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Modifications to the classic time-delay effect and Doppler shift in general relativity (GR) are studied in

the context of the Lorentz-violating standard-model extension (SME). We derive the leading Lorentz-

violating corrections to the time-delay and Doppler shift signals, for a light ray passing near a massive

body. It is demonstrated that anisotropic coefficients for Lorentz violation control a time-dependent

behavior of these signals that is qualitatively different from the conventional case in GR. Estimates of

sensitivities to gravity-sector coefficients in the SME are given for current and future experiments,

including the recent Cassini solar conjunction experiment.
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I. INTRODUCTION

At the present time, general relativity (GR) remains the
best known fundamental theory of gravity, describing all
known classical gravitational phenomena. Experiments
testing this theory spanning 90 years have failed to detect
any convincing deviations. Despite its continuing success,
there remains widespread interest in pushing the limits of
experimental tests of GR in order to find possible devia-
tions. This is primarily motivated by the consensus that
there exists a unified fundamental theory that successfully
meshes GR with the standard model of particle physics.
Such a theory may produce small deviations from GR that
could manifest themselves in sensitive experiments.

One promising avenue of exploration involves searching
for violations of the principle of local Lorentz symmetry
[1,2], a foundation of GR. Candidate theories exist in
which this symmetry principle may be broken, at least at
observable energy scales. These scenarios include strings
[3,4], noncommutative field theories [5], spacetime-
varying fields [6], quantum gravity [7], supersymmetric
theories [8], random-dynamics models [9], multiverses
[10], and brane-world scenarios [11].

A general theoretical framework for testing Lorentz
symmetry in both gravitational and nongravitational sce-
narios has been developed and is called the standard-model
extension (SME) [12,13]. The SME is an effective field
theory that incorporates the known physics of the standard
model and GR, while also including all possible Lorentz-
violating terms [14]. The Lorentz-violating terms are con-
structed from standard model and gravitational fields and
coefficients for Lorentz violation, which control the degree
of the symmetry breaking.

One useful subset of the SME, called the minimal SME,
contains the Lorentz-violating terms that dominate at low
energies. The matter sector of the minimal SME has been
explored in experimental studies involving light [15–19],
electrons [20], protons and neutrons [21], mesons [22],

muons [23], neutrinos [24], and the Higgs [25]. Some
nonminimal SME terms, including Lorentz-violating op-
erators of higher mass dimension, have already been ex-
plored in the photon sector in Refs. [26]. In addition,
because of the similarities of spacetime torsion to certain
types of Lorentz violation, experimental searches for SME
coefficients have been used to place new torsion con-
straints [27]. A summary of the current experimental con-
straints on SME coefficients can be found in Ref. [28].
Studies of the curved spacetime generalization of

the SME have recently begun. Within the setting of a
general Riemann-Cartan spacetime, the dominant SME
Lagrangian terms in the matter and gravitational sector
have been established [13]. The matter sector of the SME
couples to gravity via the spin connection and vierbein. In
this scenario, some novel effects can occur that are con-
trolled by certain matter sector coefficients which are
unobservable in the flat spacetime limit [29]. In the pure-
gravity sector, key experimental signals in the Riemann
spacetime limit have been established [30]. Experimental
work constraining SME coefficients in the gravity sector
has already begun with atom-interferometric gravimeters
[31], lunar laser ranging [32], Gravity Probe B [33], and
short-range gravity tests [34].
Of the classic tests of GR, the so-called fourth test,

involving the measurement of the Shapiro time delay of
light passing near a massive body [35], has recently gained
attention. Improvements in two-way radio communication
with deep-space satellites, such as the Cassini probe, make
possible a reduction in solar corona noise, yielding signifi-
cant improvements in the accuracy of such tests [36].
Further improvement in both time-delay and light-bending
tests is also expected in the future [37–43]. It is therefore
relevant to analyze in some detail the signals for Lorentz
violation in such experiments. Some preliminary results
describing the leading Lorentz-violating corrections to the
Shapiro time-delay effect were obtained in Ref. [30] and
were applied to the case of binary-pulsar timing experi-
ments. We seek here to elaborate on these results, deter-
mine in addition the associated gravitational frequency*baileyq@erau.edu
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shift signal, and study potential signals in Solar System
experiments.

This paper is organized as follows. In Sec. II, we discuss
the theoretical foundations of this work. Section II A re-
views key results in the gravitational sector of the SME,
including the post-Newtonian metric. We discuss light
propagation in a background spacetime in Sec. II B, and
apply the results to obtain the time-delay formula in
Sec. II C and the frequency shift formula in Sec. II D. In
Sec. III, we examine the results in the Solar System sce-
nario. Some preliminary discussion of the experimental
scenario in Sec. III A is followed in Sec. III B by some
exploration of the features of the Lorentz-violating signals
in time-delay tests and Doppler tests. We discuss how
analysis might proceed and estimate sensitivities for exist-
ing and future experiments in Sec. III C. The main results
of this work are summarized in Sec. IV. Throughout this
work we adopt standard notation and conventions for the
SME, as contained in Refs. [12,13,30]. In particular, we
work in natural units where @ ¼ c ¼ 1 and with the metric
signature �þþþ .

II. THEORY

A. Basics

The SME with gravitational and nongravitational cou-
plings was presented in Ref. [13]. The general scenario is a
Riemann-Cartan spacetime and includes couplings to cur-
vature and torsion degrees of freedom. We focus here on
the pure-gravity sector in the Riemann spacetime limit,
within the minimal SME case. The relevant action for this
sector of the SME is written as

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p ½ð1� uÞRþ s��RT

��

þ t����C����� þ S0: (1)

In this expression, g is the determinant of the spacetime
metric g��, R is the Ricci scalar, RT

�� is the trace-free Ricci

tensor, C���� is the Weyl conformal tensor, and G is

Newton’s gravitational constant. The 20 coefficients for
Lorentz violation u, s��, and t���� control the leading
Lorentz-violating gravitational couplings. The additional
piece of the action denoted S0 contains the matter sector
and possible dynamical terms governing the 20
coefficients.

In the SME formalism, the action maintains general
coordinate invariance, or observer diffeomorphism sym-
metry, as well as observer local Lorentz symmetry.
However, because of the transformation properties of the
coefficients for the Lorentz violation, the SME action
breaks both particle local Lorentz symmetry and particle
diffeomorphism symmetry [13,44]. In the present context
of the action in Eq. (1), the degree to which the particle
symmetries are broken is controlled by the coefficients u,
s��, and t����.

It has been demonstrated that explicit breaking of local
Lorentz and diffeomorphism symmetry generally conflicts
with the Bianchi identities of Riemann geometry [13]. In
the action (1) above, explicit symmetry breaking would
correspond to specifying a priori the functional forms of
the coefficients u, s��, and t����. If the Lorentz-symmetry
breaking is dynamical, however, the conflict with Riemann
geometry is avoided [13]. In the latter scenario the coef-
ficients for Lorentz violation are dynamical fields and
satisfy their own equations of motion. This ensures that
the Bianchi identities hold.
We consider here the case of spontaneous Lorentz vio-

lation. The dynamics governing the coefficients appearing
in Eq. (1) are contained in the S0 term. Through a dynami-
cal process, the coefficient fields acquire vacuum expecta-
tion values that are denoted as �u, �s��, and �t����. For
example, this may occur through the introduction of po-
tential terms in S0 for u, s��, and t����, whose minima are
nonzero [3,4,13,44,45]. This scenario has been treated for
the action in Eq. (1) in the linearized gravity limit, along
with a broad study of signals for Lorentz violation in
gravitational experiments, in Ref. [30]. In particular, the
post-Newtonian metric was obtained, which comprises the
starting point of this work. Note that models of sponta-
neous Lorentz-symmetry breaking, capable of producing
the effective coefficients for Lorentz violation in (1), exist
in the literature. These include scalar [46], vector
[4,13,44,45,47,48] and two-tensor models [49].
To study the propagation of light signals in a weak-field

gravitational system, such as the Solar System, the domi-
nant Oð2Þ contributions to the post-Newtonian metric are
needed [50]. The relevant terms in the metric for the pure-
gravity sector of the minimal SME are controlled by the
coefficients �s��. They can be written in component form,
in an asymptotically inertial post-Newtonian coordinate
system [51], as

g00 ¼ �1þ ð2þ 3�s00ÞUþ �sjkUjk þOð3Þ;
g0j ¼ ða1 � 2Þ�s0jU� a1 �s

0kUjk þOð3Þ;
gjk ¼ �jk þ ½2þ ð1� 2a2Þ�s00��jkUþ 2ða2 � 1Þ �sjkU

þ ½ �slm�jk � a2 �s
jl�km � a2 �s

kl�jm

þ 2a2 �s
00�jl�km�Ulm: (2)

In the limit of vanishing �s�� coefficients, the post-
Newtonian metric of GR is recovered. The potentials ap-
pearing in this metric are given for an arbitrary mass
density � by

U ¼ G
Z �ð ~x0; tÞ

j ~x� ~x0j d
3x0;

Ujk ¼ G
Z �ð ~x0; tÞðx� x0Þjðx� x0Þk

j ~x� ~x0j3 d3x0:

(3)

In Eqs. (2), some coordinate gauge freedom remains in the
two quantities a1 and a2. For example, the standard har-
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monic gauge can be obtained by setting a1 ¼ a2 ¼ 1. We
leave these quantities unspecified to explicitly display the
gauge-dependent nature of some of the results we derive in
this work. As discussed in detail elsewhere [30], the rela-
tionship between this metric and the standard parametrized
post-Newtonian (PPN) metric [52] is one of partial overlap
in a special isotropic limit of the SME.

We will consider in this work the post-Newtonian metric
that is produced by a massive body at rest at the origin of
the chosen coordinate system. The dominant contributions
to the potentials appearing in (2) are from the monopole
terms. They depend on the coordinate position of the test
body relative to the origin rj. Thus we use

U ¼ GM

r
; Ujk ¼ GMrjrk

r3
; (4)

whereM is the suitably defined mass of the central body. In
(4), we have neglected higher multipoles, which can play a
role in systematics [43,53], and would be needed for a full
treatment of the general relativistic time-delay and Doppler
shift signals. For the present purposes, however, we need
only the dominant contributions to these signals that are
controlled by the �s�� coefficients.

If the mass of the central body is distributed significantly
outwards from its center, then a substantial spherical mo-
ment of inertia can arise, as happens with the Earth. In this
case, for a light signal grazing the surface of the central
body, terms in the metric proportional to the moment of
inertia I of the body, as well those that might be produced
from a quadrupole moment, can give a significant contri-
bution to resulting signals controlled by the coefficients
�s�� [30]. For simplicity in this work, we neglect such cases
and discard the metric terms dependent on I. This is not
expected to produce a severe problem in typical Solar
System experiments since it is known, in terms of the
Sun’s mass M and radius R�, that I� � 0:059MR2� [54].

B. Light propagation

To find both the time-delay signal and the Doppler shift
signal we employ standard methods and adopt the geomet-
ric optics limit of electrodynamics in curved spacetime
[55,56]. We take the wave vector of a light ray, tangent
to the light path x�ð�Þ, to be

p� ¼ dx�

d�
; (5)

where � is an affine parameter. Since the light ray is a null
geodesic, it obeys the geodesic equation and the null vector
condition given by

dp�

d�
¼ ���

�	p
�p	; p�p�g�� ¼ 0: (6)

Note that under these assumptions we are neglecting
Lorentz violation in the photon sector of the SME, which

in any case is tightly constrained compared to the gravita-
tional sector [15–19].
We first consider a one-way light signal sent from an

event E to an event P, that passes a central body. We will
need to find the deviation of the light ray path in curved
spacetime from the straight line path in Minkowski space-
time between the two events. The spatial endpoints of the
path will be fixed at the two events E andP, which amounts
to solving (6) as a boundary-value problem rather than an
initial-value problem.
To find the corrections due to curved spacetimewe adopt

a perturbative method using the linearized expansion for
the metric and an expansion for the wave vector

g�� ¼ 
�� þ h��; p� ¼ �p� þ �p�: (7)

Here h�� are the metric fluctuations, representing the

deviation of g�� from the flat spacetime metric 
��. The

first term in the second equation is the zeroth-order wave
vector that is constant and satisfies the condition

�� �p

� �p� ¼ 0. The second term �p� is the correction to

the wave vector due to curved spacetime. Applying the null
condition for the full wave vector p� to leading order in the
metric perturbation h�� yields a constraint on �p�:

2 �p��p�
�� � �h�� �p
� �p�: (8)

We shall denote the coordinates of the endpoint events E

and P as ðte; rjeÞ and ðtp; rjpÞ, respectively. Generally in

what follows, quantities referred to each of the events are
denoted with subscripts e and p. The zeroth-order spatial
trajectory for the light ray will be a straight line in the

direction ~R ¼ ~rp � ~re. This implies that the zeroth-order

wave vector, tangent to this straight line, has components

�p0 ¼ 1 and �pj ¼ R̂j, where R̂ ¼ ~R=R and R ¼ j ~Rj. The
zeroth-order spatial trajectory can be written as

xj0ð�Þ ¼ R̂j�þ bj; (9)

where bj is the impact parameter vector. It can be written
as

bj ¼ rjp � R̂j ~rp � R̂: (10)

Furthermore, to be consistent with the boundary condi-

tions, the parameter � is taken to vary from�le ¼ ~re � R̂ to

lp ¼ ~rp � R̂, from which it follows that le þ lp ¼ R. The

various quantities that we use to describe the zeroth-order
trajectory of a light ray passing a central body are depicted
in Fig. 1.
The parametrization and definitions above have an im-

mediate consequence on �pj. Integration of the spatial
components of the definition (5) over the light path, fol-
lowed by use of the second equation in (7) yieldsZ lp

�le

�pjd� ¼ 0: (11)

This result is just a reflection of the fact that the spatial
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endpoints of the trajectory are fixed. Equation (11) will be
useful in deriving the light travel time formula and the
Doppler shift formula, as we show below.

The corresponding integral involving the time compo-
nent �p0 does not vanish, however, on account of its being
fixed by Eq. (8). In fact, it can be used to derive the light
travel time. Integrating the time component of the defini-
tion (5) from E to P, and making use of (8) and (11), we
obtain

tp � te ¼ Rþ 1

2

Z lp

�le

h�� �p
� �p�d�: (12)

This equation forms the starting point for the derivation of
the time-delay formula in Sec. II C.

We now consider the shift in the frequency of light
measured by two observers at the two events E and P.
The ratio of the frequencies � measured at the two events
can be obtained from the standard formula

�P

�E
¼ ðU�

pp�ÞP
ðU�

e p�ÞE ; (13)

where U�
p and U�

e are the four velocities of two distinct
observers present at events P and E, respectively. Note that
the quantities in the numerator and denominator are to be
evaluated at the two events P and E, as indicated.

To obtain an explicit expression for the frequency shift
for the one-way trip past a massive body, it will be conve-
nient to work with the covariant components of the wave
vector p� ¼ g��p

�. Expanding Eq. (13) into space and

time components yields

�P

�E
¼

�
dt

d�p

��
d�e
dt

��
p0 þ wjpj

p0 þ vjpj

�
; (14)

where vj and wj are the coordinate velocities of the two
observers at events E and P, and �e and �p are their proper

times, respectively.
One convenient consequence of using the covariant

wave vector is that, for a spacetime metric with no explicit

time dependence, the component p0 will be constant along
the path of light x�ð�Þ. Furthermore, this condition will be
approximately true for the post-Newtonian metric (2) from
a massive body approximately at rest at the origin of the
chosen post-Newtonian coordinate system. Therefore we
take

dp0

d�
� 0: (15)

It will be important, however, to determine what the con-
stant p0 is, in order to obtain the correct frequency shift
result.
To determine the covariant components p0 and pj of

the wave vector in Eq. (14) we first expand in the manner of
(7):

p� ¼ �p� þ �p�; (16)

where �p� ¼ 
�� �p
�. Using the null constraint (6), Eq. (8),

and the properties of �p�, we can establish that

�p0 ¼ �R̂j�pj þ h0� �p� � 1
2h�� �p

� �p�;

�pj ¼ �pj þ hj� �p�:
(17)

If we integrate the constant p0 ¼ �1þ �p0 over the
light path, use the first equation in (17), and Eq. (11), we
can establish that

�p0 ¼ 1

R

Z lp

�le

�
h0� �p� � 1

2
h�� �p

� �p�

�
d�: (18)

Furthermore, if we insert the expansion (16) into the
geodesic equation (6), and integrate over the path we find

�pjðPÞ � �pjðEÞ ¼ 1

2

Z lp

�le

@jh�� �p
� �p�d�: (19)

To find the value of �pj at the endpoints, which is

needed to evaluate the frequency shift (14), we start with
the expression (11). A suitable integration by parts, fol-
lowed by the use of (19), yields the values of �pj at the two

events P and E in terms of integrals of metric components:

�pjðPÞ ¼ 1

2R

Z lp

�le

½ð�þ leÞ@jh�� �p
� �p� þ 2hj� �p�Þ�d�;

�pjðEÞ ¼ 1

2R

Z lp

�le

½ð�� lpÞ@jh�� �p
� �p� þ 2hj� �p�Þ�d�:

(20)

The expressions (18) and (20) form the starting point of the
derivation of the Doppler shift in Sec. II D. Note that,
although we will focus in the next sections on the metric
from the gravity sector of the minimal SME, the results
(12), (14), (18), and (20) could be applied to alternative
theories of gravity in the linearized limit, with an approxi-
mately time-independent metric. In particular, though it
lies beyond the scope of the present work, it would be of
interest to investigate effects outside of the gravity sector

FIG. 1. Diagram illustrating the meaning of the position vec-

tors ~rp, ~re, ~R, and the impact parameter ~b, for the zeroth-order

light trajectory passing a massive body from events E to P.
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of the minimal SME, such as matter-gravity couplings
[29]. Finally, we note in passing that our results in
Eqs. (20) are consistent with Ref. [56].

C. Time-delay formula

To establish the one-way light travel time, which con-
tains a time-delay term due to curved spacetime, we must
evaluate the integral in Eq. (12). The projection of the
metric along �p� that appears in the integrand can be
written as

h�� �p
� �p� ¼ �Uþ�jkUjk: (21)

The quantities � and �jk are given by

� ¼ 4þ �s00ð4� 2a2Þ þ ð2a1 � 4Þ�s0jR̂j

þ 2ða2 � 1Þ�sjkR̂jR̂k;

�jk ¼ 2�sjk � a1 �s
0jR̂k � a1 �s

0kR̂j � a2 �s
jlR̂lR̂k � a2 �s

klR̂lR̂j

þ 2a2R̂
jR̂k �s00: (22)

With these definitions the light travel time takes the form

tp � te ¼ Rþ 1

2
�
Z lp

�le

Ud�þ 1

2
�jk

Z lp

�le

Ujkd�: (23)

Using the monopole expressions in Eq. (3), and evaluat-
ing the potentials with the zeroth-order spatial trajectory
(9), these integrals can be evaluated by standard methods.
The resulting expression for the one-way light travel time,
to post-Newtonian order Oð2Þ, is given by

tp � te ¼ Rþ 2GMð1þ �s00 � �s0jR̂jÞ ln
�
re þ rp þ R

re þ rp � R

�

þGM½�a2 �s
00 þ a1 �s

0jR̂j þ �sjkb̂jb̂k

þ ða2 � 1Þ �sjkR̂jR̂k�
�
le
re

þ lp
rp

�
;

þGM½a1 �s0jbj þ ða2 � 2Þ�sjkR̂jbk� ðre � rpÞ
rerp

þ . . . ; (24)

where the ellipses represent higher order post-Newtonian
corrections. Neglecting these term suffices to establish the
leading effects from Lorentz violation for experiments.
Note that this one-way result matches that obtained in
Ref. [30] in the appropriate limit. Also, in the isotropic
limit of the SME, and for the appropriate coordinate
choice, the result (24) matches the standard PPN result
[52,55].

In many practical cases, the light signal is reflected from
a planet or spacecraft. Using (24) we can establish the
round-trip light travel time. This involves adding the light
travel time for a signal transmitted by an observer at event
P that travels to the other observer arriving at an event
denoted E0. The light travel time for the return trip can be
obtained from (24) with the substitutions

~r e ! ~rp; ~rp ! ~r0e; (25)

where ~r0e is the position of event E0. Note that the quantities
~R and ~b will change for the return trip accordingly. We
assume that the observer at event E, later receiving the
returned signal at event E0, is traveling at small velocities
compared to 1. Thus it suffices to approximate the motion
during the light transit as rectilinear. The small velocities
are in any case implied by the post-Newtonian expansion
adopted here. If we account for this motion during the light
transit, but we neglect terms of order GMv, the order GM
portion of the light travel time is equal to its value for the
outgoing trip, except for sign changes in the �s0j terms.
Thus we obtain for the round-trip light travel time

�t� 2Rð1� R̂ � ~vÞ
1�v2

þ 4GMð1þ �s00Þ ln
�
re þ rp þR

re þ rp �R

�

þ 2GM½�a2 �s
00þ �sjkb̂jb̂k þða2 � 1Þ�sjkR̂jR̂k�

�
�
le
re
þ lp
rp

�
þ 2GMða2 � 2Þ�sjkR̂jbk

�
re� rp
rerp

�
: (26)

Note that the terms with the �s0j coefficients canceled when
adding the outgoing and return trip contributions. This is
due to their oddness under parity.
Neglecting terms of order GMv, the measured elapsed

proper time��e at the receiver is related to the above result
by the factor d�e=dt, which is to be evaluated along the
worldline of the receiver. In principle, this factor contains
contributions from the spacetime metric near the observer
present at event E and is related to the classic gravitational
redshift as discussed in the next subsection. For our analy-
sis in this work, we focus on effects from a single body
stemming from the OðGMÞ terms in the expression above,
though the results could be generalized to N bodies.
There are two key time scales which could be used to

distinguish the large special-relativistic effects contained
in the first term in (26) from the smaller terms of orderGM
[56]. The time scale over which significant changes occur
with the first term is essentially an orbital time scale �r= �v,
where �r and �v are typical orbital distances and velocities,
respectively, comparable to R and v defined in Sec. II B.
The conjunction time scale b= �v is approximately the time
scale over which the OðGMÞ terms in (26) vary signifi-
cantly. For typical experiments this is on the order of days.
The dominant contribution from the OðGMÞ terms

comes from the logarithmic term in (26). Note that the
only coefficient for Lorentz violation appearing in front of
the logarithmic term is the rotational scalar �s00, which
points to the possibility of it being measured at the same
level as the PPN parameter �. Anisotropic coefficients
control many of the remaining terms. As we show for
specific experiments in Sec. III, the typical size of the
remaining terms are somewhat suppressed relative to the
logarithmic term.
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It is important to note that, in principle, the special-
relativistic terms in (26) also receive corrections due to
the gravity-sector coefficients �s��. These corrections
would arise through modifications to the orbital dynamics
of the transmitting and reflecting bodies (e.g., Earth and
spacecraft or planet). For the purposes of detailed model-
ing, these effects could be included, for example, by mod-
eling the orbits as oscillating ellipses. Secular changes in
the orbital elements due to the coefficients �s�� could be
included using the results from Ref. [30]. In any case, such
orbital corrections are expected to be relevant over the
orbital time scale �r= �v.

D. Frequency shift

In GR, in addition to the bending of light and the time-
delay effect, the frequency of light also changes after
having passed near a massive body [57]. This effect,
closely related to the time-delay effect, is distinct from
the classic gravitational redshift and vanishes for stationary
observers. In this section, we evaluate the one-way fre-
quency shift, using the results of Sec. II B, and also deter-
mine the fractional frequency shift for a two-way reflected
signal.

We begin with Eq. (14), expanded to leading order in the
wave vector shift �p�:

�P

�E
¼ dt

d�p

d�e
dt

�
1� �p0 � wjR̂j � wj�pjðPÞ
1� �p0 � vjR̂j � vj�pjðEÞ

�
: (27)

The result is expanded to all orders in velocity for the
special-relativistic terms, but to Oð3Þ in the terms depend-
ing on the metric fluctuations h��. With some manipula-

tion we obtain

�P

�E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~v2

1� ~w2

s
1� wjR̂j

1� vjR̂j

�
1þ

�
�P

�E

�
g

�
; (28)

where the term arising from the effects of gravity via the
metric fluctuations is labeled g and is given by�

�P

�E

�
g
¼

�
�P

�E

�
RS

þ
�
�P

�E

�
D
: (29)

The term labeled RS on the right-hand side of (29) is the
gravitational redshift. This term arises from the spacetime
metric being evaluated at the endpoints of the light trajec-
tory, namely, events E and P. It is given by�

�P

�E

�
RS

¼
�
1þ 3

2
�s00

�
GM

re � rp
rerp

þ 1

2
�sjkGM

�
rjprkp

r3p
� rjerke

r3e

�
þ . . . ; (30)

where the ellipses represents higher post-Newtonian cor-
rections. Equation (30) includes leading Lorentz-violating
corrections to the standard gravitational redshift of GR,
which is recovered in the limit �s�� ¼ 0. The result (30)

would be of interest to investigate for gravitational redshift
experiments, such as those incorporating sensitive atomic
clocks on Earth or aboard orbiting satellites [52,58,59].
Our main focus in this work, however, will be on the time-
delay effect and its associated contribution to the frequency
shift derived below.
The term labeled D in Eq. (29) is the gravitational

frequency shift of light due to the wave vector corrections
�p�, which reads�
�P

�E

�
D
¼ �p0ðv� wÞjR̂j � wj�pjðPÞ þ vj�pjðEÞ

¼ 1

2R

Z lp

�le

ð½�ðv� wÞj � lew
j � lpv

jÞ�

� @jh�� �p
� �p� þ ðv� wÞj

� R̂jð2h0� �p� � h�� �p
� �p�Þ

þ ðv� wÞjhj� �p�Þd�: (31)

This term represents a gravitational correction to the usual
Doppler shift of special relativity. The integrals in (31) can
be evaluated by inserting the post-Newtonian metric (2)
and using the zeroth-order spatial trajectory of the light ray,
in a manner similar to Sec. II C. The result is significantly
more cumbersome than (24), and so we adopt an approxi-
mation that is suitable for capturing the dominant terms
that are proportional to the coefficients for Lorentz viola-
tion �s��. After evaluating the integrals in (31), the results
can be grouped according to powers of ðGM �v=bÞðb=�rÞn.
We will focus here on near-conjunction time scales where
the dominant terms in (31) are of orderGM �v=b and higher
order terms will be suppressed by powers of the small
factor b=�r.
Keeping only the order GM �v=b terms, we obtain for the

frequency shift contribution (31),�
�P

�E

�
D
� 4GM

b
½ð1þ �s00 � �s0jR̂j þ �sjkb̂jb̂kÞ _b� �sjkb̂j _bk�:

(32)

In this expression the dot denotes a time derivative with
respect to the post-Newtonian coordinate time t. Note that
the arbitrary quantities a1 and a2 keeping track of the
coordinate gauge freedom have vanished in this result,
indicating the coordinate invariance of (32). The result
(32) can also be verified by taking the coordinate time
derivative of (24) and using a known relationship between
the frequency shift and light travel time [57].
The result (32) can be contrasted with the contributions

to the frequency shift contained in the remaining terms in
Eq. (28) and also (30). In the same manner as the special-
relativistic terms in the light travel time expression (26),
the velocity contributions in (28) and the gravitational
terms in (30) will vary over the orbital time scale �r= �v in
typical experiments. In contrast, the signal in (32) will vary
most significantly when the light ray passes near the central
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body (b � �r), when the observers and the central body are
in conjunction.

We now calculate the fractional frequency shift of a light
signal reflected from the planet or spacecraft. Thus we seek

��

�
¼ �0 � �

�
; (33)

where � is the transmitted frequency and �0 is the returned
frequency. In a manner similar to what was done for the
round-trip light travel time in Sec. II C, we can obtain the
frequency shift for the return signal with suitable substitu-
tions in the one-way result (32). Adding the return signal to
the outgoing one, we find that the gravitational portion of
the leading fractional frequency shift from the round-trip
signal is given by�

��

�

�
g
¼ 8GM

b
½ð1þ �s00 þ �sjkb̂jb̂kÞ _b� �sjkb̂j _bk� þ . . . ;

(34)

where the ellipses include terms of order ðGM �v=bÞðb=�rÞ
and higher order post-Newtonian corrections. Note that the
�s0j terms have vanished due to their oddness under Parity,
just as they did for the time-delay formula. Also, the time
dependence of (34) is controlled by the behavior of the

impact parameter vector ~b and its time derivative ~_b.

III. EXPERIMENTS

In this section, the experimental implications of the
results derived in Secs. II C and IIDare examined in the
context of key Solar System experiments. We point out the
basic features of the Lorentz-violating signals and contrast
them with the GR case. Also, we describe how experiments
could be used to probe various combinations of coefficients
for Lorentz violation and estimate the level of sensitivity
for each test.

A. Preliminaries

We work in a post-Newtonian coordinate system that
asymptotically coincides with the Sun-centered celestial-
equatorial coordinate system adopted in most SME studies
[18]. Space and time coordinates in this system are denoted
with capital letters ðT; XJÞ [60]. This approximation to an
asymptotically inertial frame suffices for many SME ex-
perimental studies. Note that the Sun’s center is in orbit
around the barycenter of the Solar System with a mean
velocity about 1000 times smaller than the Earth’s orbital
velocity. Standard practice in Solar-System experiments is
to adopt the Barycentric Celestial Reference System. For
our purposes here in identifying the leading Lorentz-
violating effects, it suffices to proceed in the Sun-centered
frame and neglect the Sun’s motion. However, in establish-
ing beyond leading order corrections to the light travel time
and Doppler observables in GR, the Sun’s velocity can play
a role [61,62].

To study the basic features of our results we focus on the
solar conjunction time scale where the signals for Lorentz
violation are near their maximum. In this scenario, where
the light signal passes close to the Sun, we can assume
approximately rectilinear motion for the Earth observer
and the planet or spacecraft. The main changing variable
in this case is the impact parameter vector [56,63].
Assuming rectilinear motion, we expand the impact pa-

rameter vector around its minimum value ~b0 as

~b ¼ ~b0 þ _~b0T; (35)

where
_~b0 is the time derivative of the impact parameter

vector evaluated at the conjunction time T ¼ 0. Note that

we also have ~b0 � _~b0 ¼ 0.
In many cases of interest, the time derivative of the

impact parameter vector near the conjunction time can be
written approximately as

_~b 0 �
lp ~vþ le ~w

R
; (36)

where ~v is the Earth receiver’s velocity and ~w is the
velocity of the spacecraft or planet. All quantities on the
right-hand side of Eq. (36) can be determined from their
definitions in Sec. II B and are evaluated at T ¼ 0. Note
that if the planet or spacecraft is many times further from
the Sun than the Earth, so that R � le and lp 	 R, the

primary contribution to (36) is from the Earth’s velocity.
The approximations described above will serve our pur-

poses in exploring the features of the Lorentz-violating
time-delay and Doppler signals. However, as we discuss
below in Subsec. III C, the more accurate results obtained
in previous sections could be incorporated into a detailed
computer code for a more rigorous approach. Furthermore,
although we focus below on the case where the central
body is the Sun, many of our results can also be applied to
the case where the Earth or other bodies produce the
gravitational time delay and frequency shift.

B. Time-delay and doppler signals

Adopting the Solar System scenario described above
where the central massive body is the Sun, we can establish
the general behavior of the time-delay formula. For defi-
niteness, we adopt the post-Newtonian coordinate gauge of
Ref. [30], setting a1 ¼ a2 ¼ 1. Though this gauge differs
from the standard harmonic gauge at Oð3Þ, for the Oð2Þ
terms appearing in the time-delay expression it is equiva-
lent. Also, for times near conjunction, the gauge-dependent
terms in (26) will be either approximately constant or of
order GMb=�r or smaller, and hence negligible.
The dominant contributions to the two-way time delay

can be written as
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�Tg � 4GM

�
ð1þ �sTTÞ ln

�
re þ rp þ R

re þ rp � R

�
þ �sJKb̂Jb̂K

�
:

(37)

To illustrate the different functional dependencies of the
terms in Eq. (37) we make use of the approximate expres-
sion in (35). Up to constants, the expression for the time
delay becomes

�Tg � 4GM

�
ð1þ �sTTÞ ln

�
4rerp

b20 þ _b20T
2

�
þ �s1

b20
b20 þ _b20T

2

þ �s2
2b0 _b0T

b20 þ _b20T
2

�
; (38)

where b0 ¼ j ~b0j and _b0 ¼ j _~b0j. The two combinations of
coefficients occurring in Eq. (38) are given by

�s 1 ¼ �sJKðb̂J0b̂K0 � _̂b
J
0
_̂b
K
0 Þ; �s2 ¼ �sJKb̂J0 _̂b

K
0 ; (39)

where _̂b0 ¼ _~b0= _b0.
There are three functions that appear in expression (38).

The first term contains the standard logarithmic depen-
dence present in GR, which is scaled by the rotational
scalar combination of coefficients �sTT ¼ �sXX þ �sYY þ
�sZZ. The second and third terms are controlled by the
anisotropic combinations of coefficients �s1 and �s2. To
illustrate the typical behavior of the functions occurring in
(38), we plot them in Fig. 2 for the case of the Cassini
experiment which took place near the solar conjunction on
June 21, 2002. For this plot, we adopt the approximate

values b0 ¼ 1:6R�, _b0 ¼ 30 km=s, and GM=c2 ¼
1:48 km, where R� is the Sun’s radius.
The logarithmic dependence of the time-delay signal is

well known from GR [64]. The two dashed curves in Fig. 2
represent departures from this standard behavior. In fact,
part of the lv2 curve controlled by the combination of
coefficients �s2 produces an advancement of the light travel
time rather than a delay. This may also occur with the lv2
curve controlled by the distinct combination of coefficients
�s1, if the overall sign of this combination is negative. The
peak values of the lv1 and lv2 curves are about 20 �s in
this example. Note that although we are effectively setting
�s1 ¼ 1 and �s2 ¼ 1 for the purposes of plotting, no specific
prediction is made here. As explained in the next subsec-
tion, these combinations of coefficients are expected to be
much smaller than unity given current experimental
constraints.
It is also interesting to study the frequency shift that

corresponds to the time-delay signal. For two combinations
of coefficients for Lorentz violation in the gravitational
sector, this signal is enhanced over the time-delay signal.
We examine the signal to Oð3Þ in the post-Newtonian
expansion and to leading order in b=�r, assuming near-
conjunction times. From Eq. (34) the fractional frequency
shift, expressed in the Sun-centered frame, is given by

�
��

�

�
g
¼ 8GM

b
½ð1þ �sTT þ �sJKb̂Jb̂KÞ _b� �sJKb̂J _bK�:

(40)

To see some of the features of the Lorentz-violating
signals in (40), we use the approximate expression for
the impact parameter vector (35). The expression for the
gravitational fractional frequency shift becomes

�
��

�

�
g
� 8GM

�
ð1þ �sTTÞ

_b20T

b20 þ _b20T
2
þ �s1

_b20b
2
0T

ðb20 þ _b20T
2Þ2

þ �s2
b0 _b0ð _b20T2 � b20Þ
ðb20 þ _b20T

2Þ2
�
: (41)

Just as in the time-delay case, three functions appear. We
plot these functions in Fig. 3, again using values from the
Cassini experiment and setting �s1 ¼ 1 and �s2 ¼ 1. The odd
functional dependence of the signal controlled by the
combination 1þ �sTT is known [35,36,56]. The signal con-
trolled by �s1 resembles the GR case, though its peak size is
reduced. The even functional dependence of the �s2 signal is
qualitatively different from the GR case. Note also that the
maximum amplitude for this curve, which occurs at the
conjunction time, is about twice that of the peak value for
the GR curve. Also, as one can see qualitatively for each of
the curves in Figs. 2 and 3, the Doppler signal is the
negative of the time derivative of the time-delay signal
[57].
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FIG. 2. The time-delay signals occurring in Eq. (38) near solar
conjunction, plotted with the values for the Cassini experiment
around June 21, 2002. The solid curve labeled GR gives the
standard logarithmic dependence of GR, controlled by the com-
bination 1þ �sTT . The curves labeled lv1 and lv2 are the Lorentz-
violating signals controlled by the combinations of coefficients
�s1 and �s2, respectively.
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C. Experimental analysis

We discuss here key aspects of the experimental analysis
of the time-delay and Doppler signals for Lorentz violation
in Eqs. (37) and (40). Also, we make sensitivity estimates
for some key experiments.

A ubiquitous feature of signals for Lorentz violation is
the orientation dependence of observable signals [18,30].
Gravitational time-delay and Doppler tests provide no
exception to this rule. In particular, the combinations of
coefficients �s1 and �s2, controlling the lv1 and lv2 signals in
Figs. 2 and 3, depend on the conjunction orientation of the
experiment. To illustrate this, we include a sketch of the
orientation of a typical experiment at the time of conjunc-
tion in Fig. 4. This figure is oriented with the Sun-centered

frame Z axis upwards, while ~re points in the ecliptic to the
Earth’s position. For experiments where the light signal
comes within a few solar radii of the Sun, the spacecraft or
planet position ~rp is only slightly inclined to the ecliptic.

As an example of this orientation dependence, consider
the Cassini experiment in 2002. Near the time of conjunc-
tion, the Earth’s velocity was pointing approximately along
the Sun-centered frame X axis (i.e., the vernal equinox

direction). Furthermore b̂0 was pointing very nearly per-
pendicular to the ecliptic. In this case the plane of the
illustration in Fig. 4 corresponds to the YZ plane with the
X axis pointing out of the page. For this configuration we
have

_̂b 0 � ð1; 0; 0Þ; b̂0 � ð0; 0:4;�0:9Þ: (42)

This implies that the Cassini experiment is sensitive to the
combinations of coefficients

�s1 � 0:2�sYY þ 0:8�sZZ � 0:7�sYZ � �sXX;

�s2 � 0:4�sXY � 0:9�sXZ:
(43)

As another example, we suppose that the solar conjunc-
tion with the planet or spacecraft occurs near the vernal
equinox. If this is the case, and the spacecraft or planet is
much further away from the Sun than the Earth and slightly
above the XY plane, we have

_̂b 0 � ð0;�1; 0Þ; b̂0 � ð0; 0; 1Þ: (44)

The Sun-centered frame coefficients for this scenario are
given by

�s 1 � �sZZ � �sYY; �s2 � ��sYZ: (45)

Because of its scaling of the GR results in both the time-
delay and Doppler signals, the rotational scalar combina-
tion of coefficients �sTT is likely to be constrained at the
same level as the PPN parameter �, namely, parts in 105.
However, care is required since �sTT and � are not equiva-
lent. In fact, the determination of the constant GM may
correlate with �sTT . This is because �sTT occurs at Oð2Þ in
Newtonian gravity [30]. For example, in orbital dynamics
in the presence of �s�� coefficients for Lorentz violation,
the basic Newtonian acceleration between two bodies is
scaled by 1þ 5�sTT=3. If orbits are described as ellipses
with time-dependent orbital elements arising from pertur-
bations to Newtonian gravity, the measured value
ðGMÞmeas ¼ n2a3, where n is the orbital frequency and a
is the semimajor axis. Because of the presence of the �sTT

coefficients ðGMÞmeas ¼ GMð1þ 5�sTT=3Þ. We therefore
caution the reader that care is generally required in extract-
ing constraints on �sTT .
To fit experimental data to the Lorentz-violating time-

delay and Doppler signals, one could proceed by at least
two methods. First, having already fit data to a GR signal,
one could extract constraints on SME coefficients from
time-delay or Doppler residuals. This could be accom-
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FIG. 3. The gravitational fractional frequency shift in Eq. (40)
near solar conjunction, plotted with the values for the Cassini
experiment around June 21, 2002. The solid curve labeled GR
gives the standard _b=b dependence of GR, controlled by the
combination 1þ �sTT . The curves labeled lv1 and lv2 are the
Lorentz-violating signals controlled by the combinations of
coefficients �s1 and �s2, respectively.

FIG. 4. Diagram illustrating the conjunction configuration of a
typical time-delay or Doppler experiment in the Solar System.
The Sun-centered frame Z axis is shown along with the ecliptic
plane (dashed line).
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plished by using either the round-trip time-delay and
Doppler formulas (37) and (40) or the less accurate ver-
sions (38) and (41). As mentioned before, one must bear in
mind that the coefficients for Lorentz violation �s�� also
affect orbital dynamics. The effects on the orbits of the
planets due to the gravity-sector coefficients can be de-
scribed as secular changes over orbital time scales,
although oscillations can also occur [30]. However, these
effects could in principle be avoided with suitable filtering
of the data if the focus is on the conjunction time scale b= �v.

Alternatively, detailed modeling of the time-delay signal
and the relevant orbital dynamics could be undertaken. In
this case, the one-way formula in Eq. (24), which is valid to
Oð2Þ in the post-Newtonian expansion and for times far
from conjunction, could be used appropriately for both
uplink and downlink. The full post-Newtonian equations
of motion for the Earth and spacecraft or planet, and other
relevant bodies that include the effects of the coefficients
for Lorentz violation �s�� [30], could be incorporated into
the Orbital Determination Program [65]. Indeed, data from
past experiments using radar reflection from the inner
planets [64,66] could be reanalyzed to search for SME
coefficients via this second method described above.
Although many of these past experiments lack data near
conjunction, when the Lorentz-violating signals controlled
by �s1 and �s2 are peaked, they could still be useful in
measuring the rotational scalar combination �sTT . Further-
more, detailed modeling may also reveal suppressed de-
pendencies of the time-delay signal on combinations of �s��

coefficients distinct from �s1 and �s2.
Regardless of the method adopted, we can make some

reasonable estimates of the sensitivities achievable in ex-
periments. We provide in Table I estimated sensitivities to
the 3 dominant combinations of coefficients in the time-
delay and Doppler experiments for some past and future
experiments. We include the Cassini experiment and some
key future tests. The estimates are order of magnitude only
and are based on the peak values of the Lorentz-violating
signals discussed above and the approximate accuracy of
each experiment referenced, when available. For example,
the peak value of the �s2 Doppler signal for the Cassini
experiment is about 10�9, while the Allan deviation for this

experiment is about 10�14 [36], indicating a sensitivity of
parts in 105. However, data from the time period when the
�s2 signal peaked in the 2002 conjunction (T � 0 in Fig. 3)
is not available, so the sensitivity to �s2 is more likely to be
parts in 104. On the other hand, it appears likely that a
suitable fitting of Cassini data could place the first con-
straints on the rotational scalar combination �sTT at the 10�5

level. For the time-delay signals, the sensitivity to the �s1
and �s2 coefficients is reduced by about a factor of 10 or
more, as indicated in Fig. 2, and this reduction in sensitiv-
ity is included in Table I.
Proposals have been put forth for future experiments that

measure to impressive accuracies the time delay from the
Sun and even the Earth. We have included sensitivity
estimates for the Odyssey, ASTROD, and BEACON ex-
periments in Table I. Although in some cases it may be
difficult to directly measure the fractional frequency shift
[62], nonetheless we include some estimates in the table
because of the possibility of increased sensitivity to SME
coefficients from the Doppler signal over the time-delay
signal. The experiments in Table I are by no means an
exhaustive list. Also of possible interest are proposals for
measuring the light-bending effect such as SIM [42] and
LATOR [37], other proposed experiments [41,67], as well
as existing accumulated data from Earth satellites [59].
Though it lies beyond the scope of the present work, it
would also be of interest to obtain the corresponding light-
bending signal controlled by the �s�� coefficients.
Note that current constraints on the off diagonal compo-

nents �sXY , �sYZ, and �sXZ are at the level of 10�8 from atom
interferometry [31]. Two combinations of these and other
�sJK coefficients are also constrained by lunar laser ranging
at the 10�10 level [32]. Thus, if future experiments can
measure the peak behavior of the �s2 set of coefficients in
the Doppler signal to better than parts in 108, they may
produce measurements of coefficients competitive with or
better than previous experiments. The * label next to the
estimated sensitivities in Table I indicates the requirement
of measuring the peak behavior of the time-delay and
Doppler signals. Finally we note that the �sTT coefficient
does not appear at leading order in laboratory and orbital
tests [30] and so time-delay and Doppler tests are likely to
be among the most sensitive to this coefficient.

IV. SUMMARY

In this work, we have analyzed Lorentz-violating cor-
rections to the gravitational time-delay and Doppler signals
ingGeneral relativity, in the context of the gravitational
sector of the minimal SME. We established general inte-
gral formulas for the deviation of a light ray from a straight
line path that are valid in the linearized gravity limit. Our
main results are analytical formulas for the light travel time
and frequency shift for a light signal sent between two
observers past a massive central body in the presence of
gravity-sector coefficients �s��. We obtained the one-way

TABLE I. Crude estimates of attainable sensitivities in some
key experiments for the time-delay and Doppler signals.

Experiment �sTT �s1 �s2 Ref.

Time-delay signal

Cassini 10�5 10�3 10�4 [36]

Odyssey 10�7 10�6
 10�6
 [38]

ASTROD 10�8 10�7
 10�7
 [40]

BEACON 10�9 10�8
 10�8
 [39]

Doppler signal

Cassini 10�5 10�4 10�4 [36]

Odyssey 10�7 10�7
 10�7
 [38]
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results in Eqs. (24) and (32) and the round-trip signals in
Eqs. (26) and (34).

The Lorentz-violating signals were studied for Solar
System experiments involving light signals sent between
the Earth and a planet or spacecraft near solar conjunction.
It was determined that the dominant signals are controlled
by the combinations of coefficients 1þ �sTT , �s1, and �s2. In
terms of Sun-centered frame coefficients, the combinations
�s1 and �s2 will vary for different experiments. We obtained
sensitivity estimates for key existing and future experi-
ments which are summarized in Table I. Time-delay and

Doppler experiments could prove crucial in measuring the
elusive scalar coefficient �sTT , to better than parts in 105.
Future highly sensitive time-delay and Doppler tests may
be able to measure other coefficients in the subset �sJK with
sensitivities competitive with other existing experiments.
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[24] V. A. Kostelecký and M. Mewes, Phys. Rev. D 69, 016005
(2004); 70, 031902(R) (2004); 70, 076002 (2004); L. B.
Auerbach et al. (LSND Collaboration), Phys. Rev. D 72,
076004 (2005); T. Katori et al., Phys. Rev. D 74, 105009
(2006); V. Barger et al., Phys. Lett. B 653, 267 (2007); P.
Adamson et al. (MINOS Collaboration), Phys. Rev. Lett.
101, 151601 (2008).

[25] D. L. Anderson et al., Phys. Rev. D 70, 016001 (2004);
E. O. Iltan, Mod. Phys. Lett. A 19, 327 (2004); D.
Colladay and P. McDonald, Phys. Rev. D 75, 105002
(2007); arXiv:0904.1249.
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(2005).
[45] R. Bluhm, S. Fung, and V.A. Kostelecký, Phys. Rev. D 77,
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