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In asymmetrically-warped spacetimes different warp factors are assigned to space and to time. We

discuss causality properties of these warped brane universes and argue that scenarios with two extra

dimensions may allow for timelike curves which can be closed via paths in the extra-dimensional bulk. In

particular, necessary and sufficient conditions on the metric for the existence of closed timelike curves are

presented. We find a six-dimensional warped metric which satisfies the CTC conditions, and where the

null, weak and dominant energy conditions are satisfied on the brane (although only the former remains

satisfied in the bulk). Such scenarios are interesting, since they open the possibility of experimentally

testing the chronology protection conjecture by manipulating on our brane initial conditions of gravitons

or hypothetical gauge-singlet fermions (‘‘sterile neutrinos’’) which then propagate in the extra

dimensions.
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I. INTRODUCTION

The physics of time travel has fascinated science fiction
aficionados and scientists alike. In particular, the seminal
papers of Morris, Thorne, and Yurtsever [1] on traversable
wormholes initiated a considerable research library of
serious attempts to transmit information to the past, i.e.
to generate closed timelike curves (CTCs). Several space-
time settings, mostly contrived or oversimplified in some
way, have been discussed in the literature. These include
Gödel’s rotating universe [2], the rotating cylinder of van
Stockum and Tipler [3,4], Gott’s pair of moving cosmic
strings [5],1 Wheeler’s spacetime foam [7], regions inside
the horizon of Kerr- and Kerr-Newman geometries [8],
Alcubierre’s warp drive [9], and Ori’s vacuum torus [10].
Typically these spacetimes suffer from obstacles of either
unphysically fast rotation to tip the Lorentz cones, or the
requirement of exotic matter with negative energy density
which violates the so-named null, weak, strong and domi-
nant energy conditions. Several analyses indicate possible
instabilities of such spacetimes to classical perturbations
and/or quantum fluctuations [11]. This situation has in-
spired Stephen Hawking’s ‘‘chronology protection conjec-
ture’’ [12], which states that the ultimate laws of physics
prevent the appearance of CTCs. Hawking’s ‘‘chronology
horizon’’ [12] is a special type of Cauchy horizon, which
separates spacetime regions where CTCs occur from
spacetime regions where chronology is protected.
Although apparently plausible situations seem naively to
violate causality, quantum corrections to the stress-energy
tensor diverge in semiclassical calculations at the chronol-
ogy horizon. It has been argued that the backreaction to the

metric would destroy the potential time-machine on the
horizon.
Whether Hawking’s chronology protection conjecture

holds beyond the semiclassical treatment, so that chronol-
ogy is truly protected, is still not known. Very probably a
better understanding of quantum gravity will be necessary
to resolve this issue in the future. In the meantime, a study
of physics under the unusual conditions surrounding the
chronology horizon may provide more insight into chro-
nology protection. One might glimpse some fascinating
new physics proposed to avoid the obvious paradoxes
associated with time travel. These paradoxes include the
Grandfather and Bootstrap paradoxes. In the Grandfather
paradox, one modifies the initial conditions that lead to
one’s own existence; in the Bootstrap paradox, an effect is
its own cause. If the chronology protection conjecture is
false, even more wonderful discoveries may await the
serious researcher. Proposals include non-Hausdorff mani-
fold geometry [13], where the same event has multiple
futures or pasts, and the many-world interpretation of
quantum mechanics, with switching between parallel his-
tories [14].
The advent of theories with large extra dimensions has

provided yet new room for chronology violations (see e.g.
the discussion in [15]). Extra dimensions were originally
motivated by the consistency of string theory.
More recently, large (or even infinite) extra dimensions

have been discussed as a possible new way to understand
the hierarchy problem (Mweak � MP) [16,17] (for reviews
see e.g. [18]) and to keep neutrino masses small [19]. In
many extra-dimension models, ordinary standard model
(SM) fields are confined on a brane (our three-surface),
while gravitons and other hypothetical SM singlet fields
are allowed to propagate also in the extra-dimensional
bulk. A generic feature of such spacetimes seems to be1Compare, however, the arguments given in [6].
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the existence of signals, mediated by the graviton or SM
singlets, taking ‘‘shortcuts’’ through the extra dimension.
As viewed from our brane world, these shortcuts appear as
superluminal communication [20]. Such apparent super-
luminal communication, via graviton shortcuts in the bulk
[21], or earlier, via wormholes [22], has been proposed as a
possible solution to the cosmological horizon problem
(relaxing one of the needs for an inflationary epoch in
the early universe). While there seems to be agreement in
the literature that extra-dimensional spacetimes admit bulk
shortcuts under rather generic conditions, whether these
shortcuts solve the horizon problem depends on the details
of the specific extra-dimensional model [23–26].

In this paper we discuss causality violations arising in a
particularly interesting class of extra-dimensional scenar-
ios allowing for bulk shortcuts, so-called asymmetrically-
warped spacetimes. Asymmetric warping assigns a differ-
ent warp factor to time versus space coordinates. We work
with lightlike world lines accessing extra dimensions, but
we expect our conclusions to apply to any extremely
relativistic quanta which have access to the extra-
dimensional bulk (thus using the term closed timelike
curve (CTC) as being interchangeable to closed lightlike
curve). Examples of such quanta are the graviton and the
hypothetical gauge-singlet ‘‘sterile’’ neutrino.

We begin the CTC story by reviewing closed timelike
curves in a prominent class of spacetimes including the
Gödel- and Tipler-van-Stockum (GTvS) spacetimes in
Sec. II. In Sec. III we extend the discussion of possible
CTCs to higher-dimensional spacetimes, and derive the
general conditions on the metric which allow CTCs. We
discuss the causality properties of asymmetrically-warped
five-dimensional spacetimes in Sec. IV, and show that
CTCs do not occur (unless spacetime has the topology of
a flat torus). In contrast, we show in Sec. V that closed
timelike curves can exist within a six-dimensional general-
ization of asymmetrically-warped spacetimes. We explic-
itly find a metric with two warped extra space dimensions
which allows CTCs. In Sec. VI we discuss the energy
conditions for the 6D metric with CTCs. A brief discussion
of the role that sterile (gauge-singlet) neutrinos may play in
the communication with the past or future and a recapitu-
lation and discussion complete this paper in Sec. VII.

II. CTCS IN GÖDEL AND TIPLER-VAN-STOCKUM
SPACETIMES

Before discussing the causality properties of
asymmetrically-warped spacetimes, it is instructive to re-
view two prominent early examples of spacetimes imple-
menting closed timelike curves. The Gödel metric
describes a pressure-free perfect fluid with negative cos-
mological constant and rotating matter, and the Tipler-van-
Stockum (TvS) spacetime is being generated by a rapidly
rotating infinite cylinder. In both cases the metric can be
written as

ds2 ¼ þgttðrÞdt2 þ 2gt�ðrÞdtd�� g��ðrÞd�2 � grrdr
2

� gzzdz
2: (1)

Here the g�� are complicated functions of the radial dis-

tance r from the symmetry axis, and a parameter character-
izing the angular velocity of the cylinder (not shown). The
azimuthal coordinate � assumes values on the interval
� 2 ½0; 2�g. Writing gttdt

2 þ 2gt�dtd�� g��d�
2 as

ðgtt þ�2g��Þdt2 � g��ðd���dtÞ2, with � ¼
gt�ðrÞ=g��ðrÞ, makes it clear that the Gödel and TvS

metrics have an interpretation in terms of a rotating coor-
dinate system with a radially-dependent angular speed
�ðrÞ. The sign of the rotation is positive if gt� and g��

have the same relative sign, and negative if the relative sign
is opposite.
To guarantee a local Minkowskian metric at every

spacetime point, on and off the brane, we maintain the
Lorentzian signature. The 4D metric has Lorentzian sig-
nature provided that g4 � detðg��Þ< 0. For grrgzz > 0 as

in the Gödel and TvS (GTvS) metrics, this condition
becomes

ðgttg�� þ g2t�Þ> 0: (2)

A dynamical approach to GTvS causality examines the
purely azimuthal null-curve with ds2 ¼ 0. One gets

_�� ¼
gt� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2t� þ gttg��

q
g��

; (3)

where the� refers to corotating and counter-rotating light-
like signals. The coordinate time for a corotating path is

�Tþ ¼ ��

�
g��

gt� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2t� þ g��gtt

q �
: (4)

As g�� goes from positive to negative, the light cone tips

such that the azimuthal closed path is traversed in negative
time

�Tþ ¼ �2�jg��j
gt� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2t� þ g��gtt

q ½g�� < 0�: (5)

The quantum returns to its origin before it left, marking the
existence of a CTC.
Note that the Lorentzian signature is maintained even as

g�� switches sign as long as the argument of the square-

root, proportional to �g4, remains positive definite. Note
also that the Lorentzian signature is maintained as g��

switches to a negative value as long as gt� >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g��gtt

p
. In

particular, gt� cannot be zero. In the following we will

apply a similar argument to different scenarios of
asymmetrically-warped spacetimes.
For completeness, we give the analogous result for the

counter-rotating light signal. The period of counter rotation
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is

�T� ¼ 2�ðgt� þ ffiffiffiffiffiffiffiffiffiffi�g4
p Þ

gtt
: (6)

If gtt switches its sign at some r0, then �T� becomes
negative. However, such a sign change either produces
singular behavior in �T� or requires a discontinuous
behavior in gtt. In the GTvS models, gtt does not change
sign.

The clear discriminator of the arrows of time are the
slopes of the local light-cone,

s�ðrÞ ¼ ðr _��Þ�1 ¼ 1

r

g��

gt� � ffiffiffiffiffiffiffiffiffiffi�g4
p ¼ � 1

r

gt� � ffiffiffiffiffiffiffiffiffiffi�g4
p

gtt
:

(7)

In particular, the expressions

sþðrÞ ¼ 1

r

g��

gt� þ ffiffiffiffiffiffiffiffiffiffi�g4
p and s�ðrÞ ¼ �1

r

gt� þ ffiffiffiffiffiffiffiffiffiffi�g4
p

gtt
:

(8)

make it clear that if g�� and gtt are positive, then regard-

less of the sign of gt�, the light cones (world lines) remain

in the first and second quadrants of the ðt; �Þ plane (as is
the case of the Minkowski light cone). Thus, for a back-
ward flow of time, g�� (or, gtt) must go through zero and

become negative.
It is useful to consider the product of slopes

sþðrÞs�ðrÞ ¼ �1

r2
g��

gtt
: (9)

For time to move backwards one of the world lines defining
the light cone must move into the lower half of the t-�
plane. From (9) one can see that (i) this happens smoothly
if g�� goes through zero; (ii) happens discontinuously if

gtt goes through zero; (iii) that a smooth change in the sign
of gt� cannot move either slope through zero to the domain

of negative time.
With the focus here on a smooth change of sign for g��,

it is useful to examine the slopes at small g��. One finds

s�ðleading order in g��Þ ¼
(

1
2r

g��

gt�

� 2
r

gt�
gtt

(10)

It is clear that the slope sþ goes through zero with g��,

leaving the first quadrant and moving into the fourth quad-
rant. With increasing �, time for the associated corotating
world line runs backwards. On the other hand, the sign of
s� remains unchanged, and time for the associated coun-
terrotating world line continues to run forward. In the
following we will apply similar arguments to different
scenarios of asymmetrically-warped spacetimes.

It is instructive to mention the visceral arguments
against the relevance of the Gödel and TvS metrics. First
of all, they are not asymptotically flat, and so presumably

cannot occur within our Universe; rather, they must be our
Universe, which contradicts observation. Secondly, the
initial conditions from which they can evolve are either
nonexistent (Gödel) or sick (TvS). Furthermore, the TvS
metric assumes an infinitely-long cylinder of matter, which
is unphysical. On the positive side, literally, the Einstein
equation endows � ¼ T0

0 ¼ ðR0
0 � 1

2RÞ=8�GN (with the

geometric RHS determined by the metric) with a positive
value everywhere; there is no need for ‘‘exotic’’ � < 0
matter. A further positive feature is the simplicity of find-
ing the CTC by travel along the periodic variable �. We
will later revisit these pluses and minuses with our results
for asymmetrically-warped spacetimes.

III. EXTENDING GTVS SPACETIMES TO EXTRA
DIMENSIONS

In this section we will model 6D spacetimes after the
GTvS spacetimes. We label the two additional space di-
mensions u and v, and we ‘‘warp’’ the bulk by letting the
metric coefficients of the familiar spacetime coordinates
ðt; ~xÞ depend on the bulk coordinates u and v.

A. A periodic path off the brane

By construction, the causal properties of the metric
depend only on the bulk coordinates u and v. Therefore,
we are led to consider first a path off the brane whose
projection onto the brane is periodic. Such a path mimics
closely that of GTvS. We begin with the 6D line element
and metric

ds2 ¼ gttðu; vÞdt2 þ 2gt�ðu; vÞdtðrd�Þ
� g��ðu; vÞðrd�Þ2 � dr2 � du2 � dv2; (11)

the brane coordinate � is not needed, and so we have set it
equal to �=2. For this line element we have explicitly
displayed the powers of r so that all elements of g�� are

dimensionless. The Lorentzian signature is maintained
everywhere as long as �g6 � � detðg��Þ ¼ ðgttg�� þ
g2t�Þr2 > 0 everywhere.

The algebra yielding the travel time for a periodic path
in the hyperslice ðu; vÞ ¼ ðu1; v1Þ is little changed from the
GTvS prototype. For fixed r � r1 we readily arrive at the
travel time along a corotating path:

�Tþ ¼ r1��

�
g��ðu1; v1Þ

gt�ðu1; v1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g6ðu1; v1Þ

p �
: (12)

We take ��> 0 and gt� > 0. The transit time for the

periodic corotating path is therefore negative if
g��ðu1; v1Þ is negative. Since the periodic path may be

transited an arbitrary number of times, the finite time
required for the lightlike quanta to travel from the brane
at ðu; vÞ ¼ ð0; 0Þ to the hyperslice in the bulk at ðu; vÞ ¼
ðu1; v1Þ and back can be neglected. Taking �� to be a
multiple of 2�, one obtains a CTC.
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We have little intuition for a globally-defined,
differentially-rotating coordinate system. On the other
hand, it may be possible to construct a coordinate system
with rotation over a finite volume, e.g., by embedding a
Kerr-like solution in the 6D space. However, such a con-
struction, if possible at all, is a complication beyond the
scope of this paper. We choose to leave the concept of a
relative rotation between brane and bulk to future study,
and instead consider next a related but different metric.

B. A linear path off the brane

We may replace the periodic coordinate of GTvS with
the unbounded x coordinate, and omit the y and z coor-
dinates for brevity. Then one obtains

ds2 ¼ gttðu; vÞdt2 þ 2gtxðu; vÞdxdt� gxxðu; vÞdx2
� du2 � dv2: (13)

(Notice, in particular, the sign convention on the coeffi-
cient of dx2.)

The speed of light at any point will depend on ðu; vÞ
through the metric elements. The restriction to Lorentzian
signature implies that

� g6 � � detðg��Þ ¼ gttðu; vÞgxxðu; vÞ þ g2txðu; vÞ> 0:

(14)

World lines for lightlike travel (null lines) satisfy

0 ¼ gttðu; vÞ þ 2gtxðu; vÞ _x� gxxðu; vÞ _x2 � _u2 � _v2:

(15)

The solutions to (15) for the analogs of corotating and
counterrotating light speed at fixed ðu; vÞ are

_x� ¼ gtxðu; vÞ � ffiffiffiffiffiffiffiffiffiffi�g6
p

gxxðu; vÞ : (16)

On the brane, _x must equal c ¼ 1, so we again choose
gttð0; 0Þ ¼ gxxð0; 0Þ ¼ 1 and gtxð0; 0Þ ¼ 0.

Let us examine more closely the causal implications of
Eq. (16). We assume that gtt is everywhere positive, so that
(i) coordinate time t is everywhere timelike, and (ii) no
singularities are introduced in sþs� or in gtt. As shown in
Sec. II, the sign of gtx does not influence the causal
structure, and for definiteness we take it to be positive
semidefinite. It is the sign of the metric element gxx that
has smooth causal significance.

Similar to the causal analysis of the GTvS model of
Sec. II, we write the two slopes of the light cone as

s�ðu; vÞ ¼ ð _x�Þ�1

¼ gxxðu; vÞ
gtxðu; vÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2txðu; vÞ þ gxxðu; vÞgttðu; vÞ

p :

(17)

From this, one readily gets for the slopes (given in Eq. (17))

sþs� ¼ �gxx
gtt

: (18)

It is easily seen that when gxx, gtt, and gtx are all positive,
the slopes are of opposite sign, and are connected to the
Minkowski metric in the smooth limit gtx ! 0. Thus, with
gtt and gtx assumed positive, time flows in the usual
manner if gxx is positive. Furthermore, with gxx > 0, we
have signðgtx � ffiffiffiffiffiffiffiffiffiffi�g6

p Þ ¼ �, so that from Eq. (16), one

has _xþ > 0, and _x� < 0. Thus, a positive gxx (as in the
Lorentz metric) offers the standard situation with time
flowing forward and velocity _x having either sign.
On the other hand, if gxx is negative, then Eq. (18) shows

that one light-cone slope has changed sign. The small gxx
limit of the slopes

s�ðleading order in gxxÞ ¼
8<
:

gxx
2gtx

� 2gtx
gtt

(19)

reveals that it is the positive slope which has passed
through zero to become negative, signifying a world line
moving from the first quadrant, through the x-axis, into the
fourth quadrant where times flows backwards for increas-
ing x. With both slopes negative, one has that _x�ðgxx <
0Þ< 0. Thus, travel with increasing time is in the negative
x direction, while travel with decreasing time is in the
positive x direction. We summarize the causal properties
of the metric (13) in Table I.
The world line which we investigate is the following: the

signal travels first from the brane at ðu; vÞ ¼ ð0; 0Þ to the
hyperslice at ðu1; v1Þ, then from ðu1; v1Þ to the hyperslice
at ðu2; v2Þ, and finally back from ðu2; v2Þ to the point of
origin (0, 0) on the brane (see Fig. 1). While on the ðu1; v1Þ
hyperslice, the signal travels a distance �X in the positive
x-direction over a negative time �T1 ¼ �j�T1j. While on
the ðu2; v2Þ hyperslice, the signal travels back an equal
negative distance ��X in time �T2 to close the spatial
projection of the worldline on the brane. To close the
worldline on the brane, it is necessary that T2 þ T1 < 0.
(But not equal to zero, as we allow for small positive travel
times from the brane at ðu; vÞ ¼ ð0; 0Þ to ðu1; v1Þ, from
ðu1; v1Þ to ðu2; v2Þ, and back from ðu2; v2Þ to (0, 0).)
The transit time ð�T1Þ� for light to travel a positive

distance �X > 0 at constant ðu1; v1Þ, as viewed from the
brane, is

TABLE I. Solution types for metric (13), and their casual
properties. In particular, no solution exists for motion backwards
in time along the negative-x direction.

gxx > 0 gxx < 0

�T > 0 _xþ > 0 (�x > 0)
_x� < 0 (�x < 0) _x� < 0 (�x < 0)

�T < 0 _xþ < 0 (�x > 0)
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ð�T1Þ� ¼
Z �T1

0
dt ¼

Z �X

0
dx

gxxðu1; v1Þ
gtxðu1; v1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g6ðu1; v1Þ
p

¼ �X

�
gxxðu1; v1Þ

gtxðu1; v1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g6ðu1; v1Þ

p �
: (20)

The integrations on dt and dx are trivial because the metric
does not depend on the coordinate time t or brane variable
x. According to Eq. (14), the Lorentz signature is main-
tained as long as g2tx > gttð�gxxÞ. We have shown that the
world line for xþ lies below the x-axis when gxx < 0, and
so we require gxxðu1; v1Þ< 0 in order to gain negative time
�ðT1Þþ during travel on the ðu1; v1Þ hyperslice. From here
on, we will simply use the label �T1 for this negative
�ðT1Þþ solution on the ðu1; v1Þ hyperslice:

�T1 � �ðT1Þþ ¼ �X

�
gxxðu1; v1Þ

gtxðu1; v1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g6ðu1; v1Þ

p �
:

(21)

To close the worldline, the lightlike signal must return
from positive �X to the origin x ¼ 0 in a time �T2 less
than or equal to j�T1j. If this were to occur in a negative
time, then we would have gxx < 0 and _x > 0. Table I shows
that there is no solution of this type available. So the return
path must take place in positive time, with _x < 0.
Reference again to Table I reveals that the return solution
is _x�. In principle, the _x� solution on the ðu1; v1Þ hyper-
slice provides a return path. However, it is easy to show
that the return time�T2 for this solution exceeds j�T1j and
so fails to close the world line. Thus, we must go to a
second hyperslice at ðu2; v2Þ. We have

�T2 ¼
�Z 0

�X
dx ¼ ��X

��
gxxðu2; v2Þ

gtxðu2; v2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g6ðu2; v2Þ

p �
;

(22)

with gxxðu2; v2Þ of either sign.
The necessary condition relating the outgoing and return

paths of a CTC is that the sum �T2 þ�T1 be less than
zero. Equivalently, the CTC conditions are that

�gxxðu2; v2Þ
gtxðu2; v2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g6ðu2; v2Þ
p

þ gxxðu1; v1Þ
gtxðu1; v1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g6ðu1; v1Þ
p < 0; (23a)

and that

gxxðu1; v1Þ< 0; (23b)

(recall our sign convention (13) for gxx). Here �T1 < 0,
�T2 > 0 has been used. Note that (23a) is both necessary
and sufficient, while (23b) is implied by (23a), assuming
that the negative time�T1 is accumulated during the travel
on the ðu1; v1Þ hyperslice. Thus (23b) is a necessary but not
a sufficient condition. It is nevertheless a useful guide for
our analysis of candidates for CTC spacetimes. The two
transit times �T1 and �T2 can be made arbitrarily long,
and so the short-time paths from the brane to the ðu1; v1Þ
hyperslice, from ðu1; v1Þ to the ðu2; v2Þ hyperslice, and
from ðu2; v2Þ back to the brane, can be neglected; if we
can show the existence of metric elements on the ðu2; v2Þ
and ðu1; v1Þ hyperslices satisfying the constraints of
Eqs. (23), we will have demonstrated the existence of a
closed worldline for lightlike quanta. Since �T1 and �T2

can be made arbitrarily long, finite mass effects of order
1=�2 may be neglected, and so the same conditions enable
CTCs for extremely relativistic timelike quanta.
It is worth remarking that besides the necessity of the

inequality gxxðu1; v1Þ< 0 to generate a negative time path,
it is also necessary that gtxðu1; v1Þ � 0. Without this latter
condition, the Lorentz signature could not be maintained
when gxx < 0, and indeed, the square root in the second
term in (23a) would become imaginary.
Noting that �T1 is negative and �T2 positive, we have

�T1=�X ¼ �1=j _x1j and �T2=�X ¼ þ1=j _x2j. Thus, we
may also interpret Eqs. (23) to say that

1

j _x2j þ
�1

j _x1j< 0; i:e:; j _x2j> j _x1j: (24)

In words, the quantum must have a greater speed when
returning along��X than it had when accumulating nega-
tive time along positive �X, in order for the projection of
the worldline onto the time axis to close.
At this point we can see that the return path along��X,

like the outgoing path along �X, cannot occur on the
brane. The outgoing path in Eq. (20) generates a negative
time as perceived on the brane. This path terminates in an
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FIG. 1 (color online). Closed timelike curve in an
asymmetrically-warped universe: (i) A signal takes a spacelike
shortcut via a path of constant u > 0 with v ¼ 0 from point O to
point B. (ii) A Lorentz boost transforms B into B0 with negative
time coordinate. (iii) A return shortcut at constant v > 0 with
u ¼ 0 closes the timelike curve. The return path to the brane and
the boost between steps (i) and (iii) is pedagogic rather than
necessary, and an intermediate path in the bulk connecting the
u > 0 and v > 0 hyperslices is possible. (Note: The tipped light
cones in the figure are symbolic rather than quantitative.)
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event that is therefore superluminal, spacelike, outside the
light cone, with mean velocity _x1 ¼ �X=�T1 <�1. The
return path along��X, if on the brane, would have a mean
speed equal to _x2 ¼ 1=c ¼ 1, and the inequality in Eq. (24)
would be unfulfilled.

The statement in Eqn. (24) may worded another way,
that the slope of the world line below the x-axis, s1 ¼ �1

j _x1j ,
must exceed in magnitude the slope of the ‘‘return’’ path
above the x-axis, s2 ¼ 1

j _x2j .
Since Eqs. (23) are the necessary and sufficient condi-

tion for a CTC, any metric failing to satisfy the inequalities
in (23) has no CTC. On the other hand, we have seen that
the GTvS model contains a CTC in the 2þ 1 dimensional
space ðr; �; tÞ. Thus, we expect that CTCs will populate
some metrics in N þ 1 spaces, for any N > 2, as well.
Indeed, Eq. (23) summarizes the straightforward recipe
for constructing metrics with CTCs in spaces equal to or
larger than 2þ 1. One simply needs (i) a gxx that passes
through zero as a function of another spatial coordinate
‘‘u,’’ (ii) a nonzero gtx in the region of u where gxx < 0,
and (iii) a return path suitably arranged with nonzero
values gxx and gtx in another coordinate region of u. The
mathematical construction of such metrics is not in ques-
tion. What may be debated is the physics motivation for
such metrics. In the following sections we will develop a
metric with CTCs, motivated by a popular concept in
particle physics and gravitation, extra-dimensional
‘‘warped’’ spaces.

IV. CAUSALITY WITH ONE WARPED EXTRA
DIMENSION

We consider the five-dimensional asymmetrically-
warped line element with a single extra dimension which
we label as ‘‘u’’:

ds2 ¼ dt2 �X
i

�2ðuÞðdxiÞ2 � du2; (25)

i ¼ 1, 2, 3, with our brane located at the u ¼ 0 submani-
fold. With no loss of generality, we may take �ðuÞ to be
positive.

Variants of this warped spacetime (25) can be generated
by AdS-Schwarzschild or AdS-Reissner-Nordström black
holes in the bulk [27,28], and have been proposed as
solutions to the cosmological horizon problem [21], and
as a possible way aroundWeinberg’s no-go theorem for the
adjustment of the cosmological constant [28]. They also
have been discussed in the context of the gravitational
generation of cosmic acceleration [29], and infrared modi-
fication of gravity [30]. Very recently it has been shown
that sterile neutrinos propagating in such a spacetime can
account for the LSND neutrino oscillation evidence, with-
out the problems faced by conventional four-dimensional
four-neutrino scenarios [31].

The warped spacetime of (25) allows shortcut geodesics
connecting spacelike-separated events on the brane if

j�ðuÞj< j�ð0Þj for any u � 0. However, the metric (25)
exhibits a global time function t. Thus, taken by itself this
spacetime is causally stable and does not allow for CTCs.
The failure of (25) to support a CTC can also be seen in

our CTC Eqs. (23). Since gxx ¼ �2 in (25) cannot be
negative without violating the assumed Lorentzian signa-
ture, the CTC condition (23b) cannot be satisfied.
Given that the metric (25) does allow spacelike geo-

desics (as viewed from the brane), a boosted observer may
see a negative time for the outgoing path. It is of peda-
gogical value to investigate (25) in the coordinates of this
boosted observer. This effort will serve as a precursor for a
successful construction of a metric with CTCs in six di-
mensions in the next section.
The metric in (25) is in Gaussian-normal form with

respect to u (i.e., gtu ¼ gxiu ¼ 0), so the induced metric

on each hypersurface with constant u is simply given by
the extra-dimensional metric evaluated on the hypersur-
face. These induced metrics are purely Minkowskian,
albeit with a different constant limiting velocity cðuÞ ¼
��1ðuÞ on each hypersurface. This means that a Lorentz
symmetry can be defined for each hypersurface, but each
hypersurface’s Lorentz symmetry will not hold on any
other hypersurface, as we now discuss.
It is natural to choose cðu ¼ 0Þ ¼ 1 such that the in-

duced metric on the brane is given by ds2brane ¼ dt2 � dx2.
There then follows the usual Lorentz symmetry under the
familiar transformations on our brane:

x0 ¼ �ðx� 	tÞ; t0 ¼ �ðt� 	xÞ; u0 ¼ u ¼ 0;

(26)

or equivalently, the inverse transformation

x ¼ �ðx0 þ 	t0Þ; t ¼ �ðt0 þ 	x0Þ; (27)

with the usual definition � ¼ ð1� 	2Þ�1=2. However,
physics at u � 0 (in the ‘‘bulk’’) is not invariant under
this transformation.
The complete metric in the boosted system is given by

the tensor transformation law

g0�	 ¼ @x�

@x0�
@x�

@x0	
g��; (28)

where g�� ¼ diagð1;��2;�1Þ is the Gauss-normal metric

of Eq. (25). Using Eq. (27), the resulting boosted metric is

g0�� ¼
�2ð1� 	2�2Þ �2	ð1� �2Þ 0
�2	ð1� �2Þ ��2ð�2 � 	2Þ 0

0 0 �1

0
B@

1
CA: (29)

Notice that only for �2 ¼ 1 is the metric Lorentz invariant.
Such is the case on our brane, but generally not the case on
other hypersurfaces. On other hypersurfaces, Eq. (25) gives
the limiting velocity seen by local inhabitants in the rest
frame as ��1ðujÞ � ��1

j . However, this value is not in-

variant under Lorentz boosts defined on our brane.
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At first glance the metric (29) seems to belong to the to
the broad class of metrics (1), which includes the Gödel-
and Tipler-van-Stockum (GTvS) spacetimes. After all,
gtx � 0 where � � 1, i.e., off the brane. Moreover,
signðgxxÞ is adjustable. However, a significant difference
from the GTvS metric is that, in the case here of a boosted
asymmetrically-warped extra dimension, the variable x is
not periodic (unless our universe has the topology of a flat
torus). It is thus required to construct an explicit return path
to the spacetime point of origin. Wewill now show that it is
not possible to construct a return path that arrives suffi-
ciently quickly to close the curve.

The first way we show the absence of a CTC is to inject
the metric elements of (29) into the CTC conditions (23). A
boost does not alter the determinant of the metric, soffiffiffiffiffi
g5

p ¼ j�j. With gtx ¼ �2	ð1� �2Þ, and gxx ¼ �2ð�2 �
	2Þ, one finds that the CTC condition in Eq. (23a) is
satisfied only if j�1j<�j�2j, which is a contradiction.
So there is no CTC.

Secondly, we show explicitly that the physics failure
arises from unavailability of any return path to close the
curve. For our present 5D discussion, the path is that of
Fig. 1 when one ignores the sixth dimension coordinate v.
The signal leaves our brane at the spacetime point O ¼
ðt ¼ 0; x ¼ 0; u ¼ 0Þ and arrives at u ¼ u1 � 0, and then
propagates on the hypersurface at u1 for a travel time twith
the limiting velocity ð�ðu1ÞÞ�1 � ��1

1 . We will assume
that 0<�1 < 1, so that the travel speed in the bulk is
superluminal relative to travel speed on our metric. At time
t, the signal may reenter our brane. In the limit u1 � ��1

1 t,
which is always fulfilled for sufficiently large t, the reentry
point on our brane is B� � ðt; x ¼ ��1

1 t; u ¼ 0Þ. Since the
distance to the reentry point B� is spacelike (i.e. outside
the brane’s light cone), it may be transformed to negative
time by a boost on our brane. The boosted point B0� is
obtained by using the transformation (26). The point B0�
has coordinates

x0 ¼ �tð��1
1 � 	Þ; t0 ¼ �tð1� 	��1

1 Þ: (30)

It is clear that for

0<�1 <	< 1 ½equivalent to gxxðu1Þ< 0� (31)

an observer in the boosted frame on our brane sees the
signal arrive in time with t0 < 0, i.e., before it was emitted.
However, this result alone does not imply any conflict with
causality. In particular, it does not necessarily imply that
spacetime is blessed with CTCs. To close the timelike
curve, one has to show that the time t0 during which the
signal traveled backwards in time, is sufficiently large to
allow a return from the spacetime point B0� ¼ ðt0; ðx ¼
��1
1 tÞ0; 0Þ on our brane to the spacetime point of origin,

O ¼ O0 ¼ ð0; 0; 0Þ. The speed required to close the light-
like curve of the signal, as seen by the boosted observer on
the brane, is

c0req ¼ ðx ¼ ��1
1 tÞ0

jt0j ¼ 1� 	�1

	� �1

; (32)

where the latter expression results from inputting Eq. (26).
It is easy to show that the condition 0<�1 <	< 1
implies that c0req itself is superluminal. Thus there is no

return path on our brane which leads to a CTC. To generate
a CTC the signal has to traverse another path (say, at
constant u2) which has a limiting velocity satisfying
c0bulk � c0req in the v-frame.

Using the general expression for the metric in Eq. (29),
the null line element for this hypersurface is, with �2 �
�ðu2Þ,
0 ¼ ds02 ¼ �2fð1� 	2�2

2Þdt02 þ 2	ð1� �2
2Þdx0dt0

� ð�2
2 � 	2Þdx02g: (33)

There results a quadratic equation for c0bulk. From Table I

we see that the only possible solution is _x�, given by
Eq. (16) with v set to zero and �g6 replaced by g5 ¼
�2
2. Thus we have

c0bulk� � _x0� ¼
�
dx0

dt0

�
�
¼ �2	ð1� �2

2Þ � �2

�2ð	2 � �2
2Þ

¼ 1þ 	�2

	þ �2

: (34)

It is relatively easy to see that this result satisfies the
inequality chain jc0bulk�j< j1=	j< jc0reqj. (One way to

see this inequality chain is to recognize that the RHS of
(34) has the form of the velocity addition formula in special
relativity, where the velocity sum is bounded by unity
when the ‘‘velocities’’ 	 and �2 are themselves bounded
by unity.) Thus, the return path cannot be superluminal and
thus cannot close the timelike curve, and there is no CTC.
So we conclude that in an asymmetrically-warped space

with only one extra dimension (25), as well as its boosted
equivalent (29), no CTCs exist if space dimensions are
nonperiodic. Five-dimensional brane universes with one
asymmetrically-warped extra dimension are causally sta-
ble. (The exception is the topology of a flat torus, which
maps spacetime into the class of GTvS spacetimes of
Eq. (1).) We are thus led to consider next a spacetime
with two asymmetrically-warped extra dimensions. There
we will find that CTCs do exist. The lesson learned from
the attempt to formulate a 5D metric having CTCs will
provide intuitive input into the construction of the 6D
metric.

V. CTCS WITH TWOWARPED EXTRA
DIMENSIONS

We now proceed by constructing a 6D metric exhibiting
CTCs, which is a natural generalization of the metric (25).
Let ‘‘u’’ and ‘‘v’’ label the two extra space dimensions. We
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assume that these dimensions have warp factors �ðuÞ and

ðvÞ, respectively.

In our attempt to construct an asymmetrically-warped
metric exhibiting CTCs in 5D, we found that the metric in
Eq. (25) allowed a quantum to travel superluminally into
the bulk. Being outside our light cone, the worldline of this
quantum could be boosted to negative time by a Lorentz
transformation on the brane. However, we showed that a
superluminal return path to the brane was required to close
the worldline and there was no such path. This failure can
be traced to the fact that the Lorentz transformation was
just a coordinate change, and so provided a change of view,
but no new physics. What is needed is a nonzero gtx that
cannot be removed by a linear transformation among brane
coordinates. Introducing the 6th dimension provides a
solution, first because it allows a superluminal return
path along the additional 6th dimension, and second be-
cause it allows gtxðu; vÞ to be ‘‘hard-wired’’ into the metric
so that it is not removable by a linear coordinate trans-
formation on the brane. (Recall that we learned in Sec. III,
via Eqs. (23) and the discussion just below these, that a
nonzero gtxðu; vÞ is a necessary ingredient for the existence
of CTCs.)

A natural 6D generalization of (25) can be realized by
assuming that the metric for the u- and v dimensions
exhibits the simple form in (25), but in different Lorentz
frames. This assumption seems natural for any spacetime
with two or more extra dimensions, since there is no
preferred Lorentz frame for the bulk, from the viewpoint
of the brane. In analogy to (25) it could be realized by
assuming two AdS-Schwarzschild or AdS-Reissner-
Nordström black holes being located in the u and v di-
mension and moving with a relative velocity. This choice
also ensures superluminal travel to as well as from the
brane, as well as a Minkowskian metric on the brane. To
construct this six-dimensional metric explicitly, let us de-
note by 	uv the ‘‘relative velocity’’ between the two
Lorentz frames in which the u and v dimensions assume
the simple form (25), respectively. We incorporate the
‘‘u-frame’’ slice at v ¼ 0 by retaining the warp factor
�ðuÞ on the brane coordinate dx, and we incorporate the
‘‘v-frame’’ slice at u ¼ 0 by writing the boosted metric in
Eq. (33) with the warp �ðuÞ now replaced by 
ðvÞ. The
resulting full six-dimensional metric then has the form

ds2 ¼ �2
uvf½1� 	2

uv

2ðvÞ�dt2

þ 2	uv�ðuÞ½1� 
2ðvÞ�dxdt
� �2ðuÞ½
2ðvÞ � 	2

uv�dx2g � du2 � dv2: (35)

One easily finds that� det� �g6 ¼ �2ðuÞ
2ðvÞ. That this
determinant is independent of 	uv is consistent with the
interpretation of 	uv as a kind of boost parameter. Of
special importance for the existence of the CTC is the
off-diagonal metric element gtx, which is nonzero for

ðvÞ � 1 (i.e., off the brane), and the metric element gxx

which is of indeterminate sign. As a consistency check on
the metric, we note that for u ¼ v ¼ 0, i.e., on the brane,
Eq. (35) reduces to four-dimensional Minkowski
spacetime.
We now present two arguments, parallel to those given

in Sec. IV for the 5D case, but leading to the opposite
conclusion, namely, that the metric (35) does support
CTCs.
The first argument establishing the existence of a CTC is

to show that the metric elements in (35) can be chosen to
satisfy the two CTC conditions of Eq. (23). Inputting the
metric elements into (23), one finds, after some algebra,
that the conditions reduce to

�2ð	uv þ 
2Þ
1þ 	uv
2

<
�1ð	uv � 
1Þ
1� 	uv
1

; (36)

and


1 <	uv: (37)

The new feature here, as opposed to the 5D metric, is the
freedom to choose �1 and �2 to ensure that the CTC
conditions are satisfied. We see that any pair ð�1; �2Þ
will do, as long as they satisfy

�2

�1
<

�
	uv � 
1

1� 	uv
1

��
1þ 	uv
2

	uv þ 
2

�
: (38)

This inequality can always be satisfied by an arbitrarily
small choice for �2.
One simple and successful choice is to set �1 ¼ 1 and


2 ¼ 1, i.e., to take the outgoing path on the u ¼ 0 hyper-
slice and the return path on the v ¼ 0 hyperslice (and the
steps (i) and (iii) in Fig. 1 are interchanged). With these
choices, (38) reduces to �2 < ð	� 
1Þ=ð1� 	
1Þ. This
is guaranteed to be satisfiable by (37). The choices u1 ¼ 0
and v2 ¼ 0 will lead to an explicit CTC. With u ¼ 0,
Eq. (35) reduces to (33) with 
2ðvÞ replacing �2ðuÞ:
ds2ju¼0 ¼ �2

uvf½1�	2
uv


2ðvÞ�dt2 þ 2	uv½1�
2ðvÞ�dxdt
�½
2ðvÞ�	2

uv�dx2g� dv2: (39)

Thus we see explicitly that choosing 
1 <	uv on the u ¼
0 hyperslice sets gxx < 0, so that our outgoing path neces-
sarily accumulates negative time (original frame in
Table II). On the return path, we set v ¼ 0. Then the 6D
metric of Eq. (35) reduces to (25), repeated here:

ds2jv¼0 ¼ dt2 � �2ðuÞdx2 � du2; (40)

It is clear that this return path can be made arbitrarily brief
by choosing �2 arbitrarily small. The CTC is revealed.
We note that when the metric (35) is transformed into

the v-frame by a Lorentz transformation on the brane with
	 ¼ �	uv, then the metric along the v-dimension as-
sumes the simple form of (40) (with obvious replacements)
and the metric along the u-dimension becomes nondiago-
nal (v-frame in Table II).
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To summarize this section, we have identified a CTC
beginning and ending on our brane and superluminally
transiting two paths parallel to our brane but in the
asymmetrically-warped u- and v-dimensions. The physics
that enables the CTC is the breaking of global Lorentz
invariance away from the brane.

VI. STRESS-ENERGY TENSOR AND ENERGY
CONDITIONS

As a check on the consistency of the picture, we should
diagnose the stress-energy tensor which sources the extra-
dimensional metric, for any pathologies. In particular, we
will be interested in the resulting matter distributions on
and off the brane. Thus, our task is to calculate the Einstein
tensor

G�� ¼ R�� � 1

2
g��R; (41)

from the spacetime metric of Eq. (35), and then to obtain
the stress-energy tensor T�� via the Einstein equation

T�� ¼ 1

8�GN

G��: (42)

Consequently, we proceed to evaluate T�� ¼
ð8�GNÞ�1G�� with no preconceptions as to its form. We

note that in general, T�� contains contributions from mat-

ter, fields, and cosmological constant on and off the brane,
and from brane tension on the brane.

Instead of complicated analytic expressions for T��, we

present some visual output [32] of the Einstein tensor
versus u, on the v ¼ 0 slice. We do so for warp factors
�ðuÞ and 
ðvÞ chosen to satisfy energy conditions dis-
cussed below. An analogous figure is the Einstein tensor
versus v, on the u ¼ 0 slice. However, this Einstein tensor
has off-diagonal elements, which increases the number of
figures. Furthermore, it offers us no additional enlighten-
ment, so we do not show this Einstein tensor.

There is considerable theoretical prejudice that stable
Einstein tensors should satisfy certain ‘‘energy conditions’’
relating energy density � and directional pressures pj. The
null, weak, strong and dominant energy conditions state
that

NEC : �þ pj � 0; 8 j: (43)

WEC : � � 0; and �þ pj � 0; 8 j: (44)

SEC : �þ pj � 0; 8 j; and �þX
j

pj � 0: (45)

DEC : � � 0; and pj 2 ½�;���; 8 j: (46)

For the purpose of definiteness in the identification of �
and pj, we assume the anisotropic fluid relations

T�� ¼ �pg�� þ ð�þ pÞU�U�; (47)

with u� ¼ ð1; ~0Þ being the net four velocity of the fluid.
The usual approach is to work with one raised and one
lowered index to express the stress-energy in terms of
metric g�� rather than inverse metric g��. One has

T�
� ¼ �p��

� þ ð�þ pÞg��U�U�: (48)

Then, with a diagonal metric with gtt ¼ 1 (Gaussian-
normal coordinates), one obtains for the nonzero elements
of T�

�,

� ¼ T0
0 and pj ¼ �Tj

j: (49)

These are the relations appropriate for the v ¼ 0 slice of
our metric, since one sees in Eq. (40) that the v ¼ 0metric
is manifestly diagonal with gtt ¼ 1.
It is not difficult to find a functional form for the warp

factors � and 
 which conserves some of the energy
conditions, at least on the brane. One such example is
given by �ðuÞ ¼ 1=ðu2 þ c2Þ and 
ðvÞ ¼ 1=ðv4 þ c2Þ.
For this case the elements of the Einstein tensor on the v ¼
0 slice are shown as a function of u in Fig. 2. The null, weak
and dominant energy conditions are conserved on the
brane, while the strong energy condition is violated both
on the brane and in the bulk.
The negative energy density that afflicts many wormhole

and CTC solutions in four dimensions is avoided on the
brane in the example for an extra-dimensional CTC pre-
sented here. However, � becomes negative as one moves
away from the brane into the bulk, so that the WEC and
DEC are violated off the brane, while the NEC remains
satisfied. We have successfully constructed a metric exhib-
iting CTCs in an extra-dimensional spacetime by ‘‘mov-
ing’’ the negative energy density from the brane to the
bulk. One might even speculate that the negative energy
density in the bulk is related to the compactification of the
extra dimensions, or possibly to the repulsion of standard
matter from the bulk.

TABLE II. Running of time in the original frame, where the
metric assumes the form (35), and in the frame where the metric
is boosted into the v-frame with 	 ¼ �	uv.

original u-frame (un)-boosted v-frame

u � 0 forward in time backwards in time

v � 0 backwards in time forward in time

CTC

brane lightcone

bra
ne l

ig
htc

one O
B

u>0

v>0

brane lightcone

bra
ne l

ig
htc

one O

B’
v>0

u>0
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One also sees in Fig. 2 that Gy
y ¼ Gz

z ¼ Gv
v are equal

to G0
0 on the v ¼ 0 slice. This equality amounts to a dark

energy or cosmological constant equation of state for the
y-, t-, and v-directed pressures, namely,wj � pj=� ¼ �1.
There may be some intriguing physics underlying this
result.

VII. DISCUSSION AND CONCLUSION

We have derived the general conditions on metric ele-
ments which allow spacetimes to contain closed timelike
curves (CTCs). Then, we have demonstrated the existence
of CTCs for a rather generic spacetime with two
asymmetrically-warped extra dimensions. In addition, we
have found particular warp factors for the metric which
yield positive energy density on the brane. However, nega-
tive energy density is not completely banished, as it does
appear in the bulk. Since one cannot observe the bulk
energy density, we may at least say that negative energy
density is banished from sight. It is also possible that an
anthropic argument applies here: Life may evolve only
where energy density is positive. Then lifeless bulk regions
of negative energy density can communicate their exis-
tence to living beings only via geometry, perhaps mediated
by the exchange of gravitons or appropriately named,
sterile neutrinos.

It should be stressed that realistic graviton or bulk
fermion signals, rather than following restricted bulk tra-
jectories with constant u or v as constructed here, will

instead propagate on the path of least action to minimize
the travel time. Since the effectively superluminal veloc-
ities in our constructed example produced a CTC, we
expect that a truly geodesic signal will also generate a
CTC. In this case the causal structure of extra dimensions
may be studied with sterile neutrino beams by utilizing
resonant conversion of active neutrinos via matter effects
into sterile neutrinos and back. We note that the model
presented herein is complete in that the geodesic equations
of motion are derivable from the metric in Eq. (35). We
have not investigated the geodesic equations in this work.
A thorough discussion of whether CTCs in the observ-

able universe are hidden behind chronology horizons
where the stress-energy tensor diverges (one may consult
the discussion in [33,34]), is beyond the scope of this work.
We have confined ourselves to the pragmatic attitude that
even if chronology were protected by some mechanism
operative near the chronology horizon, it remains a highly
rewarding effort to study the physics near this horizon. The
CTC we have constructed is particularly interesting in this
respect, since it could be available to gauge-singlet parti-
cles which have previously been hypothesized to propagate
in the extra-dimensional bulk.2
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