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The Sultana-Dyer solution of general relativity representing a black hole embedded in a special

cosmological background is analyzed. We find an expanding (weak) spacetime singularity instead of the

reported conformal Killing horizon, which is covered by an expanding black hole apparent horizon

(internal to a cosmological apparent horizon) for most of the history of the Universe. This singularity was

naked early on. The global structure of the solution is studied as well.
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I. INTRODUCTION

Two main areas of gravitational physics, cosmology and
the study of black holes, come together in the attempt to
find exact solutions of the Einstein equations describing
black holes, which are asymptotically Friedmann-
Lemaitre-Robertson-Walker (FLRW) instead of asymptoti-
cally flat. With the exception of static solutions, such as the
Schwarzschild-de Sitter black hole or its generalizations,
these exact solutions describe dynamical black holes. What
is meant exactly by ‘‘black hole’’ when the metric is non-
stationary and the usual teleological event horizon is not
present is a nontrivial question that has led to extensive
research on dynamical horizons and their mechanics and
thermodynamics (e.g., [1–4] and references therein). The
well-known black hole thermodynamics [5] hinges on
Hawking’s discovery of thermal radiation from black holes
[6], and this calculation relies on neglecting the backreac-
tion of radiation on the spacetime metric. The full treat-
ment of backreaction and a full understanding of time-
dependent dynamical horizons are still in the future. It is
interesting, therefore, to find and study exact solutions of
the Einstein field equations describing black holes, by
which we mean central singularities covered by an appar-
ent horizon—these can be used as test beds for various
theoretical characterizations of surface gravity, energy
fluxes, etc. Only a few such solutions are known. A
complication arising when a black hole is somehow em-
bedded in a cosmological background other than the
(anti-)de Sitter one sourced by a cosmological constant,
is that the cosmic fluid tends to accrete onto the central
black hole. Forbidding this accretion flow results in a rather
artificial condition and in the old McVittie solution [7].

There are other motivations for pursuing exact cosmo-
logical black hole spacetimes: one is the problem of the
effect of the cosmological expansion on local dynamics
([8] and references therein), which generated the McVittie
solution [7]. It has been realized [9] that participation in the

expansion of the cosmic substratum may be more difficult
to achieve for strongly than for weakly bound local sys-
tems; hence, one wants to look at the most strongly bound
local system, the black hole. This approach has led to the
solutions of Sultana and Dyer [10] and those of [11–13].
Recent interest in phantom dark energy and its properties
(including thermodynamics) [14,15] motivated the study of
the backreaction due to the accretion of cosmological
phantom energy onto black holes and the possibility that
phantom energy may violate cosmic censorship [16]. Exact
solutions describing black holes in a cosmological fluid
may also lead to toy models for evaporating black holes.
Finally, alternative gravitational theories such as fðRÞ
gravity have received much attention recently as possible
models of the present acceleration of the Universe without
postulating exotic dark energy ([17], see [18] for a review
and [19] for shorter introductions to this subject). fðRÞ
gravity and all theories of modified gravity introduced
for this purpose produce an effective time-varying cosmo-
logical constant and spherically symmetric solutions in
these theories are not likely to be asymptotically flat but
rather asymptotically FLRW. Black holes will not be
Schwarzschild-like but dynamical: in fact, the Jebsen-
Birkhoff theorem is not valid in these theories and spheri-
cally symmetric solutions will, in general, be nonstationary
(see, for example, the dynamical solution proposed in [20]
in the context of metric fðRÞ ¼ R1þ� gravity). The interest
in cosmological black holes is not confined to this class of
alternative theories (which are, anyway, special cases of
scalar-tensor gravity [18,19]): interest has come from the
possibility that inhomogeneities lead to local variations of
the effective gravitational constant in scalar-tensor cosmol-
ogies [21]. Exact cosmological and time-dependent black
holes are of interest also in higher-dimensional Gauss-
Bonnet gravity [22] and arise from intersecting branes in
supergravity [23].
In spite of all these motivations, only a handful of exact

solutions describing dynamical black holes embedded in
cosmological backgrounds are known, and even fewer are
properly understood. Here, we analyze the Sultana-Dyer*vfaraoni@ubishops.ca
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solution [10], which reserves a few surprises, and discuss
its singularities, apparent horizons, global structure, and
physical interpretation. We adopt the notations of Ref. [5].

II. THE SULTANA-DYER SOLUTION

The Sultana-Dyer solution [10] is a metric of Petrov
type D interpreted by its discoverers as a black hole em-
bedded in a spatially flat FLRW universe with scale factor

aðtÞ / t2=3 (where t is the comoving time). It is generated
by conformally transforming the Schwarzschild metric

gðSÞab ! gab ¼ �2gðSÞab with the intention of mapping the

Schwarzschild timelike Killing field �c into a conformal
Killing field (for �crc� � 0), and the Schwarzschild
event horizon into a conformal Killing horizon. The choice

� ¼ aðtÞ ¼ a0t
2=3 (the scale factor of a dust-filled k ¼ 0

FLRW universe) generates the metric in the form given by
Sultana and Dyer [10]

ds2 ¼ a2ð�Þ
�
�
�
1� 2m

~r

�
d�2 þ 4m

~r
d�d~r

þ
�
1þ 2m

~r

�
d~r2 þ ~r2d�2

�
; (2.1)

where m is a constant, d�2 ¼ d�2 þ sin2�d’2 is the

metric on the unit 2-sphere, að�Þ ¼ a0�
2 ¼ a0t

2=3. We
use the metric signature opposite to that of [10] and the
symbol � and t for conformal and comoving time, respec-
tively, with dt ¼ ad� (these notations are switched with
respect to those of [10] but follow standard practice in
cosmology).

The Sultana-Dyer metric (2.1) is obtained by confor-
mally transforming the Schwarzschild metric written in
Painlevé-Gullstrand coordinates. Of course, the line ele-
ment (2.1) can be cast in a form explicitly conformal to
Schwarzschild written in the more familiar Schwarzschild
coordinates. By introducing the new time coordinate �t
defined by

dt ¼ d�tþ 2mad~r

~rð1� 2m
~r Þ

; (2.2)

the line element (2.1) transforms to

ds2 ¼ �
�
1� 2m

~r

�
d�t2 þ a2d~r2

1� 2m
~r

þ a2~r2d�2

¼ a2
�
�
�
1� 2m

~r

�
d ��2 þ d~r2

1� 2m
~r

þ ~r2d�2

�
; (2.3)

which is manifestly conformal to Schwarzschild with con-
formal factor a and d�t ¼ ad ��. It is obvious that it reduces
to a spatially flat FLRW metric as r ! þ1.

By using the isotropic radius r defined by

~r ¼ r

�
1þ m

2r

�
2
; (2.4)

the line element (2.3) becomes

ds2 ¼ �ð1� m
2rÞ2

ð1þ m
2rÞ2

d�t2 þ a2
�
1þ m

2r

�
4ðdr2 þ r2d�2Þ

(2.5)

in isotropic coordinates ð�t; r; �; ’Þ. The metric (2.5) is
recognized to be formally the same as the McVittie solu-
tion [7] but with the important difference that the metric
coefficient m is now a constant, contrary to the McVittie
case in which dm=md�t ¼ �da=ad�t. We will refer to this
equation as the ‘‘McVittie no accretion condition.’’ The
latter stems from the explicit requirement that there is no
accretion of cosmic fluid onto the central object. In modern
language, this has been recognized as the constancy of the
Hawking-Hayward quasilocal mass M � mð�tÞað�tÞ [24].
Since the McVittie no accretion condition is violated by
the Sultana-Dyer solution, the latter describes an accreting
object, as Sultana and Dyer recognize from inspection of
the field equations and the fact that T1

0 � 0.
A second important difference between the Sultana-

Dyer and the McVittie metric is that the latter is sourced
by a single perfect fluid, while the material source of the
former is a mixture of two noninteracting perfect fluids, a
null dust, and a massive dust [10]. The stress-energy tensor
is

Tab ¼ TðIÞ
ab þ TðIIÞ

ab ; (2.6)

where TðIÞ
ab ¼ �uaub describes an ordinary massive dust,

and TðIIÞ
ab ¼ �nkakb describes a null dust with density �n

and kckc ¼ 0 [10]. The use of two fluids instead of one
follows from the fact that once accretion is allowed and the
energy density and pressure depend on the radial, as well as
the time, coordinate, solutions sourced by a single perfect
fluid do not exist, except for the Schwarzschild-de Sitter
metric (which is a special case of the McVittie solution)
[12,16].
We will make use of the quantity

Mð�tÞ � mað�tÞ; (2.7)

which is not constant in the Sultana-Dyer solution. These
authors identify a conformal Killing horizon, the locus ~r ¼
2m (or r ¼ m=2 in terms of the isotropic radius r) [10].
This is obtained by mapping the Schwarzschild event
horizon of the seed metric (a Killing horizon) into the 2-
surface ~r ¼ 2m. Therefore, Sultana and Dyer interpret
their metric as describing a black hole embedded in a
special (spatially flat) FLRW background universe. The
authors identify certain problems with this solution: the
accretion flow onto the black hole becomes superluminal,
and the energy density of the cosmic fluid becomes nega-
tive after a certain time near the conformal Killing horizon
at ~r ¼ 2m. They proceed to study radial null geodesics and
surface gravity on this surface, and the behavior of timelike
geodesics representing, e.g., planetary orbits, in this met-
ric. This is inspired by the old problem of general relativity
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of whether the cosmic expansion affects local systems (see
[8] for a recent review).

Here, we take the study of the Sultana-Dyer solution a
step further. We find that it is quite different from the
picture provided by these authors: in particular, we show
that the locus ~r ¼ 2m is not a conformal Killing horizon
but a spacetime singularity. It is a weak singularity in the
sense of Tipler’s classification [25]. If the current interpre-
tation of the McVittie metric [24] applies to the Sultana-
Dyer solution, the two disconnected regions ~r > 2m and
0< ~r < 2m correspond to a black hole and white hole
region, respectively. The spacetime singularity ~r ¼ 2m is
covered by an apparent horizon, which we locate together
with a cosmological horizon. This alleviates the problems
of negative energy density and superluminal flux near ~r ¼
2m. The singularity expands with time, comoving with the
cosmic substratum but the horizon expands at a slightly
smaller rate and, in the infinite future, it approaches the
singularity asymptotically. The ~r > 2m Sultana-Dyer
spacetime has also a big bang spacelike singularity. In
the early Universe, near the big bang, the ~r ¼ 2m singu-
larity was naked, and got covered by an apparent horizon
only later. All these features resemble certain character-
istics of the Fonarev solution [26,27] or of generalized
McVittie solutions [12,13,16].

III. SINGULARITIES AND APPARENT HORIZONS
OF THE SULTANA-DYER SOLUTION

Let us begin by examining the locus ~r ¼ 2m: this is not a
conformal Killing horizon as stated in [10], but a spacetime
singularity. In fact, the Ricci curvature is

Ra
a ¼ 12

a2ð ��Þð1� 2m
~r Þ

¼ 6ð@�t
�H þ 2 �H2Þ
1� 2m

~r

(3.1)

(where �H ¼ d lna=d�t), and it diverges as r ! m=2 (the
discrepancy with the Sultana-Dyer paper is discussed in the
Appendix A). This is a covariant statement and not an
artifact of the coordinate system adopted because the
Ricci scalar is an invariant of the Riemann tensor. Ra

a

also diverges as a ! 0, the usual big bang singularity of
the background FLRWuniverse. The metric determinant is

g ¼ �a8ð ��Þ~r4sin2�: (3.2)

g and the area radius R � a~r do not tend to zero as ~r !
2m; hence, an object does not get crushed to zero volume
as it approaches this singularity, which is a weak one in
Tipler’s classification [25]. It will be shown below that this
singularity is covered by an apparent horizon and there-
fore, as in the McVittie metric, the regions ~r > 2m and 0<
~r < 2mmay be interpreted as describing a black hole and a
white hole region [24]. Although this interpretation does
not seem absolutely compelling to us in view of the fact
that a physical object or particle could potentially cross a
weak singularity, we do not address this issue here and

refer the reader to the comprehensive discussion of Nolan
[24] and to the references therein.
The issue is now to determine whether the ~r ¼ 2m

singularity is naked or covered by an apparent horizon
and, therefore, whether it really describes a black hole
embedded in a cosmological background. Since the metric
is nonstationary, there is no event horizon and the appro-
priate horizon notion is that of apparent horizon [1]. We
proceed to rewrite the Sultana-Dyer solution in the Nolan
gauge, in which it will be straightforward to decide
whether apparent horizons exist and, if so, to locate them.
Using the area radius R � a~r, which is a geometric

quantity, Eq. (2.7), and the fact that

d~r ¼ dR

a
�HRd�; (3.3)

where H � _a=a and an overdot denotes differentiation
with respect to t, the line element (2.1) becomes

ds2 ¼ �
�
1� 2M

R
� H2R2

1� 2M
R

�
dt2 þ dR2

1� 2M
R

� 2HRdtdR

1� 2M
R

þ R2d�2 (3.4)

in coordinates ðt; R; �; ’Þ, with the singularity located at
R ¼ 2M. Let us use A � 1� 2M=R and the new time
coordinate T defined by

dT ¼ 1

F

�
dtþ HR

A2 �H2R2
dR

�
; (3.5)

where FðTðt; RÞ; RÞ is an integrating factor satisfying

@

@R

�
1

F

�
¼ @

@t

�
HR

FðA2 �H2R2Þ
�

(3.6)

to guarantee that dT is an exact differential. After straight-
forward manipulations the line element (3.4) is recast in the
Nolan gauge as

ds2 ¼ �
�
1� 2M

R
� H2R2

1� 2M
R

�
F2dT2 þ dR2

1� 2M
R � H2R2

1�ð2M=RÞ
þ R2d�2: (3.7)

The apparent horizons, if they exist, are the locus gRR ¼ 0,
or

HR ¼ �
�
1� 2M

R

�
: (3.8)

We discard the lower sign in Eq. (3.8) which corresponds to
a contracting Universe, and the apparent black hole and
cosmological horizons are given by

RbhðtÞ ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8MH

p
2H

; RcðtÞ ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8MH

p
2H

;

(3.9)

respectively. It must be M � H�1

8 , or _a � 1
8m for these

apparent horizons to exist. In the limit m ! 0 the black
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hole and its apparent horizon disappear and the cosmologi-
cal apparent horizon reduces to the familiar surface R ¼ 1

H .

The fact that the proper radius of the latter is larger than Rc

can be interpreted as the pull of the central black hole on
the cosmic fluid.

Since Rð1�HRÞ ¼ 2M> 0 at the apparent horizons
and H > 0 in an expanding Universe, it is

Rbh ¼ 2M

1�HRbh

> 2M (3.10)

and the singularity R ¼ 2MðtÞ ¼ 2maðtÞ, at which the flow
is superluminal and the energy density becomes negative
definite, is hidden by the apparent horizon. This alleviates
somehow the problems of this solution reported in [10].

However, since aðtÞ ¼ a0t
2=3 in comoving time, as t !

þ1, MH ¼ m _a ¼ 2ma0
3t1=3

! 0 and Rbh ! 2M approaching

the singularity asymptotically.

By using the scale factor aðtÞ ¼ a0t
2=3 of the Sultana-

Dyer metric it follows that the constantmmust satisfym �
3t1=3

16a0
for the apparent horizons to exist. This condition is

violated at early times, implying that the R ¼ 2M singu-

larity was naked at early times and later on (at t ¼ ð16a0m Þ3)
an apparent horizon appeared that immediately bifurcated
into a cosmological horizon and a black hole apparent
horizon covering the singularity.

The global structure of the Sultana-Dyer solution is
analyzed in the next section. To conclude this section, we
discuss the Misner-Sharp [28] and Hawking-Hayward
[29,30] quasilocal energies.

The Misner-Sharp mass MMS is defined in terms of the

area radius R by 1� 2MMS

R ¼ �rcRrcR [28] which, at the

black hole apparent horizon, yields

MMS ¼ Rbh

2
¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8MH
p
4H

: (3.11)

In order to compute the Hawking-Hayward quasilocal
mass we introduce the null coordinates ðu; vÞ defined by

du ¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2M

R
� H2R2

1� 2M
R

vuut FdT

� dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

R � H2R2

1�ð2M=RÞ
q

�
; (3.12)

dv ¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2M

R
� H2R2

1� 2M
R

vuut FdT

þ dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

R � H2R2

1�ð2M=RÞ
q

�
(3.13)

in terms of which the metric is reduced to Hayward’s
standard form [30]

ds2 ¼ �2dudvþ R2d�2: (3.14)

Since dR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

R � H2R2

1�2M
R

r
ðdv�duÞffiffi

2
p , the Hawking-

Hayward quasilocal mass is easily computed using the
prescription for spherical symmetry [30]

MHH ¼ RðRuRv þ 1
2Þ (3.15)

which yields, at the black hole apparent horizon,

MHH ¼ MMS ¼ Rbh

2
(3.16)

and coincides with the Misner-Sharp mass. Both masses
diverge in the limit R ! 2M.

IV. GLOBAL STRUCTURE

The causal nature of the singularity and the black hole
apparent horizon are determined as follows: The singular-
ity is characterized by the equation R� 2M ¼ 0, and the
normal is obtained by taking the gradient of this equation
(the limit R ! 2M is implicit in the following).
Unfortunately, the integrating factor F appearing in the
line element (3.7) is not determined explicitly; hence, it is
more convenient to use the coordinates ðt; R; �; ’Þ in which
the metric is given by Eq. (3.4) and its inverse by

ðgabÞ ¼

�1
1�2M

R

�HR
1�2M

R

0 0

�HR
1�2M

R

ð1� 2M
R � H2R2

1�2M
R

Þ 0

0 0 1
R2 0

0 0 0 1
R2sin2�

0
BBBBB@

1
CCCCCA: (4.1)

One obtains na ¼ raR� 2m _a�a0 ¼ ð�2MH; 1; 0; 0Þ and

na ¼ gabnb ¼
�
�HR;�H2R2 þ 1� 2M

R
; 0; 0

�
(4.2)

and, in the limit R� 2M ! 0 na ¼ ð�2MH; 1; 0; 0Þ, na ¼
ð�2MH;�4M2H2; 0; 0Þ, while ncnc ¼ 0. The R ¼ 2M
singularity is null, which is not surprising if one remembers
that it is obtained by conformal mapping of the null event
horizon of the Schwarzschild black hole used as the seed
metric in this solution-generating technique [10].

The black hole apparent horizon has equation fðt; RÞ ¼
2RH � 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8MH
p ¼ 0. The normal has the direction

of the gradient raf, or

na ¼ ðBðt; RÞ; 2H; 0; 0Þ; (4.3)

where

Bðt; RÞ ¼ 2R _H � 4MðH2 þ _HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8MH

p ; (4.4)

while
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na ¼ gabnb

¼
�
�ðBþ 2H2RÞ

1� 2M
R

;
�HRB

1� 2M
R

þ 2H

�
1� 2M

R
� H2R2

1� 2M
R

�
; 0; 0

�
: (4.5)

Therefore,

nana ¼ � 1

1� 2M
Rbh

��
2 _HRbh � 4MðH2 þ _HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8MH
p

�
2

þ 4H2R

�
2 _HRbh � 4MðH2 þ _HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8MH
p

��

¼ � 1

1� 2M
Rbh

ðC2 þ 4H2RÞ

¼ � 1

1� 2M
Rbh

½ðCþ 2H2RÞ2 � 4H4R2�

¼ jCj
HRbh

ðCþ 4H2RÞ; (4.6)

where

C ¼
� _H
2 ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8MH
p Þ2 � 4MH3

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8MH

p : (4.7)

Now,

Cþ 4H2R ¼ 1

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8MH

p
�� _H

2
ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8MH
p Þ2

þ 12MH3 � 2H2ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8MH

p Þ
�
;

(4.8)

and at late timesH ¼ 2
3t and

_H ¼ �2
3t2

; hence, the numerator

of Eq. (4.8) is dominated by the term 12MH3 and nana >
0: the black hole apparent horizon is timelike at late times.
At early times, but after the horizons have appeared, it is

1

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8MH

p
�� _H

2
ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8MH
p Þ2 þ 12MH3

� 2H2ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8MH

p Þ
�
’ 12ma0

t7=3
1

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8MH

p > 0;

(4.9)

and the horizon is timelike early on.
The global picture of the Sultana-Dyer spacetime that

emerges from these considerations is that of a universe
with a spacelike big bang singularity at t ¼ 0, the null
singularity R ¼ 2M (the conformal mapping of a
Schwarzschild event horizon), which was naked at early
times, until it got covered by a timelike apparent horizon
appearing at a finite time. The conformal diagram is
sketched in Fig. 1.

V. DISCUSSION AND CONCLUSIONS

There are many motivations, discussed in the
Introduction, to find and study exact solutions of the field
equations of general relativity or alternative gravity theo-
ries describing dynamical black holes embedded in a cos-
mological background. Among these the Sultana-Dyer
metric deserves some attention in view of its relative
simplicity and of the technique used to generate it, which
may lead to a wider class of solutions. There is evidence
that among the class of generalized McVittie solutions
[12,16] those conformal to the Schwarzschild spacetime
(‘‘comoving solutions’’) are generic [13], and this consti-
tutes further motivation to understand solutions seeded by
the Schwarzschild metric, such as the Sultana-Dyer one.
To summarize and discuss the salient features of the

Sultana-Dyer spacetime, we found that the conformal im-
age of the Schwarzschild event horizon is not a conformal
Killing horizon but rather a spacetime singularity at R ¼
2m (where R is the area radius). This singularity is weak in
Tipler’s sense and is null, as should be expected because
the seed Schwarzschild event horizon is a null surface. This
expanding singularity is interpreted as the effect of the pull
of the cosmological matter stretching the r ¼ 0 singularity
of the Schwarzschild spacetime into one of finite radial
extent. Early on, this singularity is naked and only later a
timelike apparent horizon develops, which immediately
bifurcates into a black hole apparent horizon covering the
singularity and an apparent cosmological horizon. The
radius of the cosmological horizon is smaller than the value
H�1 of the Hubble radius in a FLRW spacetime, which
may be interpreted as an effect due to the gravitational pull
of the central object on the cosmic fluid.
The singularity expands comoving with the cosmic sub-

stratum, while the apparent horizon expands at a slightly
smaller rate and eventually comes to coincide with the
singularity in the infinite future. Sultana and Dyer report
superluminal flow near the singularity, and one may ques-
tion whether the notion of black hole makes sense at all in

FIG. 1. The conformal diagram of the Sultana-Dyer spacetime.
The horizontal wiggly line at the bottom describes the big bang
singularity, the wiggly line at 45 degrees denotes the R ¼ 2M
null singularity, and the solid line at 45 degrees describes future
null infinity. Null geodesics end at future null infinity or at the
black singularity (either when it is naked if started early on, or
crossing the timelike black hole apparent horizon labeled AH).
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the presence of superluminal flows which, in principle,
allow particles to escape from the apparent horizon.
However, it should be noted that this radial flow is always
directed inward, and nothing actually escapes from the
black hole apparent horizon. In our opinion, this unpleas-
ant superluminal feature is due to the simplicity of the
model under study and will not be present in more realistic
and sophisticated models yet to come. For the moment we
content ourselves with understanding the simple model
(2.1). The Sultana-Dyer spacetime exhibits the spacelike
big bang cosmological singularity, the null black hole
singularity and, later on, the two apparent horizons. As is
clear from the conformal diagram of Fig. 1, the timelike
black hole apparent horizon meets the null singularity in
the infinite future, with the dust-dominated universe ex-
panding and diluting forever.

In addition to the superluminal flow, which we do not
regard as a serious flaw, the Sultana-Dyer solution exhibits
other less desirable features: the cosmological fluid has
negative energy density at late times near R ¼ 2M [10]; it
would be desirable if the cosmological matter were de-
scribed by a single fluid composed of particles following
timelike geodesics instead of an odd mixture of a null and a
massive dust; and limiting the scale factor of the Universe

to the special choice a / t2=3 seems too restrictive. Work is
in progress to find new exact solutions, both in general
relativity and in alternative theories, which do not share
these problems.
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APPENDIX

Equation (3.1) for the Ricci curvature shows a diver-
gence at ~r ¼ 2m, which is not noticed in the Sultana-Dyer
paper. Here, we discuss the likely cause of this fact. The
Ricci scalar coincides (up to the constant � ¼ 8�G) with
the negative trace of the energy-momentum tensor Tab and
the matter energy density and (zero) pressure in the
Sultana-Dyer paper are identified using their Einstein
Eqs. (13) with the stress-energy tensor given by their
Eq. (4). The latter is meant to provide the stress-energy
tensor ~Tab obtained by conformally transforming the van-

ishing stress-energy tensor Tab of the Schwarzschild solu-
tion, which we want to reconsider here. Under the
conformal transformation of the metric gab ! ~gab ¼
�2gab the Ricci tensor and Ricci scalar transform accord-
ing to

~R ab ¼ Rab � 2rarb ln�� gabg
efrerf ln�

þ 2ðra ln�Þðrb ln�Þ � 2gabg
efðre ln�Þ

� ðrf ln�Þ; (A1)

~R a
a ¼ ��2

�
Ra

a � 6h�

�

�
; (A2)

respectively [5]. Using the Einstein equations ~Rab �
1=2~gab ~R ¼ � ~Tab and Rab � 1

2gabR ¼ �Tab, one obtains

� ~Tab ¼ �Tab � 2rarb�

�2
þ 4ra�rb�

�2

� gab
gcdrc�rd�

�2
þ 2gab

gcdrcrd�

�
: (A3)

Sultana and Dyer instead have, for vanishing Tab (Eq. (4)
of [10]),

� ~Tab ¼ 2~gab
~r2�

�
� 2~ra

~rb�

�
� 3

�2
~gab~g

mn ~rm�
~rn�:

(A4)

The discrepancy between these formulas, plus the fact that

the tilded operator ~r is not the correct one to be used in the
expression of ~Tab, is likely to be the reason why the
singularity at ~r ¼ 2m is missed in [10]. The correct Ricci
scalar can be calculated using Eq. (A2) with Ra

a ¼ 0 and

a ¼ �t2=3 ¼ ��2 yielding

~Ra
a ¼ � 6h�

�3
¼ � 6hð ��2Þ

��6
¼ 2gab�0a�0b

¼ 12

��6ð1� 2m
~r Þ

¼ 12

a3ð1� 2m
~r Þ

: (A5)

The singularity at ~r ¼ 2m was also noted recently in [31].
The Sultana-Dyer solution can be re-obtained using as

material source a single imperfect fluid with a radial
(spacelike) energy current instead of a two-fluid mixture,
as shown in the first of Ref. [11]. Equation (90) of this work
for Ga

a ¼ �Ra
a is clearly singular at ~r ¼ 2m.

[1] A. B. Nielsen,Gen. Relativ. Gravit. 41, 1539 (2009).
[2] A. Ashtekar and B. Krishnan, Phys. Rev. Lett. 89, 261101

(2002); Phys. Rev. D 68, 104030 (2003); Living Rev.
Relativity 7, 10 (2004).

[3] I. Booth, Can. J. Phys. 83, 1073 (2005).
[4] M. Visser, arXiv:0901.4365.
[5] R.M. Wald, General Relativity (Chicago University Press,

Chicago, 1984).

VALERIO FARAONI PHYSICAL REVIEW D 80, 044013 (2009)

044013-6



[6] S.W. Hawking, Nature (London) 248, 30 (1974);
Commun. Math. Phys. 43, 199 (1975).

[7] G. C. McVittie, Mon. Not. R. Astron. Soc. 93, 325 (1933).
[8] M. Carrera and D. Giulini, arXiv:0810.2712 [Rev. Mod.

Phys. (to be published)].
[9] R. H. Price, arXiv:gr-qc/0508052.
[10] J. Sultana and C. C. Dyer, Gen. Relativ. Gravit. 37, 1349

(2005).
[11] M. L. McClure and C. C. Dyer, Classical Quantum Gravity

23, 1971 (2006); Gen. Relativ. Gravit. 38, 1347 (2006).
[12] V. Faraoni and A. Jacques, Phys. Rev. D 76, 063510

(2007).
[13] V. Faraoni, C. Gao, X. Chen, and Y.-G. Shen, Phys. Lett. B

671, 7 (2009).
[14] J. A. Gonzalez and F. S. Guzman, Phys. Rev. D 79, 121501

(2009); X. He, B. Wang, S.-F. Wu, and C.-Y. Lin, Phys.
Lett. B 673, 156 (2009); C.-Y. Sun, Phys. Lett. B 673, 156
(2009); Phys. Rev. D 78, 064060 (2008); H. Maeda, T.
Harada, and B. J. Carr, Phys. Rev. D 77, 024023 (2008);
D. C. Guariento, J. E. Horvath, P. S. Custodio, and J. A. de
Freitas Pacheco, Gen. Relativ. Gravit. 40, 1593 (2008);
J. A. de Freitas Pacheco and J. E. Horvath, Classical
Quantum Gravity 24, 5427 (2007); G. Izquierdo and D.
Pavon, Phys. Lett. B 639, 1 (2006); S. Chen and J. Jing,
Classical Quantum Gravity 22, 4651 (2005); E. Babichev,
V. Dokuchaev, and Y. Eroshenko, Phys. Rev. Lett. 93,
021102 (2004).

[15] D. R. Brill, G. T. Horowitz, D. Kastor, and J. Traschen,
Phys. Rev. D 49, 840 (1994); H. Saida, T. Harada, and H.
Maeda, Classical Quantum Gravity 24, 4711 (2007); D. N.
Vollick, Phys. Rev. D 76, 124001 (2007); Y. Gong and A.
Wang, Phys. Rev. Lett. 99, 211301 (2007); F. Briscese and
E. Elizalde, Phys. Rev. D 77, 044009 (2008); M. Akbar
and R.-G. Cai, Phys. Lett. B 635, 7 (2006); P. Wang, Phys.
Rev. D 72, 024030 (2005); H. Mohseni-Sadjadi, Phys.
Rev. D 76, 104024 (2007); R. Di Criscienzo, M.
Nadalini, L. Vanzo, and G. Zoccatelli, Phys. Lett. B
657, 107 (2007); V. Faraoni, Phys. Rev. D 76, 104042
(2007); M. Nadalini, L. Vanzo, and S. Zerbini, Phys. Rev.
D 77, 024047 (2008); S. A. Hayward, R. Di Criscienzo, L.
Vanzo, M. Nadalini, and S. Zerbini, Classical Quantum
Gravity 26, 062001 (2009); S. A. Hayward, R. Di

Criscienzo, M. Nadalini, L. Vanzo, and S. Zerbini, AIP
Conf. Proc. 1122, 145 (2009); R. Di Criscienzo, M.
Nadalini, L. Vanzo, S. Zerbini, and G. Zoccatelli, Phys.
Lett. B 657, 107 (2007); R. Brustein, D. Gorbonos, and M.
Hadad, Phys. Rev. D 79, 044025 (2009); R.-G. Cai, L.-M.
Cao, Y.-P. Hu, and S. P. Kim, Phys. Rev. D 78, 124012
(2008); R.-G. Cai, L.-M. Cao, and Y.-P. Hu, Classical
Quantum Gravity 26, 155018 (2009); J. High Energy
Phys. 08 (2008) 90; R.-G. Cai, Prog. Theor. Phys.
Suppl. 172, 100 (2008).

[16] C. Gao, X. Chen, V. Faraoni, and Y.-G. Shen, Phys. Rev. D
78, 024008 (2008).

[17] S. Capozziello, S. Carloni, and A. Troisi, Recent Res. Dev.
Astron. Astrophys. 1, 625 (2003); S.M. Carroll, V.
Duvvuri, M. Trodden, and M. S. Turner, Phys. Rev. D
70, 043528 (2004).

[18] T. P. Sotiriou and V. Faraoni, arXiv:0805.1726 [Rev. Mod.
Phys. (to be published)].

[19] N. Straumann, arXiv:0809.5148; T. P. Sotiriou,
arXiv:0805.1726; V. Faraoni, arXiv:0810.2602; S.
Capozziello and M. Francaviglia, Gen. Relativ. Gravit.
40, 357 (2008); S. Nojiri and S.D. Odintsov, Int. J.
Geom. Methods Mod. Phys. 4, 115 (2007); H.-J.
Schmidt, Int. J. Geom. Methods Mod. Phys. 4, 209 (2007).

[20] T. Clifton, Classical Quantum Gravity 23, 7445 (2006).
[21] N. Sakai and J. D. Barrow, Classical Quantum Gravity 18,

4717 (2001); T. Clifton, D. F. Mota, and J. D. Barrow,
Mon. Not. R. Astron. Soc. 358, 601 (2005).

[22] M. Nozawa and H. Maeda, Classical Quantum Gravity 25,
055009 (2008).

[23] K. Maeda, N. Ohta, and K. Uzawa, J. High Energy Phys.
06 (2009) 051.

[24] B. C. Nolan, Classical Quantum Gravity 16, 1227 (1999).
[25] F. J. Tipler, Phys. Lett. 64A, 8 (1977).
[26] O. A. Fonarev, Classical Quantum Gravity 12, 1739

(1995).
[27] H. Maeda, arXiv:0704.2731.
[28] C.W. Misner and D.H. Sharp, Phys. Rev. 136, B571

(1964).
[29] S.W. Hawking, J. Math. Phys. (N.Y.) 9, 598 (1968).
[30] S. A. Hayward, Phys. Rev. D 49, 831 (1994).
[31] C.-Y. Sun, arXiv:0906.3783.

ANALYSIS OF THE SULTANA-DYER COSMOLOGICAL . . . PHYSICAL REVIEW D 80, 044013 (2009)

044013-7


