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The gravitational polarizability properties of black holes are compared and contrasted with their

electromagnetic polarizability properties. The ‘‘shape’’ or ‘‘height’’ multipolar Love numbers hl of a

black hole are defined and computed. They are then compared to their electromagnetic analogs hEMl . The

Love numbers hl give the height of the lth multipolar ‘‘tidal bulge’’ raised on the horizon of a black hole

by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where

m gets very close to the horizon.
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I. INTRODUCTION

In Newtonian gravity, the quantitative theory of the
gravitational polarizability of elastic, self-gravitating
bodies was pioneered by Love [1], who introduced two
dimensionless measures of the response of an elastic body
to an external tidal solicitation. To define them, let us first
decompose the external tidal potential into multipolar
components, say Uext ¼ P

Ul ¼ P
Tlr

lPlðcos�Þ, where
the coefficient Tl measures the strength of the lth multi-
polar component of the external tidal field. The first Love
number, hl, measures, essentially, the ratio between the lth
multipolar component of the distortion of the shape of the
considered elastic body and Tl, while the second Love
number, kl, measures the ratio between the lth order multi-
pole moment induced in the elastic body and Tl.

In the membrane approach to black holes (BH’s) [2–7],
BH’s are treated as elastic objects, endowed with usual
physical properties. This raises the issue of defining and
determining the BH analog of the Love numbers hl and kl.
Some time ago, Suen [8] made an attempt at defining and
computing k2, i.e. the quadrupole moment induced in a BH
by an external quadrupolar tidal field. He surprisingly
found that, with his definition of the multipole moments
of a distorted BH, the tidally induced quadrupole moment
was opposite to the externally applied quadrupolar tidal
field (which would mean k2 < 0, in contrast with usual
elastic bodies, which have kl > 0). This unexpected result
might well be due to the inappropriateness of the definition
of induced multipole moments adopted in [8]. In two
recent works, [9,10], it was found that if one defines the
kl Love number of a BH as being the mathematical con-
tinuation, up to a star compactness formally equal to 1=2,
of the (linearized) kl Love number of a neutron star, the
resulting kl vanishes for all l’s. However, there are subtle-
ties inherent in any definition of the multipole moments of

BH’s, so that there is currently no unambiguous determi-
nation of the kl Love number of BH’s (see, e.g., [9,11] for
discussions of the various ambiguities in the definition of
the multipole moments of BH’s). In the present paper, we
shall not try to address these subtleties, and we shall,
instead, focus on the computation of hl, i.e. on the quanti-
tative measure of the tidal distortion of the shape of a BH.
By contrast to kl, we shall see that there is no ambiguity in
the computation of the first Love number hl of a BH.
Pioneering investigations of the tidal distortion of BH’s

were performed by Manasse [12] and Hartle [13,14] (see
also [15]). Further investigations are due to D’Eath [16,17],
and, more recently, to Poisson and collaborators [18,19].
Though these papers explicitly discussed the quadrupolar
(l ¼ 2) tidal distortion of BH’s, they did not consider
higher multipolar orders of tidal distortion, nor did they
explicitly compute the value of the h2 Love number. In
addition, there are sign errors in some formulas of [13],
which would affect the computation of h2.
The first purpose of this paper is to compute (in the

linear approximation to tidal effects) the ‘‘shape distor-
tion’’ Love numbers hl of a BH, for all values of l � 2. Let
us mention that a recent investigation of the Love numbers
of neutron stars [9] has found that in the formal limit where
the compactness cNS ¼ GM=R of a neutron star tended to
the compactness of a BH, cBH ¼ 1=2, the c-dependent hl
Love numbers of neutron stars tended to the BH hl values
determined in this paper. The sequence of hl’s is a way of
parametrizing the tidal effects due to a disturbing mass m
located far away from the considered BH. We shall also be
interested in studying the distortion of the shape of a BH
when a disturbing testmass gets very near to the surface of
the BH. In this respect, we will find it useful to compare
and contrast the gravitational polarizability of BH’s to their
electric polarizability properties. Let us recall that Hanni
and Ruffini [20] pioneered the study of the electric polar-
izability properties of BH’s, and introduced the notion of
the charge density, �, induced on the BH horizon by an
external charge q. (This concept of induced charge density
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was one of the origins of the membrane approach to BH
physics [2–7].) Below, we shall use the concept of induced
charge density to define electric analogs of the hl Love
numbers, which we shall compare to the gravitational ones.
Then, we shall also compare the evolution of the gravita-
tional, or electric, induced effects as the external tidally
influencing (test) mass m, or charge q, approaches the
horizon. [Reference [21] has considered the tidal distortion
of the horizon of a BH by nearby (moving) masses, but has
mainly used a Rindler approximation which replaces the
BH horizon by a null hyperplane in a Minkowski back-
ground. In Sec. V, we shall discuss the connection of our
results to those of [21].]

The paper is organized as follows. In Sec. II, the notion
of gravitational shape Love number of a BH is introduced.
It is defined as the dimensionless ratio between the lth
multipolar component of the deformation of the horizon
geometry of a BH and the lth multipolar component of the
external tidal potential generated by a static axisymmetric
distribution of faraway masses. In Sec. III, one introduces
the notion of electromagnetic (EM) Love number by con-
sidering the influence of a distribution of faraway charges
on the charge density induced on the surface of a BH. The
case of a test charge approaching the BH horizon is exam-
ined in Sec. IV, while the case of an infinitesimal mass
approaching the BH horizon is considered in Sec. V. The
paper ends with a summary of our main results.

II. MULTIPOLAR TIDAL DISTORTION OF THE
SHAPE OFA BH UNDER THE INFLUENCE OF

FARAWAY MASSES

We wish to describe a physical situation where a BH of
massM is immersed in a generic, stationary, axisymmetric
tidal field generated by faraway sources. For simplicity, we
shall only consider here the static (nonrotating) case. This
situation can be described by the Weyl class of static
axisymmetric vacuum solutions of Einstein’s equations,
see, e.g., [22] and references therein. The line element of
a Weyl metric, in Weyl coordinates, reads

ds2 ¼ �e2cdt2 þ e2ð��c Þðd�2 þ dz2Þ þ �2e�2cd�2:

(1)

Einstein’s vacuum equations then imply the following
equations for the functions c ¼ c ð�; zÞ and � ¼ �ð�; zÞ:

@2c

@�2
þ 1

�

@c

@�
þ @2c

@z2
¼ 0; (2a)

@�

@�
¼ �

��
@c

@�

�
2 �

�
@c

@z

�
2
�
; (2b)

@�

@z
¼ 2�

@c

@�

@c

@z
: (2c)

The linear differential equation (2a) is identical to the 3-
dimensional axisymmetric (�-independent) Laplace equa-
tion in cylindrical coordinates. Therefore, we can think of

c as being (minus) the Newtonian potential U ¼ P
Gm=r

generated by an ensemble of axisymmetric bodies: c �
�U. Without loss of generality, the potential U can be
decomposed as U ¼ UM þUext, where UM refers to the
BH of mass M that we consider, and Uext accounts for the
external contribution(s). We recall that UM (for a
Schwarzschild BH) corresponds, in Weyl coordinates, to
the Newtonian potential generated by a rod, along the z
axis, of linear mass density � ¼ 1=ð2GÞ and of coordinate
length �z ¼ 2GM. The two remaining nonlinear field
equations for the metric variable � can be solved by means
of a line integral. The superposition of two or more axi-
symmetric bodies implies the presence of interaction terms
in the function �: � ¼ �ðUMÞ þ �ðUextÞ þ �intðUM;UextÞ,
where �int is bilinear (and nonlocal) in UM and Uext. We
shall consider situations where the ‘‘central’’ BH of mass
M is in equilibrium within Uext, i.e. where the elementary
flatness condition lim�!0� ¼ 0 is satisfied along the por-

tions of the z axis that touch the BH horizon. (As is well
known, a nonvanishing �0 � lim�!0� can be interpreted

as the presence of a supporting strut or string.) This con-
dition implies the constraint that Uext takes the same value
at the north pole (z ¼ þGM) than at the south pole (z ¼
�GM) of the BH [23–25]:

UNP
ext ¼ USP

ext � u: (3)

The notation u for the common value of Uext at the north
and south poles is introduced here for later convenience.
Since the Newtonian potential U obeys a three-

dimensional � independent Laplace equation, Uext can
be decomposed in an axial-multipole expansion in spheri-
cal coordinates as

Uext ¼
X1
l¼0

Ul ¼
X1
l¼0

Tlr
l
WPlðcos�WÞ: (4)

Here, ðrW; �W;�Þ denote the spherical coordinates associ-
ated (as if one were in flat space) to the Weyl coordinates
ð�; z; �Þ, i.e. � ¼ rW sinð�WÞ, z ¼ rW cosð�WÞ.
The coefficients Tl in Eq. (4) measure the strength of the

lth multipolar tidal field within which the considered BH is
immersed. We are aware of the fact that the definition of
the Tl’s used here heavily relies on the quasilinear proper-
ties of the Weyl solutions. We think, however, that, in the
linear approximation to tidal effects, i.e. in the formal limit
where Tl ! 0, for all l’s, the Tl’s become unambiguously
defined (and gauge invariant, as they can be read off at r �
GM). In general, Uext (and therefore each Tl) can be
thought of as containing the superposition of the tidal fields
due to a stationary ensemble of faraway (axisymmetrically
distributed) masses. A particularly simple configuration is
that where Uext is generated by a single BH of mass m,
located along the z axis at z ¼ D � GM. [In this limit, the
effect of any string supporting the perturbing mass m (and
the BH) becomes negligible [21].] As D � GM, there
exists a wide region (with GM � rW � D) where space
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is nearly flat and where we can expand

Uext ¼ Gmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2W þD2 � 2rWD cos�W

q ; (5)

as

Uext ¼
X1
l¼0

Gm

Dlþ1
rlWPlðcos�WÞ: (6)

This shows that, in this case, the normalization of the tidal
coefficients Tl is such that

TlðmÞ ¼ Gm

Dlþ1
: (7)

Let us also indicate (from [23]) the structure of the Weyl
solution describing a central BH of mass M, tidally dis-
torted by several BH’s of mass mi, described by rods of
density 1=ð2GÞ located in the intervals [bi �Gmi, bi þ
Gmi] along the z axis. The solution is described by

c ¼ cM þ c ext ¼ cM þX
i

c mi
; (8a)

� ¼ �M þ �ext ¼ �M þX
i

�mi
þ 2

X
i

�Mmi

þX
i;j

�mimj
þ C; (8b)

where (using henceforth G ¼ 1 for simplicity)

cM ¼ 1

2
ln

�
Rþ
M þ R�

M � 2M

Rþ
M þ R�

M þ 2M

�
; (9a)

�M ¼ 1

2
ln

�ðRþ
M þ R�

MÞ2 � 4M2

4Rþ
MR

�
M

�
; (9b)

and where each mi-dependent contribution reads (when
suppressing the index i for readability)

c m ¼ 1

2
ln

�
Rþ
m þ R�

m � 2m

Rþ
m þ R�

m þ 2m

�
; (10a)

�m ¼ 1

2
ln

�ðRþ
m þ R�

mÞ2 � 4m2

4Rþ
mR

�
m

�
; (10b)

�Mm ¼ 1

4
ln

�
EðMþ;m�ÞEðM�;mþÞ
EðMþ;mþÞEðM�;m�Þ

�
; (10c)

with �mimj
given by a similar expression (obtained by

replacing M ! mi, m ! mj). Here,

R�
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðZ�

MÞ2
q

; R�
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðZ�

mÞ2
q

; (11a)

Z�
M ¼ z�M; Z�

m ¼ z� ðb�mÞ; (11b)

EðM�;m�Þ ¼ �2 þR�
MR

�
m þ Z�

MZ
�
m: (11c)

In Eq. (8b), C denotes an integration constant which must
be chosen [after having satisfied the condition (3)] so that
lim�!0� vanishes on the portions of the z axis which touch

the central BH. When the condition (3) is satisfied, and the

constant C in (8b) is suitably chosen, it has been shown
[23–25] that the locus � ¼ 0, z 2 ½�M;M�, is a smooth
(Killing) horizon. To see that its structure is that of a
distorted BH, one would need to replace the Weyl coor-
dinates ð�; z; �Þ first by Schwarzschild-like coordinates
ðR; �S;�Þ, such that

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 2MR

p
sin�S; (12a)

z ¼ ðR�MÞ cos�S; (12b)

and then by (horizon-regular) Kruskal (or Eddington-
Finkelstein) coordinates. For our present purpose, which
is to read off the distorted geometry of the horizonR ¼ 2M
(� ¼ 0), it will be enough to consider the geometry (1) in
Schwarzschild-like coordinates, i.e. using the following
consequences of Eqs. (9a), (9b), (11), and (12):

e2cM ¼ 1� 2M

R
; (13a)

e2ð�M�cMÞ ¼ ½ðR�MÞ2 �M2cos2�S��1; (13b)

ds2 ¼ �e2c ext

�
1� 2M

R

�
dt2 þ e2ð�ext�c extÞ

	
�

dR2

1� 2M
R

þ R2d�2S

�
þ e�2c extR2sin2�Sd�

2:

(13c)

Here, as indicated in the particular case of (8), c ext and �ext

are defined such that c ¼ cM þ c ext, � ¼ �M þ �ext,
where cM and �M are the undistorted Schwarzschild
values (9a) and (9b).
It is easily seen that Eqs. (2) imply that the following

equality:

½�ext � 2c ext��¼0 ¼ const � 2u (14)

holds on the horizon (� ! 0). Here, u is, as in Eq. (3), the
common value of Uext � �c ext at the north and south
poles. Restricting the geometry (13c) to t ¼ t0 ¼ const
and R ¼ R0 ¼ const (and then taking the limit R0 !
2M), and using Eq. (14), allows us to read off the geometry
induced on the horizon:

ds2jR¼2M ¼ ð2MeuÞ2
�

1

�ð�Þd�
2 þ �ð�Þd�2

�
; (15)

where we have introduced the convenient variable

� � cos�S ¼
�
z

M

�
�¼0

; ð�1 
 � 
 þ1Þ; (16)

and where the function �ð�Þ describing the distorted
horizon geometry is given by

�ð�Þ ¼ ð1��2Þ�̂ð�Þ; (17a)

�̂ð�Þ ¼ e2ð �Uextð�Þ�uÞ: (17b)

Here �Uextð�Þ ¼ �c extj�¼0 is the value of Uext along the
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horizon, and u is, as in Eq. (3), the common value ofUext at
the north and south poles.

Note that the prefactor giving the overall length scale of
the horizon geometry is not the mass parameterM entering
the Weyl metric, but rather the blueshifted mass parameter

Mu ¼ Meu: (18)

While the mass parameter M is equal [25] to the Komar
mass of the central BH, Eq. (15) shows that the irreducible
mass [26,27] of the central BH is

Mirr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

16�G2

s
¼ Mu; (19)

where A denotes the area of the horizon. If we were to
consider a physical process where our ensemble of gravita-
tionally interacting masses would change their relative
positions in an adiabatic manner, we should be careful to
maintain all the irreducible masses (i.e. all the individual
BH entropies) fixed during the process. This would mean
that the Komar mass parameters M, mi would need to
change as the relative positions change, so as to compen-
sate the variation of the blueshift factor eu in Eq. (18).
However, as our purpose is to study the fractional distor-
tion of the horizon geometry associated to external tidal
fields, we will, in the following, factor out the overall scale
factor ð2MuÞ2 in Eq. (15) and focus on the shape of the
�ð�Þ-dependent conformal geometry defined by the
square bracket on the right-hand side of Eq. (15).

It can be easily proven that the Gauss curvature K ¼
1
2R

ð2Þ ¼ 1
2R

	�
	� of the distorted horizon geometry (15) is

given in terms of the second � derivative of the function
�ð�Þ by

ð2MuÞ2K ¼ �1
2�

00ð�Þ: (20)

As a check on Eq. (20), one can verify the Gauss-Bonnet
theorem:

ZZ
KdA ¼

ZZ
d�d�

�
� 1

2
�00

�
¼ ��½�0ð�Þ�þ1

�1

¼ 2�½�̂ðþ1Þ þ �̂ð�1Þ�: (21)

When the horizon is regular, i.e. when Eq. (3) is satisfied so

that �̂NP ¼ �̂SP ¼ 1, Eq. (21) yields
RR
KdA ¼ 4� as nec-

essary for a horizon having the topology of a 2-sphere.
Let us now insert in Eq. (20) our general parametrization

(4) of an external tidal field by the sequence of tidal
coefficients Tl. To do so, we must replace the Weyl-
associated spherical coordinates rW , �W entering Eq. (4)
in terms of �, z, before taking the (singular) horizon limit
� ! 0, z ! M� which defines the horizon value of Uext

entering the definition of the function �ð�Þ, Eq. (17a). For
instance, the l ¼ 2 term in Eq. (4) would be rewritten as

r2WP2ðcos�WÞ ¼ r2W
3cos2�W � 1

2
¼ 1

2
ð3z2 � ð�2 þ z2ÞÞ

¼ z2 � 1

2
�2; (22)

whose horizon limit is simply z2 ¼ ðM�Þ2. More gener-
ally, it is easy to see [usingPlð1Þ ¼ 1] that the horizon limit
of rlWPlðcos�WÞ is simply zl ¼ ðM�Þl, so that

�U extð�Þ ¼ Uextjhorizon ¼
X
l

TlM
l�l: (23)

Subtracting the value of Uextjhorizon at the north pole � ¼
þ1 finally yields the following explicit link between the
Gauss curvature of the horizon and the sequence of exter-
nal tidal coefficients Tl:

ð2MuÞ2Kð�Þ ¼ � 1

2

@2

@�2
½ð1��2Þe2

P
l
TlM

lð�l�1Þ�: (24)

At this stage, it is natural to decompose also the (scaled)
Gauss curvature in multipolar components, say

ð2MuÞ2Kð�Þ � X
l

clPlð�Þ: (25)

Before deriving a formula giving the coefficients cl of the
multipolar expansion of the Gauss curvature, let us note the
two general, exact results

c0 ¼ 1; (26a)

c1 ¼ 0: (26b)

Equation (26a) is a restatement of the Gauss-Bonnet theo-
rem checked above. As for the result (26b), it follows from
the general structure (20) with a function �ð�Þ satisfying
(17a) and (17b). Indeed, using P1ð�Þ ¼ � and the or-
thogonality of the Legendre polynomials, c1 is given by

c1 ¼ � 3

4

Z þ1

�1
d���00ð�Þ ¼ � 3

4
½��0 � ��þ1�1: (27)

Using the expression (17a), where �̂ takes the value 1 at
both end points, one easily finds that c1 necessarily
vanishes.
The orthogonality properties of the Legendre polyno-

mials,
Rþ1
�1 Plð�ÞPl0 ð�Þ ¼ 2
ll0=ð2lþ 1Þ, then yield the

following expression for the general cl’s as functions of
the sequence of the Tl’s:

cl ¼ � 2lþ 1

4

Z þ1

�1
d�Plð�Þ

	 @2

@�2
½ð1��2Þe2

P
l0 Tl0M

l0 ð�l0�1Þ�: (28)

Note that cl is a nonlinear function of all the Tl0’s, with l0
being a priori unrelated to l. To better understand this
function, we can however expand the exponential in
Eq. (28) in powers of the Tl’s. In so doing, and in using

the orthogonality of Plð�Þ to all the powers �l0 when
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l0 < l, one finds that cl is the sum of a principal contribu-
tion / Tl, plus two types of extra contributions: (i) linear in
Tl0 , which arise only with l0 ¼ lþ 2, lþ 4, lþ 6 etc.; and
(ii) nonlinear in Tl0 , which can be quadratic / T2, cubic /
T3, etc. Summarizing, we have the structure (for l � 2)

cl ¼ nlTlM
l þ nl;2Tlþ2M

lþ2 þ nl;4Tlþ4M
lþ4 þ � � �

þX
l0l00

nll0l00Tl0Tl00M
l0þl00 þ � � � ; (29)

where the nl’s, etc., denote some numerical coefficients.
In the linear approximation to tidal effects (i.e. in the

formal limit Tl0 ! 0) we can neglect the nonlinear contri-
butions / T2, T3 etc. In addition, if we focus, for simplic-
ity, on the case where the (minimum) distance D to the
external masses creating Uext becomes large, we find, in
view of Tl � 1=Dlþ1, Eq. (7), that the contributions pro-
portional to Tlþ2n are parametrically smaller than the
principal contribution / Tl by a factor ðM=DÞ2n which
tends to zero. In this double limit, we conclude that a
kind of Hooke’s law is valid in that the lth multipolar
component of the horizon curvature, cl, is proportional to
the lth tidal strength coefficient Tl, i.e.

cl ’ nlTlM
l; (30)

where

nl ¼ �ð2lþ 1Þ
2

Z þ1

�1
d�Plð�Þ @2

@�2
½ð1��2Þð�l � 1Þ�

¼ ð2lþ 1Þ
2

ðlþ 2Þðlþ 1Þ
Z þ1

�1
d�Plð�Þ�l

¼ ðlþ 2Þðlþ 1Þ 2
lðl!Þ2
ð2lÞ! : (31)

Finally, we conclude that, in the leading approximation,
the Gauss curvature induced by a general external tidal
potential reads [remembering the exact results of (26a) and
(26b)]

ð2MuÞ2Kð�Þ ’ 1þX1
l¼2

ðlþ 2Þðlþ 1Þ 2
lðl!Þ2
ð2lÞ! MlTlPlð�Þ:

(32)

Let us now convert this result in terms of the shape Love
number hl. We define this number, in the present general
relativistic setting, by paralleling the definition Love used
in Newtonian gravity [1]. The basic idea is to write, for
each multipole l, the specific potential energy g0ð
RÞl
associated to the lth tidal bulge of height ð
RÞl as hl times
the external tidal potential, evaluated (as it would be in
Newtonian gravity) at the undisturbed radius of the con-
sidered object, i.e.

g0ð
RÞl ¼ hlU
ext
l ðR0Þ; (33)

or, equivalently,

�

R

R0

�
l
¼ hl

Uext
l ðR0Þ
g0R0

: (34)

Here, g0 ¼ GM=R2
0 denotes the (Newtonian) surface grav-

ity of the considered object. We recall that the same
(Newtonian-looking) formula is also used in BH theory
to define the (renormalized) surface gravity of a
Schwarzschild BH, if, as we shall do, one defines the radius
of a BH as its (areal) radius R0 ¼ 2GM. [In view of the
remarks above, and of our focus on the linear approxima-
tion to tidal effects, we shall not worry here about the
possible distinction between the Komar mass M and the
irreducible massMu ¼ Meu ’ Mð1þ uþOðu2ÞÞ.] As for
UextðR0Þ we define it, as it would be done in Newtonian
gravity, by taking the analytic continuation down to R ¼
R0 of the lth multipolar order asymptotic Newtonian po-
tential. In the (intermediate) asymptotic domain R0 �
R � D the external tidal potential (4) can be written in
Schwarzschild-type coordinates ðR; �SÞ, Eqs. (12), as
Uext ’ P

lTlR
lPlðcos�SÞ. Formally continuing this

Newtonian-like expression down to R ¼ R0, with fixed
Schwarzschild-like colatitude �S, leads to

UextðR0; �Þ ¼ X
l

Uext
l ðR0ÞPlð�Þ ¼ X

l

TlR
l
0Plð�Þ; (35)

where, in agreement with Eq. (18), we have identified
cos�S with the variable � used in the study of the horizon
geometry above.
Summarizing, the shape (or height) Love numbers hl are

defined by writing�

R

R0

�
l
¼ hl

TlR
l
0

g0R0

¼ hl
TlR

lþ1
0

GM
: (36)

In order to compare (36) to our result Eq. (32) above, we
need to convert a general multipolar expansion of the
Gauss curvature, say,

R2
0K ¼ 1þX

l�2

clPlð�Þ (37)

into a corresponding height expansion, say [denoting �l �
ð
R=R0Þl]


Rð�Þ
R0

¼ X
l

�lPlð�Þ: (38)

This is naturally done by defining �l so that the Gauss
curvature on the 2-surface Xð�;�Þ ¼ ðR0 þ

Rð�ÞÞNð�;�Þ (with N1 ¼ sin� cos�, N2 ¼ sin� sin�,
N3 ¼ cos�) embedded in an auxiliary 3-dimensional
Euclidean space, coincides with Eq. (37). A straightfor-
ward calculation shows that this coincidence is obtained (in
first order in the perturbation away from a round sphere) if

cl ¼ ½lðlþ 1Þ � 2��l � ðl� 1Þðlþ 2Þ�l: (39)

Note in passing that any eventual l ¼ 1 contribution �1 in
(38) is canceled in the corresponding curvature expansion.
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This agrees with the general result (26b) above, and allows
us to consider only multipolar orders l � 2.

Finally, by combining Eqs. (34)–(36) and (39), we find
that the lth shape Love number of a BH is given by

hl ¼ lþ 1

l� 1

ðl!Þ2
2ð2lÞ! : (40)

In particular, we find for the first values of l:

h2 ¼ 1

4
; h3 ¼ 1

20
; h4 ¼ 1

84
: (41)

We see that hl diminishes rapidly as l increases.
Note that all these Love numbers are smaller than 1. This

contrasts with the Love numbers of a perfect-fluid star in
Newtonian gravity which are given in terms of their second
Love numbers kl by hNewtonl ¼ 1þ 2kNewtonl [9], so that

hNewtonl > 1 (because kNewtonl > 0). In the recent work [9],

it was, however, found that the shape Love numbers hNSl of

a general relativistic fluid star (say a neutron star) have a
strong dependence on the self-gravity of the star, and that
hNSl continuously decrease, as the compactness parameter

c ¼ GM=R increases, from the Newtonian value hNewtonl >
1 down to a value close to the above black-hole values,
hBHl , as the compactness reaches its maximum possible

value. It was also found that the function hNSl ðcÞ becomes

equal to hBHl as the compactness parameter c is formally

continued to the black-hole value cBH ¼ 1=2.
Using the Stirling approximation, one finds that, for

large values of l,

hl ’
ffiffiffiffiffiffiffiffi
2�l

p
22lþ1

; (42)

so that hl essentially decreases as 4�l. This rather fast
decrease of hl, as l increases, has useful practical conse-
quences. Indeed, in the physically most relevant case
where one is interested in the tides raised on a certain
BH of mass M by another BH (of mass m), located1 at a
distance D, we see that the tidal expansion, Eq. (6), of Uext

[which, from a Newtonian point of view, would be ex-
pected to converge on the horizon as a geometric seriesP

lðR0=DÞl] raises on the horizon a tide whose height
converges like


R

R0

�X1
l¼2

m

M

ffiffi
l

p �
R0

4D

�
lþ1

Pl; (43)

which is essentially a geometric series �P
lðR0

4DÞl. The

appearance of R0

4D instead of R0

D implies a rather fast con-

vergence, even when D is not much larger than R0.

Physically, this means that taking into account only the
quadrupolar tide / h2 will probably suffice to give a good
estimate of the full tide, even when the companion BH is
rather near. In a later section, we shall, however, see that
this conclusion no longer holds when m � M and when
the mass m is allowed to come very near the horizon ofM.
By contrast, when m�M, the finite size of the horizon of
m does not allow the distance D to become smaller than
some minimum value Dmin / Mþm, so that one might
hope, in view of the remarks above, that the (linear) quad-
rupolar tide alone might give a good estimate of the tidal
deformations of both holes down to the point where they
formally touch. In the case of the quadrupolar tide, one
knows from other studies [12,18] that a good measure of
the l ¼ 2 tidal field T2 is given by some component of the
Riemann (or Weyl) tensor, which, in the exterior of a
Schwarzschild BH of mass m is / m=R3, where R is the
usual (areal) Schwarzschild coordinate (rather, say, than
the Weyl radial coordinate distance D that we have been
using up to now). This leads one to expect that, whenm and
M are comparable, m will raise on M a tide of height�


R

R0

�
M
’ h2

m

R3

R3
0

M
P2 � 1

4

m

M

�
R0ðMÞ
R

�
3
:

Upon contact, i.e. when R ¼ R0ðMÞ þ R0ðmÞ ¼
2ðMþmÞ, we get ð
R=R0ÞM � 1

4
mM2

ðmþMÞ3 . This result

would predict a maximum deformation 
R=R0 � 1=27,
reached when M ¼ 2m. We note that this deformation is
surprisingly small. One should, however, remember that its
derivation relied on several approximations that cease to be
valid in the limit we consider.
We have tried to further study the tidal deformations of

comparable-mass BH’s by considering the multi-black-
hole Weyl solutions recalled in Eqs. (8) and (11) above.
The problem, however, is that these solutions do not allow
one to study, in a physically relevant way, a process where
two nearly isolated BH’s get very near each other. Indeed,
the total configuration will always include some struts or
strings that are necessary for global equilibrium. One can
arrange two BH’s, among N, to be free of such strings.
However, when these two central BH’s get close to each
other, one will need other BH’s (supported by strings) to
become also very close to the central BH’s. This generates
additional strong forces and accelerations (related to l ¼ 1
tidal terms) that mess up the pure l ¼ 2 tidal heights
coming from the (free fall) gravitational interaction of
the two central holes. As a consequence, we could not
use Weyl solutions to check the above prediction that
touching BH’s are only slightly deformed.
Instead, we could, however, use well-separated, multi-

black-hole Weyl solutions to check the values of the first
few Love numbers. For instance, one can take an asym-
metric 3-black-holeWeyl solution, made of a central BH of
massM (located at z ¼ 0, i.e. corresponding to a rod in the
interval z 2 ½�M;M�), and of two satellite BH’s: one of

1Note that the extra linear terms nl;2Tlþ2M
lþ2 þ � � � that we

neglected in Eq. (29) are, in order of magnitude, essentially
equivalent to correcting the distance D entering Tl / D�l�1 in
the leading term nlTlM

l by D ! Dð1þ c2M
2=D2þ

c4M
4=D4Þ þ � � � . Such corrections include, in particular, pos-

sible effects of coordinate transformations on D.
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massm1 located at z ¼ b1 > 0, and one of massm2 located
at z ¼ �b2 < 0. One then considers a limit where b1 � b2
tend to infinity (e.g. keeping m1 �m2 finite). In this limit,
one can expand the solutions (8) and (11) in inverse powers
of b1 and b2. One finds that, by using a suitable constant C
in Eq. (8b), and by tuningm2 (givenm1, b1, and b2) so that

m1

b21
þM2 m1

b41
¼ m2

b22
þM2 m2

b42
þO

�
1

b5

�
; (44)

one can arrange to have the central BH of mass M to hold
in equilibrium without supporting struts (i.e. with
lim�!0� ¼ 0 on both sides of the z axis, and therefore

with a smooth horizon and �̂NP ¼ �̂SP ¼ 1). Then, we find
that the Gauss curvature of the central horizon reads

ð2MuÞ2K ¼ 1þ 8M2

�
m1

b31
þm2

b32

�
P2 þ 8M3

�
m1

b41
�m2

b42

�
P3

þO
�
1

b5

�
: (45)

Using the definition above of the Love numbers, one easily
checks that this result is equivalent to h2 ¼ 1=4 and h3 ¼
1=20, in agreement with our general formula above.

III. ELECTROMAGNETIC CASE: INFLUENCE OF
FARAWAY CHARGES ON THE SURFACE CHARGE

DENSITY OFA BH

As a contrast to the gravitational polarizability proper-
ties of BH’s, let us now consider their electric polarizabil-
ity properties. For simplicity, we consider a physical
situation where an uncharged BH of mass M is immersed
in a general electric field generated by a static axisymmet-
ric configuration of faraway charges.

The background metric of the Schwarzschild black hole
is

ds2 ¼ �
�
1� 2M

R

�
dt2 þ 1

1� 2M
R

dR2

þ R2ðd�2 þ sin2�d�2Þ: (46)

In the linearized approximation, the electromagnetic field
F�� ¼ @�A� � @�A� generated by the faraway charges

must satisfy (outside the location of the charges)

F��
;� ¼ 0; (47)

where the semicolon denotes the covariant derivative.
Equation (47) yields a second-order partial differential
equation for the scalar potential A0 ¼ �V. (Here V de-
notes the usual electric potential such that the electric
field E ¼ �rV ¼ þrA0.) Assuming that all the charges
that generate A0 are at a distance D � 2M, we can, as in
the gravitational case, consider that, in the intermediate
domain 2M � R � D (where the spacetime is approxi-
mately flat), the potential A0 admits a flat-space multipolar
expansion of the general type

Aasympt
0 ðR; �Þ ¼ X1

l¼0

lR
lPlðcos�Þ: (48)

Here the coefficients l �þ@lA0 �þ@l�1E are the elec-
tric analogs of the tidal coefficients Tl �þ@lU�þ@l�1g
that entered the asymptotic tidal expansion of the external
gravitational potential Uext, Eq. (4). The sign convention is
chosen so that a uniform electric field E ¼ Eez directed
along the positive z axis corresponds to 1 ¼ þE. In
addition, the normalization of the l’s is such that, in the
particular case where the electric field that we consider is
generated by a pointlike test charge q located at a large
distance D along the z axis (in a flat region), l is simply
equal to

l ¼ � q

Dlþ1
; (49)

so that the asymptotic scalar potential reads

Aasympt
0 ¼ �Vasympt ¼ � qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þD2 � 2rD cos�
p

¼ �X1
l¼0

q

Dlþ1
rlPlðcos�Þ: (50)

Let us now take into account the effect of the background
spacetime curvature, Eq. (46). Because of the spherical
symmetry of the background, and the assumed axisymme-
try, one can decompose the exact A0 ¼ �V in a series of
Legendre polynomials, say

A0 ¼
X1
l¼0

alðRÞPlðcos�Þ �
X1
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

R

s
wlðRÞPlðcos�Þ;

(51)

where the functions wlðRÞ � alðRÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=R

p
can be

shown to obey the differential equation

ð1� �R2Þ d
2wl

d �R2
� 2 �R

dwl

d �R
þ

�
lðlþ 1Þ � 1

1� �R2

�
wl ¼ 0;

(52)

where �R ¼ R=M� 1. Following [28], we remark that
Eq. (52) has the form of a general Legendre equation (m ¼
1), and admits two independent solutions, which can be
expressed in terms of the associated Legendre functions of
the first and second kind, P1

l ð �RÞ and Q1
l ð �RÞ, respectively.

As a result, the expansion (51) contains two classes of
radial functions alðRÞ: one class of solutions, say gl, is
regular on the horizon, and behaves like Rl for R ! 1,
while the other, say fl, is logarithmically singular (except

when l ¼ 0) on the horizon and behaves like R�ðlþ1Þ for
R ! 1. We are interested here in the unique radial solu-
tion alðRÞ that is regular on the horizon and grows like Rl

when R ! 1, i.e. the gl’s [so that the corresponding term
in Eq. (51) can match the term / lR

l in Eq. (48)]. Such a
solution is given by g0 ¼ 1 when l ¼ 0, and
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glðRÞ ¼ ð2MÞlðl� 1Þ!l!
ð2lÞ! ðR� 2MÞdPlðR=M� 1Þ

dR
;

when l � 0; (53)

where the normalization of (53) is chosen such that glðRÞ ’
Rl for R ! 1. With this normalization, the unique,
horizon-regular solution of (47) which asymptotically
agrees with (48) (and corresponds, when l ¼ 0, to an un-
charged BH) reads

A0ðR; �Þ ¼
X1
l¼0

lglðRÞPlðcos�Þ: (54)

Let us now consider what is the charge density � [20]
induced on the horizon of the BH by the electromagnetic
field, namely

� � 1

4�

�
@A0

@R

�
R¼2M

¼ � 1

4�

�
@V

@R

�
R¼2M

: (55)

Decomposing � into multipoles,

�ðcos�Þ ¼ X1
l¼1

�lPlðcos�Þ; (56)

and using the identity�
d

dx
PlðxÞ

�
x¼1

¼ lðlþ 1Þ
2

; (57)

one easily finds that (with R0 ¼ 2M)

4�R0�l ¼ hEMl lR
l
0; l � 1; (58)

where

hEMl ¼ l!ðlþ 1Þ!
ð2lÞ! ; l � 1: (59)

On the left-hand side of Eq. (58) we have introduced the
quantity 4�R0�l which has the dimension of an electric
potential, i.e. the same dimension as the lth multipolar
component lR

l
0 of the asymptotic electric potential A0

(formally evaluated for a radius R ¼ R0 ¼ 2M). Equa-
tion (58) is the electric analog of Eq. (33): its right-hand
side contains the R ! R0 continuation of a tidal potential,
while its left-hand side contains the effect of its tidal
potential on the horizon (here the induction of a charge
density). We can therefore consider that the dimensionless
proportionality coefficient hEMl entering the linear relation

(58) is the electric analog of the hl Love number (hence our
notation).

It is interesting to note that this electric Love number is
rather similar to its gravitational analog. It is related to it by
the simple factor

hEMl ¼ 2ðl� 1Þhl: (60)

The first few values are hEM1 ¼ 1, hEM2 ¼ 1=2, and hEM3 ¼
1=5. For large values of l, hEMl decays as

hEMl � l
ffiffiffiffiffiffiffiffi
2�l

p
4l

: (61)

As in the gravitational case, we can therefore expect that,
as long as the inducing charge q is at a distanceD * R0, its
electric tidal effect will be dominated by the lowest multi-
pole, i.e., in the present case, by the induction of a dipolar
charge distribution 4��1 ¼ hEM1 1, i.e. (using our result
hEMl ¼ 1), 4��1 ¼ Easympt, where Easympt is the asymp-

totic (R0 � R � D) electric field strength.
In this respect, it is also interesting to compare the

electric Love numbers of a BH to those of a conducting
sphere in flat space. We recall that a BH is analogous to a
conducting sphere in that, at equilibrium, it is an equipo-
tential surface [20], and that, in a general nonequilibrium
situation, it exhibits dissipative properties (Ohm’s law,
Joule’s law) similar to those of a conducting shell with
surface resistivity equal to 4� ¼ 377� [2–5]. The general
tidal lth multipolar component of the electric potential
around an uncharged, conducting sphere of radius R0 (in
flat space) is easily found to be

A0ðR; �Þ ¼ 0 þ
X1
l¼1

l

�
Rl � R2lþ1

0

Rlþ1

�
Plðcos�Þ: (62)

Computing the corresponding multipole-expanded charge
density �, Eq. (55), we then deduce from the definition
(58), the flat-space values of the electric Love number of a
conducting sphere

h
sphere
l ¼ 2lþ 1: (63)

Note that these flat-space values are larger than 1 and they

grow with l (hsphere1 ¼ 3, hsphere2 ¼ 5). This contrasts with
the corresponding BH values (hBH1 ¼ 1, hBH2 ¼ 1=2) that
decrease with l.

IV. ELECTROMAGNETIC CASE: NEAR-HORIZON
LIMIT

Up to now, we have been considering (both in the
gravitational case and in the electromagnetic one) a BH
immersed in the (gravitational or electromagnetic) tidal
field generated by a configuration of faraway sources. To
complete our understanding of tidal effects, it is, however,
interesting to consider also the case where a (test) mass m,
or a (test) charge q, gets very close to the horizon. As a
prelude to studying the gravitational case, we shall con-
sider in this section the case where an external test electric
charge gets very close to the horizon of a Schwarzschild
BH. This was the situation studied long ago by Hanni and
Ruffini [20].
We then consider a test charge q located2 at z ¼ D along

the positive z axis (� ¼ 0). Outside the radial location of

2Note that, in this section, D denotes a Schwarzschild-
coordinate radial distance.
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the charge, the multipolar components alðRÞ of A0ðR; �Þ,
Eq. (51), satisfy Eq. (52) [after the transformation alðRÞ ¼
wlðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=R

p
]. Above, it was enough for our purpose

to consider only the asymptotically growing, horizon-
regular solution of (52), for which alðRÞ is given by
Eq. (53). Now, we need to consider also the asymptotically
decreasing, horizon-singular solution of (52), for which
alðRÞ is given by [28]

flðRÞ ¼ � ð2lþ 1Þ!
2lðlþ 1Þ!l!Mlþ1

ðR� 2MÞdQlðRM � 1Þ
dR

; 8 l:

(64)

The normalization of flðRÞ has been chosen so that

flðRÞ ’ R�ðlþ1Þ; R ! 1: (65)

In terms of the two radial solutions glðRÞ and flðRÞ, one
can write [28] the electric scalar potential generated by a
charge q located at z ¼ D as

A0 ¼ �V

¼ �q
X
l

½flðDÞglðRÞ�ðD� RÞ

þ flðRÞglðDÞ�ðR�DÞ�Plðcos�Þ; (66)

where �ðxÞ denotes the usual step function.
Inserting the result (66) into the definition (55) of the

induced charge density [and using again the result (57)
used above to compute the electric Love numbers] leads to
the following result for the lth multipolar component of the
charge density induced on the surface of the BH:

4�R0�l ¼ � l!ðlþ 1Þ!
ð2lÞ! qflðDÞRl

0 ¼ �hEMl qflðDÞRl
0:

(67)

This result can be interpreted in two ways. On the one
hand, one can view it as an application of the general
definition of Love numbers, Eq. (58), but with the under-
standing that, when the charge q gets near the horizon, one
must replace the usual EM tidal moment l ¼ �q=Dlþ1 by
lðDÞ ¼ �qflðDÞ. On the other hand, one can alternatively
(in the spirit of Love’s original definition) wish to continue
to define l as being simply the Coulombian values l ¼
�q=Dlþ1, in which case one can say that the Love number
hEM in Eq. (58) must be dressed by a distance-dependent
correcting factor, say tEMl ðDÞ � Dlþ1flðDÞ [with tlðDÞ !
1 as D ! 1], so that hEMl ðDÞ ¼ hEMl tEMl ðDÞ plays the role
of a distance-dependent effective Love number in

4�R0�l ¼ �hEMl tEMl ðDÞ q

Dlþ1
Rl
0 ¼ �hEMl ðDÞ q

Dlþ1
Rl
0:

(68)

Using Eq. (64) to evaluate flðDÞ and remembering that
[29] QlðxÞ ¼ 1

2PlðxÞ logxþ1
x�1 � �Pl�1ðxÞ, where �Pl�1ðxÞ is a

polynomial of order l� 1, one finds that the correcting

factor tEMl ðDÞ � Dlþ1flðDÞ grows, as D decreases from

infinity down to D ¼ R0 ¼ 2M, from 1 to a horizon value
equal to

tEMl ð2MÞ ¼ ð2lþ 1Þ!
l!ðlþ 1Þ! : (69)

Inserting the result (69) into the definition of the dressed,
distance-dependent Love number leads to the following
horizon value for the dressed Love number:

hEMl ð2MÞ ¼ hEMl tEMl ð2MÞ ¼ 2lþ 1: (70)

Note that, while the bare faraway Love numbers hEMl
decreased roughly as 4�l as l increased, the dressed,
near-horizon effective Love numbers (70) now increase
linearly in l. This linear increase with l is the multipole-
expanded version of the result found in Hanni and Ruffini
[20] that, as the charge q (with, say, q > 0) gets near the
horizon, the induced charge density becomes nearly uni-
formly distributed on the horizon, apart from a strongly
negative charge distribution, localized in a small patch
below the charge q. Indeed, the limiting result (70) corre-
sponds, when inserted in Eq. (68), to a charge distribution
on the horizon given by (we recall that, by construction, the
monopolar component �0 vanishes because the BH is un-
charged)

� ¼ X1
l¼1

�lPlðcos�Þ ¼ � q

4�R2
0

X1
l¼1

ð2lþ 1ÞPlðcos�Þ

¼ � q

4�R2
0

½2
ð1��Þ � 1�; (71)

where 
ð1��Þ denotes a Dirac-delta distribution local-
ized at � ¼ 1� [with the convention

R
1
a d�
ð1��Þ ¼ 1,

8 a < 1]. Here we have (formally) applied the general
theorem on the Legendre expansion of a function fð�Þ
on the interval � 2 ½�1;þ1�, namely

fð�Þ ¼ X1
l¼0

flPlð�Þ; (72a)

fl ¼ 2lþ 1

2

Z þ1

�1
d�fð�ÞPlð�Þ; (72b)

to the distribution fð�Þ ¼ 2
ð1��Þ.
Note also that the result (70) coincides with the Love

number of a conducting sphere in flat space, Eq. (63). This
can be interpreted as meaning that, in the near-horizon
limit, the electromagnetic interaction between the charge
q and the horizon becomes localized in a small patch below
q, and that such a localized behavior applies also to the
interaction between a charge in flat space which becomes
very close to a conducting sphere.

V. GRAVITATIONAL CASE: NEAR-HORIZON
LIMIT

After this incursion into the electromagnetic analogs of
tidal effects, let us come back to the gravitational case. We
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wish now to consider the gravitational analog of the Hanni-
Ruffini study [20], i.e. the tidal deformation of the horizon
by a test mass, m � M, in the limit where m gets very
close to the horizon. To do this, it is convenient to start
from the general result derived above for the curvature of
the horizon, namely

ð2MuÞ2Kð�Þ ¼ �1
2@

2
�½ð1��2Þe2ð �Uextð�Þ�uÞ�: (73)

Correlatively, the coefficients cl of the multipolar expan-
sion of Kð�Þ,

ð2MuÞ2Kð�Þ ¼ 1þX1
l¼2

clPlðcos�Þ; (74)

[where we used our general results (26a) and (26b) above]
are given by

cl ¼ � 2lþ 1

4

Z
d�Plð�Þ@2�½ð1��2Þe2ð �Uextð�Þ�uÞ�:

(75)

Here, �Uextð�Þ is the value on the horizon of the Weyl-
Newton external potential Uext, which is a solution of the
axisymmetric, flat-space Laplace equation. We have in
mind here a general configuration where Uext is generated
by a stationary axisymmetric configuration of masses, mi,
which include, among other sources, a test mass m � M
very close to the horizon.

Let us consider the limiting case where all the external
masses are test masses: mi=M ! 0. In this limiting situ-
ation, Uext (and u ¼ UNP

ext ¼ USP
ext) formally tends to zero,

and we can replace Eqs. (73) and (75) by their linearized
approximations:

ð2MuÞ2Klin � 1 ¼ �@2�½ð1��2Þð �Uextð�Þ � uÞ�;
l � 2; (76a)

clinl ¼ � 2lþ 1

2

Z þ1

�1
d�Plð�Þ

	 @2�½ð1��2Þ �Uextð�Þ�: (76b)

In Eq. (76b) we have used the fact that, for l � 2, the
�-independent term u ¼ UNP

ext does not contribute to cl.
Finally, as clinl , Eq. (76b), is a linear function of Uext, we

can consider that each clinl is given by a sum over the

various external masses, say, clinl ¼ clinl ðmÞ þP
ic

lin
l ðmiÞ.

In the following, we shall focus on the contribution clinl ðmÞ,
where m is a test mass which is very close to the horizon.3

The individual contribution clinl ðmÞ is obtained by inserting

in the right-hand side of Eq. (76b) the � ! 0 limit of�c m,
where c m is given by Eq. (10a). As we are considering the
test-mass limitm=M ! 0, we can simplify this logarithmic
expression for Um ¼ �c m by expanding the logarithm in
powers of 2m=ðRþ

m þ R�
mÞ, and then by approximating

ðRþ
m þ R�

mÞ=2 simply by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðz� bÞ2p

. This yields the
simple, Newton-like result

Um ’ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðz� bÞ2p : (77)

Then, taking the horizon limit (i.e. � ! 0) and replacing z
byM� according to Eq. (16) leads to the explicit result (we
assume, for definiteness, that b >M> 0, i.e. that the mass
m is near the north pole, � ¼ þ1):

clinl ðmÞ ¼ � 2lþ 1

2

Z þ1

�1
d�Plð�Þ@2�

�
mð1��2Þ
b�M�

�
: (78)

There are now two ways to discuss what happens when b
decreases from b � M down to b ’ M. (We recall that b is
the Weyl-coordinate distance, so that the horizon is located
at b ¼ M.) The first way consists of noticing that the
integral (78) can be explicitly expressed in terms of the
Legendre functions of the second kind. Indeed, using [29]

QlðxÞ ¼ 1

2

Z þ1

�1
PlðyÞ dy

x� y
; (79)

we can reexpress Eq. (78) as

clinl ðmÞ ¼ ð2lþ 1Þ m
M

ðb̂2 � 1Þ@2
b̂
Qlðb̂Þ; (80)

where b̂ ¼ b=M.
Similar to our discussion of the electromagnetic case, we

can then reinterpret the result (80) by writing the lth multi-
polar component of the adimensionalized horizon curva-
ture aised by an external test mass m at Weyl distance b in
the form

½ð2MuÞ2Klin�l ’ clinl ðmÞPlð�Þ
¼ ðl� 1Þðlþ 2ÞhltlðbÞ m

ðbþMÞlþ1

	 Rlþ1
0

M
Plð�Þ; (81)

where hl is the bare, faraway gravitational Love number,
Eq. (34), and where tlðbÞ is a distance-dependent correct-
ing factor [normalized so that tlðbÞ ! 1 as b ! þ1]: here
we conventionally replaced the factor 1=Dlþ1 in the elec-
tromagnetic definition (68) by 1=ðbþMÞlþ1 to ensure that
these Coulombian factors agree both when b ! þ1 and
on the horizon.

3Though the present linear approximation allows us to focus,
independently from the other masses mi, on the contribution
clinl ðmÞ, one should keep in mind that the various masses are not
totally independent from each other as they must respect the
equilibrium condition (3), which is needed for ensuring the
regularity of the metric on the portions of the z axis that touch
the central BH of mass M.

THIBAULT DAMOUR AND ORCHIDEA MARIA LECIAN PHYSICAL REVIEW D 80, 044017 (2009)

044017-10



Comparing Eq. (80) to Eq. (81), we get

ðl� 1Þðlþ 2ÞhltlðbÞ
�

2M

bþM

�
lþ1

¼ ð2lþ 1Þðb̂2 � 1Þ@2
b̂
Qlðb̂Þ: (82)

If we now formally4 let � ¼ b�M tend to zero, i.e. b̂ ¼
b=M � 1þ �̂ (with �̂ � �=M) tend to 1, one finds that

ðb̂2 � 1Þ@2
b̂
Qlðb̂Þ ’ 1

�̂
½1� lðlþ 1Þ�̂þOð�̂2Þ�; (83)

the crucial point being that the coefficient of the leading

term �̂�1 ¼ ðb̂� 1Þ�1 in the right-hand side is equal to 1,
independently from the value of l. In other words, the near-
horizon limit of the multipolar coefficients of the curvature
is (� ¼ b�M)

clinl ðmÞjb!M ¼ ð2lþ 1Þm
�
; (84)

and this result can be interpreted [similar to the electro-
magnetic case (70)] as coming from the horizon limit of a
distance-dependent dressed Love number hlðbÞ,

hlðMþ �Þ ¼ hllðMþ �Þ ’ 2lþ 1

ðl� 1Þðlþ 2Þ
M

�
: (85)

In other words, the correcting factor lðbÞ grows, as b !
M, in a strongly l-dependent manner (roughly �4þl), and
this growth compensates the usual behavior (hl � 4�l) of
the faraway Love number. The second way to obtain the
simple final result (84) is to explicate the second � deriva-
tive entering Eq. (78) so as to obtain

clinl ðmÞ ¼ ð2lþ 1Þ m
M

Z þ1

�1
d�Plð�Þ b̂2 � 1

ðb̂��Þ3

’ ð2lþ 1Þm
�

Z þ1

�1
d�Plð�Þ 2�̂2

ð1þ �̂��Þ3 : (86)

Then one notices that, in the near-horizon limit �̂ ¼
�=M ! 0, the function 
�̂ð1��Þ ¼ 2�̂2ð1þ �̂�
�Þ�3 ¼ @�½�̂2ð1þ �̂��Þ�2� gets localized near � ¼
1� and has an integral

Rþ1
a d�
�̂ð1��Þ ¼ ½�̂2ð1þ �̂�

�Þ�2�1a ¼ 1� �̂2ð1þ �̂� aÞ�2 which tends to 1. In other
words, 
�̂ð1��Þ ! 
ð1��Þ as �̂ ! 0. UsingPlð1Þ ¼ 1,
we then obtain another proof of the limiting result (84).

Inserting the result (84) in the multipolar expansion (74),
we then see that the contribution to K coming from a mass
m tends, as m approaches the horizon (� ¼ b�M � M)
toward

ð2MuÞ2KlinðmÞ ’ m

�

X1
l¼2

ð2lþ 1ÞPlð�Þ: (87)

Using, as we did in the near-horizon electromagnetic case
above, the multipolar decomposition of the Dirac-delta
distribution 2
ð1��Þ, we can sum the series (87) to get

ð2MuÞ2KlinðmÞj��M ’ m

�
½2
ð1��Þ � 1� 3��: (88)

This result is the gravitational analog of the electromag-
netic result (71). It shows that, modulo a global smooth
curvature linear in�, the tidal horizon curvature generated
by a near-horizon mass m is localized in a small patch
below the massm. Similar to the electromagnetic case, this
result could also be formulated in saying that, in the near-
horizon limit, the tidal curvature, being localized in a small
patch on the horizon [as witnessed by the integrand

/ ðb̂2 � 1Þ=ðb̂��Þ3 in Eq. (86)], could also be computed
by replacing the real curved horizon by a flat-space horizon
or Rindler horizon (as done in [6,21]).
We will, however, get a more interesting result (which

has no electromagnetic analog) by considering the shape
distortion of the horizon associated to the tidal curvature
(88). Using our general result (39), the multipolar expan-
sion of the corresponding near-horizon shape distortion is


Rð�Þ
R0

¼ m

�

X1
l¼2

2lþ 1

lðlþ 1Þ � 2
Plð�Þ: (89)

To sum this new series, we apply the differential operator
�þ 2, where � denotes the Laplacian on the unit sphere
[with �Plð�Þ ¼ �lðlþ 1ÞPlð�Þ] to Eq. (89) and find that

Rð�Þ satisfies the differential equation

�

m
ð�þ 2Þ
R

R0

¼ 1þ 3�� 2
ð�� 1Þ; (90)

where �, acting on an axisymmetric function, can be
replaced by @�ð1��2Þ@�. This yields a second-order

ordinary differential equation for 
Rð�Þ. The presence of
a delta-function singularity on the right-hand side indicates
that 
Rð�Þ must have a � lnð1��Þ singularity at � ! 1
[and no singularity at � ! �1, contrary to the Q0ð�Þ
Legendre function, which satisfies ð�þ 2ÞQ0 ¼ 0, mod-
ulo two delta singularities at � ¼ 1 and � ¼ �1]. One
then easily finds a particular solution of (90) of the form
ð�þ 2Þð� 1

2�� lnð1��ÞÞ ¼ 1þ 3�� 2
ð�� 1Þ. The

general solution of (90) is then obtained by adding to this
particular solution a general regular solution of ð�þ
2Þfð�Þ ¼ 0, i.e. a multiple of P1ð�Þ ¼ �. One can deter-
mine this multiple by requiring [as needed from the ab-
sence of l ¼ 0 and l ¼ 1 contributions in (89)] thatR
d�P1ð�Þ
Rð�Þ ¼ 0. Finally, this uniquely determines

the sum (89) to be


Rð�Þ
R0

¼ m

�

�
� 1

2
�� lnð1��Þ þ�

�
ln2� 4

3

��
: (91)

The corresponding shape is illustrated in Fig. 1 (for a
prefactor m=� ¼ 1=30). This figure shows the height of
the tide raised on the horizon by a mass m, in the limit

4As our analysis here assumes Uext � 1, we should always
keep m=� � 1. In other words, the coordinate distance to the
horizon, � ¼ b�M, should tend to zero less rapidly than m=M.
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where the location b of the mass tends to the horizon [b !
M, keeping m=� ¼ m=ðb�MÞ finite and small]. When �
is kept nonzero (even beyond the prefactor m=�), one
finds that the logarithmic spike at � ¼ cos� ¼ 1 (north
pole) is rounded off on the characteristic angular scale

�c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðb�MÞ=Mp

, corresponding to the multipolar orders

lc � ��1
c � ffiffiffiffiffiffiffiffiffiffi

M=�
p

. [The characteristic multipolar order lc
can be read off the next-to-leading term in the expansion on
the right-hand-side of Eq. (83).]

VI. CONCLUSION

We compared and contrasted the gravitational polariz-
ability properties of BH’s with their electromagnetic polar-
izability properties. Our main results are as follows:

(1) The definition and computation of the infinite se-
quence of shape (or height) Love numbers hl of a
BH, where l ¼ 2; 3; 4; . . . is the multipolar order.
The result is given by Eq. (40): hl essentially mea-
sures the ratio between the height of the lth tidal
bulge raised on the horizon of a BH and the
corresponding external lth tidal potential UextðR0Þ
(analytically continued down to the horizon R0 ¼

2GM). Contrary to the Newtonian hl Love numbers
of a perfect-fluid star which are larger than 1 [9], we
found that the Love numbers of a BH are smaller
than 1, and tend rapidly (and exponentially) toward
zero as l increases, e.g. h2 ¼ 1=4, h3 ¼ 1=20, h4 ¼
1=84; . . . , hl ’

ffiffiffiffiffiffiffiffi
2�l

p
=22lþ1. In a related recent work

[9], it was found that the height Love numbers of a
neutron star approach those of a BH as the compact-
ness c ¼ GM=R of the star formally tends toward
the BH value cBH ¼ 1=2.

(2) The corresponding definition of a sequence of elec-
tromagnetic Love numbers hEMl (l ¼ 1; 2; 3; . . . ).
These essentially measure the ratio between the lth
multipolar charge induced on the horizon of a BH
and the corresponding external lth multipolar elec-
tric potential (analytically continued down to the
horizon). Here again we found that the electric
Love numbers of a BH [given in Eq. (59)] are
much smaller than those of a conducting sphere in
flat space (63), and tend rapidly (and exponentially)
toward zero as l increases: hEM1 ¼ 1, hEM2 ¼ 1=2,

hEM3 ¼ 1=5; . . . , hEMl ’ l
ffiffiffiffiffiffiffiffi
2�l

p
=22l. In addition, we

found that they are simply related to the gravita-
tional height Love numbers: hEMl ¼ 2ðl� 1Þhl.

(3) The comparative study of the gravitational and elec-
tromagnetic polarizability properties as the polariz-
ing mass or charge approaches the horizon. Both
cases can be described by replacing the bare, far-
away Love numbers, by some dressed, distance-
dependent factor tlðbÞhl or tEMl ðDÞhEMl . We found

that the gravitational (respectively, electromagnetic)
dressing factors tlðbÞ [(respectively, tEMl ðDÞ] com-

pensate, in the near-horizon limit, the exponential
decrease of hl (respectively, h

EM
l ), and lead, in the

gravitational case, to a specific spiky shape for the
distorted horizon given by Eq. (91), and illustrated
in Fig. 1.
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