
Magnetic and electric black holes in arbitrary dimensions

Adil Belhaj,1,2 Pablo Dı́az,1 and Antonio Seguı́1
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In this work, we compare two different objects: electric black holes and magnetic black holes in

arbitrary dimension. The comparison is made in terms of the corresponding moduli space and their

extremal geometries. We treat parallelly the magnetic and the electric cases. Specifically, we discuss the

gravitational solution of these spherically symmetric objects in the presence of a positive cosmological

constant. Then, we find the bounded region of the moduli space allowing the existence of black holes.

After identifying it in both the electric and the magnetic case, we calculate the geometry that comes out

between the horizons at the coalescence points. Although the electric and magnetic cases are both very

different (only dual in four dimensions), gravity solutions seem to clear up most of the differences and

lead to very similar geometries.
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I. INTRODUCTION

Reissner-Nordstrom black holes are static, spherically
symmetric configurations which minimize the Maxwell-
Einstein action. The solution in four dimensions was first
found in [1]. Every solution of this kind is completely
defined by giving two parameters: the charge of the black
hole Q and the mass M. The generalization to higher
dimensional spacetimes with a cosmological constant
was given by Tangherlini in [2]. For a certain range of
parameters (see [3] for a detailed description), the geome-
try of these objects present three horizons: Cauchy, black
hole, and cosmological. The thermodynamical properties
of black holes permits those systems to dynamically vary
some parameters of the moduli space. For instance, the
evaporation process may reduce the mass of a charge black
hole to the point of coalescence at which the two inner
horizons lead to a degenerate solution called the extreme
black hole. In semiclassical relativity, extreme black holes
are uncapable to emit radiation.1 For this reason they are
commonly known as cold black holes.

Magnetically charged objects have being considered
since Dirac first claimed the theoretical existence of mag-
netic monopoles [5] in Uð1Þ electromagnetic theories in
four dimensions. For certain values of their parameters,
magnetic monopoles can undergo a gravitational collapse
and form black holes. They are magnetic black holes.
Lubkin suggested that the magnetic charge of a monopole
should be considered as a topological charge [6]. Since
then on, magnetic charges have been regarded as labels for
the various topologies a field configuration can present. In
particular, the identification magnetic charge/topology per-

mits an easy generalization of the monopole concept to
higher dimensions and different gauge groups.
In [7], Ginsparg and Perry realized that some physical

space between the horizons remains at the coalescence
point. They studied the neutral Schwarzschild-de Sitter
(SdS) geometry. They actually showed that a Nariai ge-
ometry, which is the direct product dS2 � S2, came out in
this process. The same technique has been profusely ap-
plied to some two-simple-horizons systems (electrically
charged, magnetically charged, rotating black holes, . . .)
at the point where they coalesce and develop a degenerate
horizon. The result is a collection of Nariai and anti-Nariai
solutions, i.e., dS2 � Sd�1 and AdS2 � Sd�1 in dþ
1-spacetime dimension, whose radii relation is encoded
in the details of each setup.
The aim of this work is to compare two different objects:

electric black holes and magnetic black holes in arbitrary
dimensions. The comparison is made in terms of the cor-
responding moduli space and the extremal near horizon
geometries they present. We treat parallelly the magnetic
and the electric cases. The magnetic object is not deter-
mined without referring it to a concrete gauge symmetry
group of a theory. Even the extension of the Dirac mono-
pole is not unique. Although we discuss this topic deeper in
the next section, for the moment, let us just say that in this
paper we deal with the orthogonal extension (Yang-type)
of the Dirac-Yang series. Specifically, we use the gravita-
tional solution of these spherically symmetric objects with
the addition of a positive cosmological constant found in
[8]. Then, applying an analogous analysis to [3] for the
magnetic case, we consider the bounded region of the
moduli space which allows the existence of black holes.
After identifying it in both the electric and the magnetic
case, we compute the geometry that comes out between the
horizons at the coalescence points. There we find the
following three cases:

1See [4] for a recent discussion on the differences between
semiclassical and string/quantum gravity counting of microstates
for the computation of the entropy in extreme black holes.
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(i) The coalescence of the cosmological and black hole
horizon which leads to a generalized Nariai solution.

(ii) The coalescence of the Cauchy and the black hole
horizon which produces an anti-Nariai solution.

(iii) The triple coalescence of horizons which makes a
product geometry M1;1 � Sd�1.

The paper is organized as follows. We start with a section
of mathematical preliminaries in order to fix notation and
establish the basic mathematical framework. Section III is
devoted to finding the moduli space for magnetic black
holes and compare it to the electric case. The coalescence
geometries are all studied in Sec. IV. In particular, we
propose a different change of coordinates to the one used
in [3] and we discuss the consistency of our election.
Finally, in the conclusions section, we sum up the main
results and discuss the similarities and subtle differences
between the electric and the magnetic system.

II. PRELIMINARIES

De Sitter-Reissner-Nordström (electrically charged)
black holes in higher dimensions are static, spherically
symmetric configurations which minimize the Einstein-
Hilbert action

S ¼
Z

dxdþ1 ffiffiffiffiffiffiffi�g
p �

1

16�
ðR� 2�Þ þ 1

4
F2

�
; (1)

in a dþ 1 spacetime. The field strength F is a closed form.
Indeed, it can always be locally written as F ¼ dA, where
A is the potential 1-form. Varying action (1) with respect to
the metric tensor g�� leads to the well-known Tangherlini

metric [2]:

ds2 ¼ ��eðrÞdt2 þ��1
e ðrÞdr2 þ r2d�2

d�1; (2)

where

�eðrÞ ¼ 1� 2m

rd�2
þ Q2

r2ðd�2Þ �
r2

R2
: (3)

The subscript e stands for ‘‘electric.’’ The cosmological
constant � is a function of the de Sitter radius R and d is

the dimension d where we have the relation R ¼
ffiffiffiffiffiffiffiffiffiffiffi
dðd�1Þ
2�

q
.

After the classical Dirac monopole, the first significant
example of monopoles in higher dimensional pure2 into the
gauge theories is the Yang construction [14]. They are
pointlike objects of a SUð2Þ-gauge theory in 6-dimensional
spacetime (see [15] and the references therein for a recent
string realization of the Yang monopole). It is a natural step
to consider G groups for theories in (dþ 1)-dimensional
spacetime which are a generalization of both Dirac and
Yang objects. There are at least two ways of thinking of a

such a generalization [16]. Yang-type or SOð2nÞ mono-
poles are orthogonal extensions of this series, the ones we
are going to treat in this paper. These constructions were
first found in [17], widely studied in [11–13], and recently
reviewed in [8,16,18]. They are topologically nontrivial
solutions of a SOð2nÞ-gauge theory in (2nþ 2)-
dimensions. For n ¼ 1we obtain the Dirac monopole, after
the identification of the isomorphic groups SOð2Þ and
Uð1Þ. For n ¼ 2 the Yang-type object is not the Yang
monopole but the extended-Yang monopole, which be-
longs to a SOð4Þ gauge theory, instead of the SUð2Þ theory
of the Yang monopole. The fact that SOð4Þ ffi SUð2Þ�SUð2Þ

Z2

triggered the claim that they were actually two copies of
the Yang monopole [8]. There is another possible continu-
ation of the Dirac-Yang series. They are the more recent
SUð2n�1Þ-monopoles introduced by Meng [19] in 2nþ 2
dimensions, where the Dirac and Yang constructions can
be recovered for n ¼ 1, 2, respectively.
In general, static and spherically symmetric solitons

may be classified for any dimension d and gauge group
G (see [16,18]). Given an arbitrary gauge group G and a
dimension d, pointlike static solitons may not exist. Their
existence basically depends on the possibility of nontrivial
homomorphisms �: SOðd� 1Þ ! G (see [16]). Indeed
there is a one-to-one map between solitonic configurations
of this type and � homomorphisms up to isomorphism
[20].
Pointlike static magnetic objects in (dþ 1)-dimensional

spacetime are specific solitonic solutions of a G-gauge
theory, whereG is the Lie group of symmetry of the theory.
They are A configurations3 which minimize the Yang-
Mills-Hilbert-Einstein action

S ¼
Z

dxdþ1 ffiffiffiffiffiffiffi�g
p �

1

16�
ðR� 2�Þ � 1

2�2
TrjFj2

�
; (4)

that is, configurations which fulfill the Einstein equations:

G�� ¼ 8�T�� � g���; (5)

where

T�� ¼ ��2½trðF�
pF�pÞ � 1

4g��trðFpqF
pqÞ� (6)

is the energy momentum tensor of the Yang-Mills field
strength. The traces are taken in the color index which
labels the basis of g and � is the Yang-Mills coupling
constant.
Yang-type solutions of (4) were found in [8]. Finding

general solutions for (5) is a highly complicated problem.
However, being pointlike makes the solution spherically
symmetric. Imposing spherical symmetry simplifies the
task enormously. According to this, in Schwarzschild-like
coordinates the ansatz will be a spherically symmetric
(2kþ 2)-dimensional space whose line element reads

2If we allow a scalar (Higgs) field to enter the theory then
regular solutions can be found in any dimension. See [9,10] for
the 4-dimensional case and [11–13] for examples in arbitrary
dimension

3For a detailed description of the potential and field strengths,
see [8,18]
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ds2 ¼ ��dt2 þ��1dr2 þ r2d�2
2k: (7)

The ansatz (7) is consistent with (5) and (6) for

�ðrÞ ¼ 1� 2MðrÞ
r2k�1

: (8)

Now, MðrÞ can be integrated to give

�mðrÞ ¼ 1� 2m

r2k�1
��2

r2
� r2

R2
; (9)

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kð2kþ1Þ

�

q
is the de Sitter radius, �2 is propor-

tional to 1
2k�3 and measures the magnetic charge of the

monopole, m comes up as a constant of integration with
dimensions of mass. The subscript m stands for ‘‘mag-
netic.’’ The moduli space of the magnetic solution is then
fm;�;�; dg.

The only difference between (3) and (9) is found in the
term involving the charge Q. The sign of this term differs
for d > 3, for d � 3 as in 4-dimensional spacetime; �2 is
negative [8]. But the essential change is the order of that

term, which is r�2ðd�2Þ for the electrical case as Tangherlini
[2] first found, and r�2 for the magnetic system.4

As in the electric setup, the geometry driven by (9) is
asymptotically de Sitter, since the behavior of �mðrÞ for
long distances r � R is governed by the last term. It
means, in particular, that there always exists a cosmologi-
cal horizon whose radial position is labeled by rþþ. From
the point of view of causality, more interesting results are
obtained when black holes also enter in the discussion,
what occurs for a certain range of parameters. So in spite of
the differences mentioned above, it can be shown that for a
certain region of the moduli space there appears three
horizons: Cauchy, black hole, and cosmological horizons,
which is an analogous situation to the one studied in [21]
for the casem< 0. Let us note that the magnetic object for
m> 0, in which no Cauchy horizon appears, has no anal-
ogy in the electrical side.

If we forget the topological arguments given all along
[21] about �2 being quantized, which forbids us to finely
tune it,5 and consider �2 a continuous variable as Q2 for
the electrical case, we can draw a picture mð�2Þ to show
the regions where nonextreme black holes appear in the
theory for a fixed spacetime dimension dþ 1 and a fixed
(positive) cosmological constant implicit in R2. This al-
lows us to open a comparison between the electric and the
magnetic setups in higher than four dimensions. The per-
mitted region for nonextreme black holes is always bound

by the lines where two horizons coalesce. For the electric
object as well as for the magnetic one (if m< 0) there are
three horizons, labeled by r�, rþ, and rþþ in order of
increasing radial position. They lead to two lines in the
diagram which correspond to:
(i) The coalescence of Cauchy and the black hole hori-

zon. It leads to extreme Reissner-Nordstrom black
holes.6

(ii) The coalescence of black holes and cosmological
horizon which produces Charged Nariai black holes.

The analysis made in [21] tackles only the second pro-
cess since the Cauchy horizon is not always present in the
magnetic setup. However, a similar procedure we followed
in [21] and inspired in the work of [7] to obtain Nariai
solutions can also be done for the coalescence of inner
horizons, as we see later. Before going into the geometries,
our first task is identifying the boundary lines, which
enclose the parameter region fm;�2g for nonextreme black
holes in the magnetic case. Let us see how it goes.

III. PARAMETER SPACE OF ELECTRIC AND
MAGNETIC BLACK HOLES

In [21] we found the region of the moduli space
fm;�; �; dg which allows the existence of magnetic black
holes, and the values of the parameters which saturate the
inequality rþ � rþþ and lead to the coalescence solution.
In this section we aim at treating this study in a more
compact manner as done in [3] for the electric case, and
depict a final magnetic diagram were the region of exis-
tence of black holes is bounded by the line in the moduli
space for the three types of coalescence solutions. We will
see the differences and similarities on both electric and
magnetic systems and interpret them. The notation we will
take is the same as used in [21], although the radial
coordinate for the coalescence point in each case will be
called � instead of rc, for the sake of compactness.

A. The coalescence of two horizons

The coalescence of two Killing horizons takes place
whenever the metric component �mðrÞ, displayed in (9),
has two roots. Then �mðrÞ can be written as

�mðrÞ ¼ ðr� �Þ2 1

r2

�
1� 1

R2
ðr2 þ hðrÞÞ

�
; (10)

where r ¼ � is the degenerate horizon. For function hðrÞ
we will take the ansatz

hðrÞ ¼ aþ brþ c1
r
þ c2

r2
þ � � � þ cd�4

rd�4
; (11)

where a; b; c1; . . . ; cd�4 are constants (functions of �, ac-
tually) that are determined through the matching order by
order between (9) and (10). Function hðrÞ turns out to be

4Note that in the magnetic case this term does not depend on
the dimensionality of spacetime.

5It is known that Yang-type monopoles are not the only
spherically symmetric solutions. There is actually a family of
solutions parametrized by an essential function wðrÞ. In a recent
conversation with Eugen Radu, he suggested that this function
could actually make the work to obtain continuous values for
charge �2. We will investigate that issue in the future. 6Also called cold black holes.
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hðrÞ ¼ 3�2 þ 2�rþ 4�3 � 2�R2

r

þ�2R2 þ 5�4 � 3�2R2

r2
þ Xd�6

i¼1

ðiÞ
�iþ1rd�ðiþ3ÞmR2:

(12)

Besides, the matching also permits one to write parameters
m and �2 as functions of �, they read

�2ð�Þ ¼ �2

d� 4

�
d� 2� d

�2

R2

�
(13)

mð�Þ ¼ 2

d� 4
�d�2

�
2
�2

R2
� 1

�
: (14)

An analogous analysis for the electric case would involve
(3) and lead to equations [3]

Q2ð�Þ ¼ �2ðd�2Þ
�
1� d

d� 2

�2

R2

�
(15)

mð�Þ ¼ 2�d�2

�
1� d� 1

d� 2

�2

R2

�
: (16)

It is clear from Eqs. (13) and (14) that the dimension of
spacetime must be different from five. As discussed in [21]
and more carefully in [16], the magnetic monopoles we are
working on are even dimensional, so d ¼ 4 is never going
to be the case. For d ¼ 3, �2 becomes negative [8], as can
easily be seen in (13), and the extreme Reissner-Nordström
(electric or magnetic) solution is recovered. The cases we
are interested in concern spacetime dimension d � 2kþ 1,
with k ¼ 2; 3; . . . , which will be assumed in the following.
Now, �2 being positive imposes a maximum on �:

�max ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
d� 2

d

s
R: (17)

To obtain a relation mð�2Þ from (13) and (14) is an easy
task. We must invert Eq. (13) to get7 two functions �2þð�2Þ
and �2�ð�2Þ. Then we should plug them into (14). The
result is a straightforward calculation, although the ugli-
ness of the relation has stopped us from including it here.
Instead, we will just say

m	 / 	�d=2: (18)

B. Coalescence of three horizons or ultracold black hole

As for the electric example, for a concrete value of m
and �2 there occurs a triple degeneracy of horizons. For
the de Sitter-Reissner-Nordstrom solution it was called
‘‘ultracold black hole,’’ a name that we shall keep for the
magnetic black holes. The triple degeneracy for magnetic

objects should happen for m< 0 which as discussed be-
fore, is the only region where three horizons are expected
to exist. We will check this fact for consistency, although it
is easily seen in Fig. 5, where the sharp point of triple
degeneracy is indicated.
The specific shape we have given to �mðrÞ for the

coalescence of two horizons in (10) will guide us to find
the very point where the triple coalescence takes place. The
condition that must be imposed is no other than

1� 1

R2
ð�2 þ hð�ÞÞ ¼ 0: (19)

Equation (19) is quadratic and easily solved, it leads to

�mc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
d� 2

2d

s
R ¼ 1ffiffiffi

2
p �max; (20)

where mc stands for the triplet coalescence point in the
magnetic case. Now, substituting �mc into (13) and (14),
we get

�2ð�mcÞ ¼ ðd� 2Þ2
4dðd� 4ÞR

2;

mð�mcÞ ¼ � 4

dðd� 4Þ�
d�2
mc ;

(21)

respectively. Note that mð�mcÞ is manifestly negative for
d > 4.
The triple degeneracy point P in the magnetic case is

similar to P0 in the electric diagram (Fig. 6), for this reason
we keep the name. In the electric case, the coalescence
point, the mass, and the charge which were found in [3] are
given by

�ec ¼ d� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd� 1Þp R; Q2ð�ecÞ ¼ 1

d� 1
�2ðd�2Þ
ec ;

mð�ecÞ ¼ 4

d
�d�2
ec ;

(22)

where subscript ec labels the triple coalescence point for
the electric case. There are some differences between the
electric and magnetic diagrams which are worth explain-
ing. The line O0P0 consists of the set of pairs ðm;QÞ where
extreme black holes (Reissner-Nordstrom) are formed. The
two horizons which coalesce all along this line are the
Cauchy and the black hole horizons. In the diagram, it is
shown that even in the case that a given value of m permits
the coalescence of the other two exterior horizons, the one
which lies on O0P0 has maximum charge. This is the reason
why they are also called cold black holes. The line P0Q0,
which closes the figure, corresponds to Nariai-like solu-
tions. These degenerate black holes are extremal in the
sense of ‘‘packing’’ a given charge with the maximum
mass. Now, given the symmetry of the diagrams, one might
be wrongly tempted to associate line PQ to cold black
holes and OP to Nariai kinds. It is actually the other way
round. To see this, let us go back to the electric side and

7It turns out that independent of the value of �2, the relation
�� < �þ < �max holds.
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seek the relevant magnitude that makes the distinction. It
turns out to be the ratio

�e ¼ Q2

m
Rd�2; (23)

where the de Sitter radius R has been included to make �e

dimensionless. Now, let us choose any value of m, if there
are two possible extreme black holes for it, then, the Nariai
kind will be the one for which �e is smaller. So, we
conclude:

�Nariai
e � �Cold

e : (24)

The inequality gets saturated at the triple degeneracy point
P0. Moreover, using Eqs. (15) and (16) and evaluating �e

along the extremal path O0P0Q0 reveals that it has a maxi-
mum at P0. So, in the electric case, we may characterize the
‘‘ultracold black holes’’ by having a maximum �e.
Analogously, we will choose the dimensionless magnitude

�m ¼ �2

m
Rd�4; (25)

and impose

�Nariai
m � �Cold

m : (26)

Here enters the fact that in the magnetic case m is negative
for the cases with three horizons. This reverses the inequal-
ity for absolute values and, particularly, makes line OP of
pairs ðm;�Þ be the ‘‘cold black hole’’ parameter boundary.
The line PQ is the Nariai boundary, consequently. Again,
using Eqs. (13) and (14) and evaluating �m along the pairs
which lie on the extreme path reveals the existence of a
maximum at P. So, we can conclude that, as in the electric
case, the triple degeneracy point corresponds to magnetic
black holes with maximal rate �m, which justifies the name
of ‘‘ultracold black holes.’’

IV. EXTREMAL GEOMETRIES OF
MAGNETICALLY CHARGED (YANG-TYPE)

BLACK HOLES

In this section, we apply the procedure found by
Ginsparg and Perry [7] to describe the geometries for the
extreme magnetically charged black holes as they come
from nonextremality. In [21], Appendix A, it was proved
that there is always some physical space left between two
simple coalescent horizons. It means that there is always a
geometry at the coalescence point, which cannot be de-
scribed with our initial set of coordinates. Indeed, there is
always a change of coordinates that makes this geometry
manifest. We will start this section by reviewing the gen-
eralized Nariai solutions, already found in [21]. Then we
calculate the necessary different limits which leads to dS-
Bertotti-Robinson, � ¼ 0 Bertotti-Robinson, and Nariai-
Bertotti-Robinson solutions. A comparison with the results
found in [3] for the electric case should always be kept in
mind.

A. Generalized Nariai solutions

In [21], we found a ‘‘wise change of coordinates’’ which
will be regular and, consequently suitable to describe the
geometry between the horizons, at the coalescence point.
We will now make use of the notation and the mechanism
describe in the previous section in order to present all the
results in a compact form. Generating Nariai kind of
solutions from the near-Nariai black holes can be done as
follows. Near the coalescence point, the black hole and the
cosmological horizons are located at rþ ¼ �� � and
r� ¼ �þ �, respectively. With this parametrization, co-
alescence takes place as � ! 0. Function�ðrÞ in (9) can be
rewritten in the form

�ðrÞ ¼ �ANðrÞðr� �ð1þ �ÞÞðr� �ð1� �ÞÞ; (27)

where

ANðrÞ ¼ � 1

r2

�
1� 1

R2
ðr2 þ hðrÞÞ

�
; (28)

according to (10). Thus, the degenerate horizon of the
black hole is placed at r ¼ �. The change of coordinates
we need to perform to obtain the ‘‘inner’’ geometry is

t ¼ �

�Að�Þ r ¼ �ð1þ � cos	Þ: (29)

The next step is to apply (29) to (27) and take the limit � !
0. The result can be used to compute the quantities
��ðrÞdt2, ��1ðrÞdr2, and r2 in the new coordinates
ð�; 	Þ. In this way, the generalized Nariai line element
comes out from (2) as

ds2N ¼ 1

ANð�Þ ð�sin2	d�2 þ d	2Þ þ 1

�2
d�2

d�1: (30)

This is a generalized Nariai geometry in the sense of being
the direct product dS2 � Sd�1, that is, a (1þ 1)-
dimensional dS spacetime with radius 1

ANð�Þ and a

(d� 1)-sphere of radius 1
�2 . The factor Að�Þ can be calcu-

lated in the electric and the magnetic case. They turn out to
be

AN
e ð�Þ ¼ ðd� 2Þ2 1

�2
� dðd� 1Þ 1

R2

AN
mð�Þ ¼ ðd� 2Þ 1

�2
� 2d

1

R2
:

(31)

B. Generalized cold solution

The generalized cold (de Sitter Bertotti-Robinson) black
hole solution is generated using an analogous technique as
in the previous section. This time the coalescence takes
place between the two inner (the Cauchy and the black
hole) horizons. Now, the g00 component of metric (2) will
be written as

�ðrÞ ¼ AColdðrÞðr� �ð1þ �ÞÞðr� �ð1� �ÞÞ; (32)
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where a parametrization of the location of the horizons
r� ¼ �ð1� �Þ and rþ ¼ �ð1þ �Þ have already been
used. A degenerate horizon geometry is again obtained
as � ! 0. A suitable change of coordinates,

t ¼ �

�AColdð�Þ r ¼ �ð1þ � cosh	Þ; (33)

applied to (32), followed by the limit � ! 0 and inserted in
(2), permits us to find the gravitational field of the cold
black hole solution

ds2Cold ¼
1

AColdð�Þ ð�sinh2	d�2þd	2Þþ 1

�2
d�2

d�1: (34)

This is a generalized dS Bertotti-Robinson geometry in the
sense of being the direct product AdS2 � Sd�1, that is, a
(1þ 1)-dimensional anti-de Sitter (AdS) spacetime with
radius 1

AColdð�Þ and a (d� 1)-sphere of radius 1
�2 . The factor

AColdð�Þ can be calculated in the electric and the magnetic
case. It is easy to see that

ACold
e ð�Þ ¼ �AN

e ð�Þ ACold
m ð�Þ ¼ �AN

mð�Þ: (35)

The cold flat [Bertotti-Robinson (BR) [22,23]] solution is
obtained by the limit � ! 0 (R ! 1) in the cold black
hole geometry. The result is again a geometrical product

AdS2 � Sd�1 with the radius of the AdS space, 1=AðBRÞð�Þ,
given by

AðBRÞ
e ¼ �ðd� 2Þ2 1

�2
AðBRÞ
m ð�Þ ¼ �ðd� 2Þ 1

�2
:

(36)

C. Generalized ultracold solution

Let us generate a generalized ultracold (Nariai-Bertotti-
Robinson) solution from the near triple degeneracy point.
Recall that �ec;mc stands for the triple coalescence point of

the electric and the magnetic ultracold black hole, respec-
tively. The change of coordinates we need to perform is

te;m ¼ �

ae;m�
3=2

re;m ¼ �ce;cmð1þ � cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
be;m�

1=2	
q

Þ;
(37)

where

ae ¼ ðd� 2Þ
ffiffiffi
2

3

s
am ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd� 2Þ

3

s
(38)

and

be ¼ 4

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd� 1Þ

3

s
bm ¼ 4

R

ffiffiffi
d

3

s
: (39)

Substituting (37) into (3) and (9) one can easily calculate
the quantities ��ðrÞdt2, ��1ðrÞdr2, and r2 in the new
coordinates at the coalescence point. The ultracold geome-
tries for both the electric and the magnetic case are

ds2e ¼ �d�2 þ d	2 þ �2
ecd�

2
d�1 (40)

ds2m ¼ �d�2 þ d	2 þ �2
mcd�

2
d�1: (41)

In both cases, the geometry turns out to be M1;1 � Sd�1.
These dþ 1 dimensional geometries are causally equiva-
lent to 2-dimensional Minkowski spacetime. For d ¼ 3,
this kind of solution was discussed in [24]. In this sense it
would be fair to call them ‘‘generalized Plebanski-
Hacyan’’ solutions.
There is a discrepancy with [3] about the change of

coordinates (37) we have performed in both the electric
and the magnetic case for ultracold (UC) solutions. They

proposed r ! �ð1þ � cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AUC�

p
	Þ and t ¼ �=ðAUC�2Þ.

As we argue below, their change of coordinates is adapted
to a particular path for the coalescence process whereas
(37) is valid for more general ones. There are, however, no
differences (it would otherwise have been worried) in the
geometry obtained at the triple coalescence point.
In order to generate a generalized ultracold (Nariai-

Bertotti-Robinson) solution from the near triple degener-
acy point, the authors of [3] wrote the function �ðrÞ as
�ðrÞ ¼ �AUCðrÞðr� �ec;mcð1þ �ÞÞ2ðr� �ec;mcð1� �ÞÞ;

(42)

where, again, �ce;cm stands, respectively, for the triple

coalescence point of the electric and the magnetic ultracold
black hole. Equation (42) assumes that the two exterior
horizons have already coalesced and the Cauchy horizon
comes to them at the triple degeneracy point. In Fig. 6, it
accounts for reaching P0 along the path Q0P0. The trans-
formation

r ! �eð1þ � cosð ffiffiffiffiffiffiffiffi
2b�

p
	ÞÞ t ! �

a�2
; (43)

together with taking the coalescence-value parameters
f�;m;Q2g, as displayed in (22) into (42) along this path,
produces leading terms of the order �4, which cancel out
the fourth order divergence of dt2 and dr2 in the new
coordinates. In this way, the coalescence geometry is non-
singular. Things would have not been that nice and regular
had we chosen the inner two horizons to coalesce first and
the outer one to join the triplet. That is, if we had consid-
ered

�ðrÞ ¼ �AUCðrÞðr� �ec;mcð1þ �ÞÞðr� �ec;mcð1� �ÞÞ2;
(44)

which accounts as an approach to P0 by the path O0P0, then
the change of coordinates (43) would lead to a singular
geometry. The correct transformation would have needed
to involve a cosh function instead. It seems that the trans-
formation we should perform depends on the path to be
taken. The paths may seem capriciously chosen so far. A
general �ðrÞ function with three horizons to form a triple
degeneracy point is (in coordinates ft; rg) singular to lead-
ing order �3 if the approaches are linear in �. After the
change of coordinates, the square 1-forms dt2 and dr2 must
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be singular up to order ��3 and �3, respectively. This is all
achieved by a change of coordinates of the type displayed
in (37).

However, unless a given point has different limits de-
pending on the path taken (what happens for singular
points), there is in principle no problem in adjusting the
change of coordinates to the coalescence path, for changes
of coordinates are just mathematical artifacts which help to
blow up an apparent singularity. The final finite geometry
must be the same whatever path is taken. Precisely, it is the
Cartesian product of (1þ 1)-Minkowski and (d� 1)-
spheres.

V. CONCLUSION

The coupling to gravity of two objects in arbitrary
dimension d coming from completely different theories
have been studied in this paper. The electric black hole,
which is a perturbative solution of an Uð1Þ-gauge theory,
has been put together with a solitonic configuration of a
SOðd� 1Þ-gauge theory: the magnetic (Yang-type) black
hole. The line elements of both are similar except for the
term involving the charge. Nevertheless, this does not
make much difference in the geometrical analysis. The
bounded region of the moduli space for nonextreme black
holes in the magnetic setup has been calculated and de-
picted. We have found a complete analogy with the electric
case. As far as the geometries are concerned, the differ-
ences are minor, and subject always to constant factors
which depend mainly on the dimension. Again we encoun-
tered generalized Nariai, generalized anti-Nariai, and
M1;1 � Sd�1 metrics after the three possible coalescence
processes. The causal regions are the same in the magnetic
case, a fact that enables us to use the same Carter-Penrose
conformal diagrams to describe them as depicted in
Figs. 1–4 and 7.

We find it interesting that such completely different
systems (only dual in 4-dimensional spacetime [25]) share
similar gravitational and causal properties. In this case, it is
not due to an intrinsic duality of the gauge objects but to
the action of gravity which clears out the main differences.

A recently written paper [4] has shown that there are
actually two ways of understanding the limit of coales-
cence in the electric 4-dimensional case (it is straightfor-
ward to extend this result to arbitrary dimensions). One
leads to extremal black hole solutions, and the other one
gives the compactified solutions. Both are locally identical
but different at a global scale. They suggest that these two
different limits count for the discrepancy of the entropy
computation between semiclassical gravity and string the-
ory. Specifically, they say that both computations do not
agree because they are not referred to as the same geome-
try. We strongly believe that magnetic black holes enjoy a
similar status. Indeed, there is a plan for a future work in
which we will perform the entropy computations for the
extreme (cold) magnetic black hole.

FIG. 1. Carter-Penrose diagram of maximally extended
Schwarzschild-de Sitter black hole.

FIG. 2. Carter-Penrose diagram of the maximally extended
de Sitter-Reissner-Nordström solution.

FIG. 3. Carter-Penrose diagram of the maximally extended
de Sitter-Reissner-Nordström extremal solution.
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