the black hole, and we have chosen
natural units such that the Planck scale is Mpl ¼ 1. r is the

usual radial coordinate of Schwarzschild space-time, such
that spheres at radius r have area 4�r2, and d�2 is the
standard metric on the unit sphere. The coordinate � mea-
sures the proper time as seen by observers who freely fall
into the black hole from rest at infinity, with surfaces of
constant � being orthogonal to the world lines of such
observers. � is related to the usual killing time t of
Schwarzschild space-time via the relation

� ¼ tþ 2M

�
2

ffiffiffiffiffiffiffiffi
r

2M

r
þ log

� ffiffiffi
r

p � ffiffiffiffiffiffiffiffi
2M

p
ffiffiffi
r

p þ ffiffiffiffiffiffiffiffi
2M

p
��
; (5)

in terms of which the metric takes the standard form

ds2 ¼
�
1� 2M

r

�
dt2 � 1

1� 2M
r

dr2 � r2d�2: (6)

Recall that t labels the time-symmetry direction of the
space-time, and that it becomes singular at the horizon
(rh ¼ 2M), unlike �.

In terms of �, the zero-energy ghost condensate solution
in Schwarzschild space-time with X ¼ �4 takes an ex-
tremely simple form:

’0 ¼ �2�: (7)

Indeed, the direction chosen by ’ in this solution is simply
that of freely falling observers, with r�’0 following their
geodesics.

The argument in [1] now proceeds as follows: Since the
ghost condensate picks out a special time-direction, it is
simple to couple it to a secondary field, c , in such a way
that the particles of c obtain a maximum speed which is
different from the speed of light. We might imagine, for
example, a coupling of the form

L � 1

2
r�cr�c þ "

2

�r�’

�2
r�c

�
2
; (8)

which gives the c particles a propagation speed of v ¼
1ffiffiffiffiffiffiffi
1þ"

p . The key point is that this non-Lorentz invariant speed

implies that the c particles have a horizon at a different
radius from the usual horizon, and in turn a temperature
different from the usual black hole temperature. The hori-

zon radius and temperature for c are given by

rc ¼ rhð1þ "Þ (9)

and

Tc ¼ v3T; (10)

where T is the standard black hole temperature T ¼
1=8�M. As might have been expected, particles with a
slower speed have a larger horizon, and smaller
temperature.
Particles without such a coupling to the ghost conden-

sate of course still have the usual horizon radius and
temperature, and in this way we obtain a black hole with
rather peculiar thermodynamic properties; in particular, it
is immediately unclear which temperature one should think
of as the ‘‘real’’ temperature (if any), or which horizon area
one should associate with the black hole entropy (if any).
Indeed, the authors of [1] went on to show that one may
violate the second law of thermodynamics in this setup
with an appropriate set of hot shells surrounding the black
hole. In particular, suppose we have two particle species 1
and 2 with speeds v1 < v2 and temperatures T1 < T2. Now
imagine placing two shells around the black hole with
temperatures TA and TB satisfying

T1 < TA < TB < T2: (11)

Moreover, let us assume that shell A only interacts with
particles of type 1, and shell B only interacts with particles
of type 2. If one chooses the temperatures appropriately
then we may satisfy the inequalities (11), while simulta-
neously satisfying the condition that the total energy flow-
ing into the black hole is equal to zero. The net result of this
setup for the type 1 particles is then a flow of energy into
the black hole from the low temperature shell, while for the
type 2 particles it is a flow of energy out of the black hole
onto the high temperature shell. Since no total energy is
being lost by the shells, this ‘‘machine’’ then has the net
effect of transferring energy from the cold shell to the hot
shell, lowering the entropy of matter outside the black
hole without increasing the black hole area. It is in this
way that this setup manages to violate the second law of
thermodynamics.1

Now, a question one might immediately ask is: How can
it be that backgrounds which violate Lorentz invariance
allow for the existence of perpetual motion machines? In
particular, why is it not possible to violate the second law
of thermodynamics by using a regular fluid such as water
flowing into a black hole? After all, water picks out a
specific frame, and the phonons in water have a maximum
speed which differs from the speed of light. One could
imagine setting up the same sort of device as outlined

1In [20] the authors construct a process to violate the second
law in this theory via a purely classical method, not involving
Hawking radiation.
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above, but with the slow particles replaced by the phonons
in water. The reason such a device would fail to violate the
GSL of course is simple: While the machine runs, there is a
net flux of energy in water molecules flowing into the black
hole, and this energy causes the horizon area to grow at a
rate which is sufficient to overcome any purported GSL
violation.

The point is that it is the special property of the ghost
condensate of carrying essentially no energy-momentum
which results in the difficulties with the laws of thermo-
dynamics. For this reason, it is important to check carefully
the claim that one can maintain the condition T�� ¼ 0 in

the ghost condensate background. In particular, any per-
turbation to the equation of motion (3) has the potential to
result in some small but non-zero-energy flow during the
running of the perpetual motion machine, and could negate
any GSL violation.

The first such perturbation one might worry about is that
of higher derivative operators. In fact if one expands the
ghost condensate in small perturbations � about the X ¼
�4 background, the equation of motion (3) becomes at
linear order

r��
���r��þ ����r�r�� ¼ 0; (12)

with �� � r�’0=�
2 being the normalized gradient of the

background. In flat space-time this wave equation takes the
form

€� ¼ 0: (13)

It is therefore imperative for stability of these fluctuations
that one adds to the original ghost condensate Lagrangian
some higher derivative operators [13] such as for example2

L � � 2�

�2
h’h’: (14)

At energies much less than �, such a term modifies the �
equation of motion to3

€�þ �

�2
~r4
� ¼ 0: (15)

It is therefore important to analyze the effect of higher
derivative operators on the energy-momentum carried by
the ghost condensate into black holes.

A second potentially problematic perturbation to the
ghost condensate flow comes from the couplings (8) being
used to alter the speeds of the type 1 and type 2 particles.
The nonzero fluxes of these particles, a key component in

the construction of [1]’s perpetual motion machine, will
lead to a perturbation to the ghost condensate solution, and
any resulting energy flux could be important.4

It should be clear, therefore, that a more thorough ex-
amination of the energy flow in the ghost condensate
during the running of the perpetual motion machine of
[1] is crucial to determine whether or not the GSL is
actually violated. For this reason, we will turn to consider
the nature of such flows in more detail in the following
section. There we will find that the perpetual motion ma-
chines can in fact be made to work, but that the reasons for
this are closely related to the existence of a set of negative
energy ghost condensate flows. These may then be used to
violate the generalized second law in a very simple way.

III. GHOST CONDENSATE FLOWS

Note that we have been making an important implicit
assumption in our discussion of ghost condensate flows
thus far; that the stationary rate of energy flow in the ghost
condensate into a black hole is actually a uniquely defined
quantity. This assumption stems from an important result
in fluid dynamics: Given a perfect fluid surrounding a black
hole, and a particular asymptotic density, there exists a
unique stationary spherically symmetric flow of the fluid
into the hole (see [21] and references therein). Let us
briefly review the reason for this:
Consider a perfect fluid with a density �, pressure P,

four velocity u�, and ‘‘baryon’’ number density n. The
speed of sound, which we will take to be subluminal for

simplicity, is given by a ¼
ffiffiffiffiffi
dP
d�

q
, and the energy-

momentum tensor is

T�� ¼ ð�þ PÞu�u� � g��P: (16)

Assuming the black hole is much heavier than the energy
of fluid flowing into it (so that we may ignore backreaction
effects), the key equations describing the stationary, spheri-
cally symmetric flow of the fluid are

baryon conservation: r�ðnu�Þ ¼ 0 ) @rðnurr2Þ ¼ 0:

(17)

adiabaticity: d

�
�

n

�
þ Pd

�
1

n

�
¼ 0 ) d�

dn
¼ �þ P

n
:

(18)

2Of course, such terms are automatically expected to be
present in our effective field theory since no symmetry forbids
them. We will assume � to be roughly of order 1.

3This form for the low energy � equation of motion is
independent of the details of the structure of the higher derivative
terms. This is because it follows from (15) that time derivatives
of � are generally suppressed compared to its spatial derivatives,
and so (15) automatically includes the dominant modification
to (13).

4The setup of Ref. [20] presumably does not avoid this
concern; the same issue could arise in their scenario if one
imagines trying to violate the GSL with a continuous flux of
particles undergoing the classical process they describe. Even if
one takes their background to be given by, for example, Einstein-
Aether theory, the presence of a flux of particles coupled to this
background could result in it being slightly shifted. Such a shift
might lead to a sufficient flow of positive energy into the black
hole to save the GSL.
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energy conservation: r�T
�
t ¼ 0 ) @rðð�þ PÞurutr2Þ
¼ 0: (19)

Using these relations, as well as the fact that u�u
� ¼ 1, we

may solve for the radial derivative of u � jurj, obtaining
du

dr
¼ N

D
; (20)

where

N ¼ ð1� 2M=rþ u2Þ 2a
2

r
�M

r2
; (21)

and

D ¼ u2 � ð1� 2M=rþ u2Þa2
u

: (22)

Since we assume the fluid to be at rest far from the black
hole, we know that at large r, u approaches zero. In
particular, the flow at large r becomes subsonic with u2 �
a2, which in turn implies that D< 0. Close to the horizon
on the other hand, inspection of (22) reveals that D> 0.
We may therefore conclude that at some point outside the
horizon, D passes identically through zero. In fact, it turns
out that at this location the flow velocity as measured by a
stationary observer is exactly passing through the speed of
sound—it is the location of the sound horizon. In order for
the flow to successfully pass through the sound horizon
without becoming singular, it is clear that Eq. (20) requires
that, at this radius, N ¼ 0. This extra condition, required to
ensure smoothness of the flow at the sound horizon, now
provides us with enough information to solve for the flow
exactly.

Naively, we have a very good reason to believe that this
argument should apply equally well to the case of the ghost
condensate. In fact, the ghost condensate may in a precise
sense be thought of as a degenerate case of a perfect fluid
[14]: Suppose we consider any Lagrangian of the form

L ¼ PðXÞ; (23)

with X ¼ r�’r�’ as before. The ghost condensate is of

course described by a special case of such a Lagrangian.5

The energy-momentum tensor associated with (23) is then

T�� ¼ 2P0ðXÞr�’r�’� g��PðXÞ: (24)

The key point is then that this system describes precisely a
perfect fluid, so long as we make a set of identifications:

PðXÞ ! P r�’=
ffiffiffiffi
X

p ! u�

2P0ðXÞX � PðXÞ ! �
P0ðXÞ

2P00ðXÞXþ P0ðXÞ ! a2:

(25)

Additionally, n is taken proportional toP0ðXÞ ffiffiffiffi
X

p
so that the

equation of motion for ’ becomes the statement of baryon
number conservation.
We might thus expect that ghost condensate flows into

black holes should be unique, exactly as in the perfect fluid
case. On the other hand, a closer inspection of the argu-
ment reveals at least a conceivable loophole: The speed of
sound in the ghost condensate, in the absence of higher
derivative terms, is equal to zero (since P0ðXÞ ¼ 0). Thus a
ghost condensate flow, at the level of the perfect fluid
picture, never actually passes through a sound horizon. In
fact, as we will now show, thisloophole does indeed allow
for the existence of a family of stationary, spherically
symmetric ghost condensate flows.
Let us look for well-behaved solutions to the ghost

condensate equation of motion in the Schwarzschild back-
ground which are small perturbations to the zero-energy
solution (7). Again we will look for solutions which are
stationary and spherically symmetric, and we will ignore
backreaction of the flow on the background metric.
Stationarity requires that the components of r�’, in
Schwarzschild coordinates (6), should be independent of
the time t. This in turn requires that ’ must take the form
’ ¼ Atþ fðrÞ, for some constant A and function f. Since
we want the physics of the solution to approach that of the
usual flat space configuration ’ ¼ �2t at large distances
from the black hole, we must continue to take A ¼ �2.
The general perturbation of interest to the zero-energy
solution (7) thus takes the form

’ ¼ �2�þ �ðrÞ: (26)

Plugging this into the equation of motion (12), we obtain
an extremely simple differential equation

2M

r
�00ðrÞ þ 2M

r2
�0ðrÞ ¼ 0; (27)

with a simple set of solutions

�ðrÞ ¼ C1 logðrÞ þ C2: (28)

The constant solution C2 was to be expected, since our
theory has a shift symmetry � ! �þ c, but the existence
of the log solutions is surprising; they are perfectly well-
behaved through the event horizon out to infinity, and as
such represent a one parameter family of stationary, spheri-
cally symmetric ghost condensate flows. Note that the fact
that logðrÞ blows up as r ! 1 is irrelevant, as the shift

5In fact, the ghost condensate is generally defined by a point
X0 such that X0 > 0, P0ðX0Þ ¼ 0, and P00ðX0Þ> 0. The specific
form of the Lagrangian in Eq. (1) was taken only for simplicity.
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symmetry ensures that only derivatives of � are physical.
Indeed, let us check for what values of C1 (28) actually
represents a small perturbation about the zero-energy so-
lution (7). Expanding X to linear order in the perturbation,
we obtain

X ’ �4 � 2C1

�2

r

ffiffiffiffiffiffiffiffi
2M

r

s
: (29)

As long as we are only interested in values of r of order the
horizon size or larger, we conclude that our perturbative
solutions are valid if we take

jC1j � �2

T
: (30)

Another thing we should check is that these flow solu-
tions are not significantly affected by the presence of
higher derivative terms in the Lagrangian such as (14). In
fact, as discussed in Sec. II, it is known that higher deriva-
tive terms have a small effect on the original zero-energy
solution (7), suppressed by the small quantity T2=�2. More
quantitatively, the leading order perturbation � induced by
these terms is a solution to the linear Eq. (27), but with a
source given by the appropriate higher derivative term
evaluated on the zeroth order background. With the term
from (14) we then have

2M

r
�00ðrÞ þ 2M

r2
�0ðrÞ ¼ � �

�2
h2’0

¼ ��
9ðr� 6MÞ
4

ffiffiffi
2

p
r4

ffiffiffiffiffi
M

r

s
: (31)

Setting a boundary condition at infinity so that � does not
affect the radial energy flux, we obtain the solution

� ¼ ��
3ð3r� 2MÞ
2r2

ffiffiffiffiffiffiffiffiffiffiffiffi
2M=r

p : (32)

Comparing with the size of the perturbation defined by our
flow solution (28), we may conclude that the perturbation
coming from the higher derivative term is a subdominant
effect on scales of horizon size or larger so long as we take

jC1j � T: (33)

Note that since the flows (28) with nonzeroC1 are perfectly
well-behaved perturbations to the zeroth order background
(7), they themselves change the effect of the higher deriva-
tive terms by an amount which is small so long as (30) is
satisfied. In combination, the inequalities (30) and (33)
thus leave us with a large range of sizes for these flows
for which we may trust the form of our perturbative solu-
tions, while ignoring the effects of higher derivative
operators.

Before we move on to study the ghost condensate black
hole flows in more detail, we would like to point out an
interesting observation concerning the general perfect fluid
flows discussed earlier. Specifically, suppose we have a
Lagrangian of the type (23), with a nonzero speed of sound
at large distances, and suppose we add to it some small
perturbation. The perturbation could be, for example, a
higher derivative operator, or a coupling to some secondary
field, etc. The uniquely defined flow into a black hole will
of course be changed by some small amount. In particular,
it turns out that in the expression (20) for du

dr , the denomi-

nator ‘‘D’’ is unaffected, while the numerator ‘‘N’’ is
shifted by a term small in the perturbation added to the
action. It thus follows that the argument for uniqueness of
the flow goes through unaffected- D ¼ 0 still implies N ¼
0 in order to avoid singularities. On the other hand, the
parameters determining the flow, as set by the N ¼ 0
requirement, are changed by an amount given by the size
of the perturbation as evaluated at the sound horizon. If the
ghost condensate black hole flows were unique, this argu-
ment would tell us how they would become affected by
small perturbations to the action such as those considered
in Sec. II. Of course, since the uniqueness argument ac-
tually breaks down for the case of the ghost condensate,
this point is moot.
In the next section, we will discuss the form of the

energy-momentum tensor for the family (28) of ghost
condensate black hole flows. We will show that for appro-
priateC1 they carry negative energy, and wewill also make
some comments concerning their stability.

IV. ENERGYAND STABILITY

Expanding the energy-momentum tensor (2) to linear
order about the X ¼ �4 background, we obtain

T�� ’ 4�2������r��: (34)

With the specific form of the solutions (28) this yields

Tr
t ’ 8C1M�2

r2
(35)

and6

Tt
t ’ � 4C1

r

ffiffiffiffiffiffiffiffi
2M

r

s
�2

1� 2M=r
: (36)

We thus find that, depending on the sign of C1, these flow
solutions describe either regions of positive energy with
positive energy flux into the black hole, or regions of
negative energy with a corresponding negative energy
flux. Such flows therefore allow one to trivially violate
the generalized second law of thermodynamics in this

6Note that the singularity in Tt
t at the horizon is not physical,

but due to the Schwarzschild coordinate singularity. Freely
falling observers measure a perfectly finite energy at the horizon.
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theory; they cause the horizon area to decrease without any
corresponding increase in the total entropy of the exterior.7

This demonstrates, in particular, that the ghost condensate
is incompatible with the GSL independent of the size or
nature of couplings to secondary fields. It had been argued,
for example, that GSL violation might be avoided if direct
couplings between the ghost condensate and other fields
were induced only gravitationally [23]. Moreover, this
shows that perpetual motion machines such as those of
[1,20] may indeed be constructed; there will certainly be
flows for which the ghost condensate energy accretion rate
is sufficiently small.

Note that, if we take these ghost condensate solutions
literally at extremely large distances from the black hole,
then our approximation of ignoring the backreaction on the
metric will become a bad one: Tt

t from (36) falls off at

infinity like 1=r3=2, and thus the total integrated energy is
not finite.8 Of course, any stationary fluid flow solution into
a black hole with a nonzero asymptotic density will have
this same problem. The point is that one should think of
these flows as being approximately stationary for a very
long period of time, before the (appropriately finite) total
energy available has been exhausted. This time period can
be made arbitrarily longer than the Schwarzschild time
scale by raising Mpl (for fixed rh), thereby increasing the

mass of the black hole and reducing the backreaction.
Another important issue for these negative energy flows

is that of stability. Recall that in flat space, ghost conden-
sate configurations with X ¼ �4 have perturbations which

lack a ~r2
� term in their wave equations. An important

point though, is that if we consider configurations with

X <�4 instead, say X ¼ �4 � �, a ~r2
� term does ap-

pear, but with the wrong sign:�
1� 3�

2�4

�
€� ¼ � �

2�4
~r2
�� �

�2
~r4
�: (37)

Such background configurations are of course unstable,
and in fact correspond to the negative energy region of
the theory. In addition, it follows that there exists a non-
linear instability in the original X ¼ �4 background [14];
a short wavelength mode living on top of a longer wave-

length mode with X values temporarily in the negative
energy region will indeed display the instability.
It thus seems clear that the negative energy flows we

have constructed will be unstable. Although analytic solu-
tions for the growing modes have not been forthcoming, we
can still attempt to make a rough estimate for the time scale
of their growth. Note that for a given value of �, higher
derivative operators put an upper limit on the wave number

for an instability. In particular, in order for the ~r2
� term in

(37) to dominate over the stabilizing higher derivative
term, we require the wave number k to be smaller than

roughly
ffiffiffiffi
�

p
=�. The corresponding time scale for the

growth of the mode, from (37), is then of order �3=�.
In the ghost condensate flow solutions we have been

considering, �X outside the horizon has a maximum mag-
nitude of roughly C1�

2T, corresponding to a decay time
scale of order�=C1T. Given the energy flux from Eq. (35),
the total energy which may be transferred in this time is of
order �3=T2. The corresponding change in the black hole
area in Planck units is then of order �3=T3, and thus one
may easily violate the generalized second law before the
instability of these flows manifests itself.9

In fact, the nature of the instability of negative energy
regions in the ghost condensate was studied numerically in
[14]. Those authors found that negative energy lumps in
the ghost condensate tend to shrink in size (rather than
grow catastrophically), while maintaining a fixed total
amount of negative energy. The fact that the tendency of
these negative energy lumps is to coalesce suggests the
nature of the instability in the black hole flows will not be a
particularly remarkable one; presumably, the flows will
very gradually accelerate, until eventually all of the nega-
tive energy around the black hole has been absorbed.

V. DISCUSSION

In this paper we have demonstrated the existence of a
one parameter family of stationary, spherically symmetric
solutions describing flow of ghost condensate fluid into
black holes. These flows may carry either positive or

7We are assuming that the ghost condensate flows are accom-
panied by positive fluxes of entropy into the black hole. If the
UV completion of the theory were such that large outward
entropy fluxes were associated with these flows, then saving
the generalized second law might become possible. This could
conceivably occur, for example, if the UV completion of the
theory contained particles with faster than light propagation.
Note that Hawking radiation generates entropy in the exterior at
a rate which is far too small to be relevant given the size of the
negative energy flows under consideration (c.f. (30) and (35)).
Hawking radiation of ghost condensate quanta themselves has
been shown to be especially suppressed [22].

8This explains why these solutions were not identified in [19],
since in that treatment the metric was assumed to be asymptoti-
cally flat.

9To be more precise, we could take C1 � � for simplicity, so
that the evolution of the unstable modes takes place on scales
much smaller than rh. We could then roughly trust the form of
the flat space wave-equation, and �=C1T would be the approxi-
mate instability time scale as seen by a freely falling observer at
rest relative to the ghost condensate. If we set up the initial
conditions for the flow on a well-behaved spacelike hypersurface
such as � ¼ 0, for example, then the instability will become
important at �’s of order �=C1T. At a fixed radius r, it then
follows from (5) that the killing time t available is also given
roughly by�=C1T, so that the total energy transferred before the
flow becomes affected by the instability will be approximately
�3=T2 as claimed. Flows with smaller values of C1 may be used
to violate the GSL on longer time scales, although precise
general relativistic values for the lifetimes then become more
difficult to estimate.
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negative energy and may thus be used to violate the gen-
eralized second law of thermodynamics.

One point that is slightly puzzling about the existence of
these flows is related to what happens if one perturbs
slightly away from a pure ghost condensate solution at
large distances from the black hole. In particular, suppose
that as r ! 1, X approaches �4ð1þ 	Þ, so that the field
approaches a configuration slightly different than the ghost
condensate one at X ¼ �4. In this case the standard argu-
ment of Sec. III for uniqueness of perfect fluid flows into
black holes applies, and thus the one parameter family of
solutions must disappear. Presumably what is happening is
that for nonzero 	, there is indeed a unique stationary flow,
but also there is a family of flows with some small time
dependence set by the size of 	. As 	 ! 0, the time
dependence goes away, and we recover the complete fam-
ily of stationary ghost condensate flows. It would certainly
be interesting to see this explicitly, though this is beyond
the scope of the present paper.

The fact that it is possible to violate the GSL through
negative energy flow in the ghost condensate suggests that
it is really violation of the null energy condition (NEC)
which is the source of the problems this theory causes for
thermodynamics. In particular, as we have discussed, the
perpetual motion machines of [1,20] hinge fundamentally
on the requirement that the background violating Lorentz
invariance also carries no energy-momentum. Generically,
the Lorentz violating background field can then be ex-
pected to have perturbations which contribute to T�� at

linear order as in (34), leading directly to violations of the
NEC.

It thus seems likely that it is not so much Lorentz
violation which leads to potential problems with thermo-
dynamics, as implied by the perpetual motion machines of
[1,20], but simply the existence of negative energy con-
figurations. Of course, the test of this hypothesis comes in
trying to find a Lorentz violating theory for which the NEC
is satisfied, but for which one can successfully set up a
perpetual motion machine.

The first thing one might try in this direction would be to
continue to consider a general Lagrangian of the formL ¼
PðXÞ as in Sec. III. One could then demand the require-
ments that not only is there a point X0 with P0ðX0Þ ¼ 0 as
in the ghost condensate (to allow a background with zero-
energy), but that also P00ðX0Þ ¼ 0 in order to remove the

linear term (34) in T�� coming from fluctuations about X0.

The problem here, though, is that the action for these
perturbations then begins at cubic order, and the theory
then becomes completely nonperturbative. As a result,
conclusions drawn in such a scenario could not be trusted.
Another interesting example to consider is that of

Einstein-Aether theory [24–28]. This theory possesses a
vector field with a timelike expectation value, and is known
to have choices of parameters for which energies are
apparently non-negative [28]. There are also parameter
values for which black hole solutions have been studied
[27], and it would be very interesting to investigate whether
one can construct a perpetual motion machine in this
theory without sacrificing the positive energy require-
ments. A natural conjecture would be that it will not in
fact be possible. To check this one would have to study, in
particular, whether one could maintain a sufficiently small
energy flux in the Einstein-Aether fields into the black hole
in the presence of the ‘‘slow’’ and ‘‘fast’’ particles being
used to run the perpetual motion machine.
The fact that the pure ghost condensate theory is incom-

patible with the generalized second law of thermodynam-
ics fits in nicely with the result of [22], that the Hawking
spectrum of ghost condensate perturbations is highly sup-
pressed and nonthermal. The obvious suggestion would
be that the ghost condensate cannot emerge in a low energy
effective theory coming from a quantum theory of
gravity.10

The ghost condensate has been proposed as a concrete
model for both dark energy and dark matter, as well as
inflation. It is quite interesting that a seemingly consistent
model describing low energy phenomena far below the
Planck scale could turn out to be unacceptable due to the
behavior of black holes as required by fundamental prin-
ciples of gravity.
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