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We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike

Killing vector. The parameters in the action are directly related to the stress anisotropies. The field

equations following from the action are applied to an anisotropic cosmological expansion and an

extension of the Gott-Hiscock cosmic string.
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I. INTRODUCTION

General relativistic models with anisotropic stress have
become increasing useful as the applications become more
complex and precise [1–6]. There has been considerable
interest in anisotropic spheres [7–11] because of applica-
tions to stellar models [12–14], and temperature anomalies
in the cosmic microwave background (CMB) [15,16] have
generated an increased interest in anisotropic cosmological
models [3,17–21]. Anisotropy is usually discussed in the
context of fluid stress-energy relations, and examining the
Lagrangian actions that generate fluid equations of state
provides a simple way to view their geometric and physical
origins. This paper discusses a simple action describing a
fluid with three unequal stresses. The fluid is supported by
a metric with a spacelike Killing symmetry.

The vacuum Einstein field equations, for spacetimes
with Killing vector �a, can be generated from an action
written in terms of the Killing vector norm � ¼ �a�a, and
twist !i ¼ "iabc�

arb�c. The original vacuum action was
developed by Ehlers [22], Harrison [23], and Geroch [24],
who wrote the 3þ 1 Einstein equations on the 2þ 1 space
of Killing vector orbits. For spacetimes with metric gab,
(�þþþ), the induced metric on the 3-manifold of
Killing orbits is hab ¼ gab � �a�b=�. The action generat-
ing the vacuum field equations is, with hab replaced by
�ab :¼ �hab,

Svac ¼
Z

d3x
ffiffiffiffi
�

p �
R�Da�D

a�þDa!Da!

2�2

�
; (1)

whereR and Da are the Ricci scalar and covariant deriva-
tive on �, respectively, and !a ¼ Da!. This action was
generalized to perfect fluids [25,26] by including a scalar
function K, and a vector function, sa with �asa ¼ 0:

Sfluid ¼
Z

d3x
ffiffiffiffi
�

p �
R�Da�D

a�þDa!Da!

2�2

�K� sasa

�
: (2)

Using this action, a stress energy for two isotropic equa-
tions of state can be generated. Krisch and Glass [27]
showed that the same action may also be applied to fluids
with two unequal stresses.

In this paper, which considers metrics with a spacelike
Killing vector, the action Sfluid is extended to completely
anisotropic fluids. Previous work using this action treated
K and sasa separately. Considering both terms simulta-
neously allows extensions to fluids with three unequal
stresses. In the next section we develop the anisotropic
fluid content implicit in Sfluid, and discuss some of the
equations of state and their effect on the rate-of-expansion
of the fluid 4-velocity. Some particular metric examples are
given in Sec.III.

II. FLUID CONTENT

A. Field equations and geometry

The 2þ 1 field equations that follow from the action
Sfluid are

R ab ¼ Da�Db�þDa!Db!

2�2
þ sasb þK�ab; (3)

�2Dað��1Da�Þ þDa!Da! ¼ 0; (4)

Da

�
Da!

�2

�
¼ 0; (5)

where Da is the covariant derivative on �. Rab ¼
Riccið�abÞ is related to Rab ¼ RicciðgabÞ [24,26] by

ha
chb

dRcd ¼ Rab �Da�Db�þDa!Db!

2�2

¼ sasb þK�hab; (6)

�a�bRab ¼ 0; (7)

ha
c�bRcb ¼ 0: (8)

In the next section, we discuss the stress energy related to
the matter parameters sa and K.

B. Stress energy

A simple anisotropic fluid description contains a density
and three stresses ð"; P1; P2; P3Þ, which depend on sa and
K. In this section, we find the dependence of each of the
stress-energy components on the action parameters and
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show that the spatial part of sa is a measure of the stress
anisotropy P1 � P2, while K enters into the anisotropy
between the (1, 3) and (2, 3) planes. Consider a 3þ 1
metric, gab, described with unit tetrad vectors
½Ua; eað1Þ; e

a
ð2Þ; e

a
ð3Þ�, and with spacelike Killing vector �a

aligned with eað3Þ: �
a ¼ ffiffiffiffi

�
p

eað3Þ. The general stress-energy

tensor is assumed to be

Tab ¼ "UaUb þ P1e
ð1Þ
a eð1Þb þ P2e

ð2Þ
a eð2Þb þ P3e

ð3Þ
a eð3Þb ; (9)

with the stress components carrying a tetrad index. The
Ricci tensor for this stress energy is

Rab ¼ 8�

�
"þ P1 þ P2 þ P3

2
UaUb

þ "þ P1 � P2 � P3

2
eð1Þa eð1Þb

þ "� P1 þ P2 � P3

2
eð2Þa eð2Þb

þ "� P1 � P2 þ P3

2
eð3Þa eð3Þb

�
:

Using the field equation �b�aRab ¼ 0, P3 is determined by
the other stress-energy components

P3 ¼ �"þ P1 þ P2; (10)

and the Ricci tensor becomes

Rab ¼ 8�½ðP1 þ P2ÞUaUb þ ð"� P2Þeð1Þa eð1Þb

þ ð"� P1Þeð2Þa eð2Þb �: (11)

Expanding sa, using Rab ¼ sasb þ �Khab and taking sca-
lar products, the complete stress-energy description is

sa ¼ s0Ua þ s1e
ð1Þ
a þ s2e

ð2Þ
a ; (12a)

16�" ¼ ðs0Þ2 þ ðs1Þ2 þ ðs2Þ2 þ �K; (12b)

16�P1 ¼ ðs0Þ2 þ ðs1Þ2 � ðs2Þ2 � �K; (12c)

16�P2 ¼ ðs0Þ2 � ðs1Þ2 þ ðs2Þ2 � �K; (12d)

16�P3 ¼ ðs0Þ2 � ðs1Þ2 � ðs2Þ2 � 3�K; (12e)

s1s2 ¼ s0s1 ¼ s0s2 ¼ 0; (12f)

where s0, s1, and s2 are tetrad indexed. These relations
between the stress energy and the action parameters show
how sa and K enter the fluid anisotropy. Using Eq. (12c)
and (12d), the anisotropy in the 2þ 1 stress is described by
the spatial components of sa:

8�ðP1 � P2Þ ¼ ðs1Þ2 � ðs2Þ2: (13)

The anisotropies involving the stress along the Killing
direction require both sa and K:

8�ðP1 � P3Þ ¼ s21 þ �K;

8�ðP2 � P3Þ ¼ s22 þ �K:
(14)

A particularly useful relation emerging from this formal-
ism is the equality of the stress along the Killing direction
with the negative Ricci scalar: 16�P3 ¼ �R.

C. Equations of state

Some equations of state for the 3þ 1 fluid can bewritten
down by considering values for sa and K. The conditions
in Eq. (12f) mean that any one of s0, s1, or s2 can be
nonzero. In the formalism so far, the choice s1 or s2 equal
to zero only fixes the (1, 2) index. The stress-energy
relations for each of the choices are described in Table I
(with s2 ¼ 0) and s1 identified as the index function for
stress anisotropy in the (1, 2) plane. The s1 ¼ 0 choice
simply replaces 2 by 1 in Table I.
The fluid parameter conditions can be generally related

to the value of sasa. For s2 ¼ 0, by using Eq. (12) we find

8�ð"þ 2P2 � P1Þ ¼ �sasa: (15)

If sa is timelike, s1 ¼ 0, "þ 2P2 > P1, and P1 ¼ P2. The
timelike condition is "þ P1 > 0, P1 ¼ P2. If sa is space-
like with s2 ¼ 0, we have "þ 2P2 < P1. Since only one
component of sa is nonzero, sa cannot be null, and we do
not have "þ 2P2 ¼ P1. Completely anisotropic fluids will
correspond to s1ðors2Þ � 0 K � 0. The fluid conditions
for a completely anisotropic fluid are

s2 ¼ 0: " ¼ �P2; P3 ¼ 2P2 þ P1; (16a)

s1 ¼ 0: " ¼ �P1; P3 ¼ 2P1 þ P2: (16b)

D. Energy conditions

There are a number of energy conditions based on the
structure of the stress energy and Ricci tensor [28]. In
matter, the weak and dominant conditions require positive
density and �TabU

b ¼ "Ua. With either s1 or s2 nonzero
and a comoving observer, the strong and null conditions
are

Strong: RabU
aUb � 0; (17)

� �K ¼ 8�ðP1 þ P2Þ � 0; (18)

TABLE I. Functions and their stress-energy relations.

Nonzero functions Stress-energy relations

K " ¼ �P1 ¼ �P2 ¼ �P3=3
s1 " ¼ P1 ¼ �P2 ¼ �P3

s0 " ¼ P1 ¼ P2 ¼ P3

K, s1 " ¼ �P2, P3 ¼ 2P2 þ P1

K, s0 P1 ¼ P2, P3 ¼ �"þ 2P1
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Null : TabN
aNb � 0

1: Na ¼ Ua þ eað1Þ: "þ P1 � 0 ) s21 � 0

2: Na ¼ Ua þ eað2Þ: "þ P2 � 0 ) s22 � 0

3: Na ¼ Ua þ eað3Þ: "þ P3 � 0 ) ðP1 þ P2Þ � 0:

(19)

Theweak and dominant conditions can be enforced, but the
strong and some of the null conditions can be violated. For
example, the (s0, s2 ¼ 0) condition, " ¼ �P2, implies a
violation if jP2j> P1. The violation of the strong energy
condition is related to the development of the 4-velocity
rate of expansion � ¼ raU

a in the Raychaudhuri equa-
tion

d�

d�
¼ � 1

3
�2 � �ab�ab þ!ab!ab � RabU

aUb: (20)

The action considered in this paper determines the form of
the Ricci tensor. For the completely anisotropic fluid, the
Ricci tensor is

s2 ¼ 0: Rab ¼ 8�½�ðP1 þ P2Þðgab � eð3Þa eð3Þb Þ
þ ðP1 � P2Þeð1Þa eð1Þb �

¼ �Kðgab � eð3Þa eð3Þb Þ þ s21e
ð1Þ
a eð1Þb ; (21)

s1 ¼ 0: Rab ¼ 8�½�ðP1 þ P2Þðgab � eð3Þa eð3Þb Þ
þ ðP2 � P1Þeð2Þa eð2Þb �

¼ �Kðgab � eð3Þa eð3Þb Þ þ s22e
ð2Þ
a eð2Þb ; (22)

The Raychaudhuri equation becomes

d�

d�
¼ � 1

3
�2 � �ab�ab þ!ab!ab þ �K;

�K ¼ �8�ðP1 þ P2Þ:
(23)

With zero vorticity and �K ¼ 0, _�< 0, these conditions
describe a decreasing rate of expansion with an initially
converging or diverging timelike congruence becoming
more focused. However, even for zero vorticity, if �K>

0, the rate of change of the expansion can be positive, _�>
0, and is unfocusing.

E. Fluid shear and anisotropy

The form of the stress-energy tensor, Eq. (9), identifies
all of the spatial components as stress. However, equiva-
lences [29,30] can be used to relate the completely aniso-
tropic form to fluids with shear, with the differences in the
shear tensor identified as the physical cause of the anisot-
ropy. The general equivalence relation for s1 � 0 is

"UaUb þ P1e
ð1Þ
a eð1Þb þ P2e

ð2Þ
a eð2Þb þ P3e

ð3Þ
a eð3Þb

¼ ð"þ PÞUaUb þ Pgab � 2��ab

" ¼ �P2

P1 ¼ P� 2��ð11Þ
P2 ¼ P� 2��ð22Þ
P3 ¼ P� 2��ð33Þ:

(24)

The trace-free condition for �ab provides P ¼ ðP1 þ P2 þ
P3Þ=3. Using Eq. (12) the action parameters sa and K
describe the differences in the shear tensor components:

Pi ¼ P� 2��ðiiÞ; s21 ¼ 16��½�ð22Þ � �ð11Þ�;
�K ¼ 16��½�ð33Þ � �ð22Þ�:

(25)

Imposing an extra condition identifies an equation of state
and the tetrad indexed shear tensor components. The evo-
lution of spherically symmetric fluids of this type has been
considered by Herrera et al. [2], who gave a metric for a
shearing expansion-free evolving fluid with two unequal
stresses.

III. EXAMPLES

The stress energy of a completely anisotropic fluid is
described by

s2 ¼ 0: " ¼ P2; P3 ¼ 2P2 þ P1; (26a)

s1 ¼ 0: " ¼ P1; P3 ¼ 2P2 þ P1: (26b)

P2 (P1) must be negative for positive density. This suggests
two possible application areas: Bianchi cosmological mod-
els, and cosmic strings with an axial tension.

A. Anisotropic cosmology

Bianchi metrics have been used to model anomalies in
the CMB radiation [3,6,17–19], with anisotropies develop-
ing due to different expansion rates along coordinate axes.
A general metric to consider is

ds2 ¼ �dt2 þ b2ðtÞdx21 þ c2ðtÞdx22 þ f2ðtÞdx23; (27)

with three Hubble rates, H1 ¼ _b=b, H2 ¼ _c=c, and H3 ¼
_f=f. For a power-law expansion, one has b ¼ b0t

�, c ¼
c0t

�, f ¼ f0t
	. The stress energy is

8�"ðt2Þ ¼ ��þ �	þ �	

8�P1ðt2Þ ¼ ��ð�� 1Þ � 	ð	� 1Þ � 	�

8�P2ðt2Þ ¼ ��ð�� 1Þ � 	ð	� 1Þ � �	

8�P3ðt2Þ ¼ ��ð�� 1Þ � �ð�� 1Þ � ��:

(28)

The stress-energy conditions " ¼ �P2 and P3 ¼ 2P2 þ
P1 impose constraints

�ð�þ 	Þ ¼ �ð�� 1Þ þ 	ð	� 1Þ; (29)
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�� ¼ �ð�� 1Þ þ 3	ð	� 1Þ þ 	ð2�þ �Þ: (30)

Combining the constraints yields

	ð	� 1þ �þ �Þ ¼ 0: (31)

Two cases emerge: 	 ¼ 0 and 	 ¼ 1� �� �. The 	 � 0
condition, when substituted back into Eq. (29), relates �
and �

�þ � ¼ �2 þ ��þ �2 (32)

and results in zero energy density. Only the 	 ¼ 0 case,
with no expansion along the Killing direction, provides a
fluid with nonzero density. With 	 ¼ 0, Eq. (29) is

�ð�� 1� �Þ ¼ 0: (33)

When � ¼ 0 the density is zero. In order to have an
anisotropic fluid with positive density, expansions along
at least two of the axes are necessary, with bðtÞ ¼ b0t

� and
cðtÞ ¼ c0t

��1. For � � 0, the stress energy is

8�" ¼ �ð�� 1Þ=t2
8�P1 ¼ �ð�� 1Þð�� 2Þ=t2
8�P2 ¼ ��ð�� 1Þ=t2
8�P3 ¼ �ð�� 1Þð3�� 2Þ=t2

K ¼ 2ð�� 1Þ2=t2:

(34)

This example has positive density for �< 0 and �> 1,
with�> 1 describing expansion. The rate of expansion for
this case is

� ¼
_b

b
þ _c

c
¼ ð2�� 1Þ

t
; _� ¼ ð1� 2�Þ

t2
: (35)

The congruence will unfocus for �< 1=2. For the case of
an expanding space with positive density the congruence is
focusing. The family of radial stresses parameterized by �
is especially interesting. For 1<�< 2, the stress is a
pressure, for � ¼ 2 it is dust, and for �> 2 it is a tension.
P3 also shows this range of behavior with the P3 ¼ 0 dust
crossover at � ¼ 2=3, out of the physical density region.
Since P3 is proportional to the negative Ricci scalar, the
behavior of P3 also reflects a change from positive scalar
curvature, through zero, to a negative curvature manifold.
In this model, only manifolds with nonzero Ricci scalar
will have positive density. The timelike congruence will
unfocus for �< 0. This is a positive density region of the
parameter space with all three stresses as tensions.

In summary �< 0 unfocuses, �> 1 focuses.

B. Cosmic string

1. Metric and stress energy

Cosmic strings are of current interest both experimen-
tally [31–34] and theoretically [35–37]. The usual cosmic
string models have only a single axial tension. The simplest
family of static 3þ 1 strings is described by the metric

with ð0; 1; 2; 3Þ ¼ ðt; r; ’; zÞ
ds2 ¼ �dt2 þ dr2 þ E2ðrÞd’2 þ dz2: (36)

The density is 8�" ¼ �E00=E, and the stresses are

Pr ¼ P’ ¼ 0; Pz ¼ E00=E: (37)

The Gott-Hiscock (GH) static string [38,39] is the constant

density example with a ¼ ffiffiffiffiffiffiffiffiffi
8�"

p
, EðrÞ ¼ c1 sinðarÞ. The

matter metric matches directly to vacuum Levi-Civita with
an angular deficit and is Minkowski near the axis. There
are two spacelike Killing vectors, �ðzÞ and �ð
Þ.
As an anisotropic extension to the GH string interior,

consider the metric

ds2 ¼ �A2
0cos

2½aðR0 � rÞ�dt2 þ dr2

þ a�2sin2ðarþ �Þd
2 þ dz2: (38)

The � contribution to the sine argument is included for
finite stress at r ¼ 0. The stress-energy for this metric is

8�" ¼ a2 ¼ �8�P


8�Pr ¼ a2 tan½aðR0 � rÞ� cotðarþ �Þ
8�Pz ¼ �a2f2� tan½aðR0 � rÞ� cotðarþ �Þg;

(39)

with sinð�Þ � 0. The axial behavior of this stress energy is
especially interesting. In the cosmological example, sev-
eral of the stress components ranged through pressure,
dust, and tension as the metric parameter varied. In this
example, the same behavior is observed but is linked to the
radial position or, along the axis, to the size of the string. To
interpret this example as an anisotropic cosmic string with
physical tension along the axis requires 1< tan½aR0��
cotð�Þ< 2. The actual axial structure is related to the
vacuum match and associated angular deficit. These are
discussed in the next sections.

2. Vacuum matching

The metric can be matched to a vacuum metric across an
Israel layer at r ¼ R0. The exterior (þ ) metric is a vac-
uum Levi-Civita metric with angular deficit 	

ds2LeviCivita ¼ �dt2 þ dr2 þ r2	2d
2 þ dz2: (40)

The metric of the Israel layer is

ds2layer ¼ �A2
0dt

2 þ a�2sin2ðaR0 þ �Þd
2 þ dz2: (41)

The Levi-Civita metric is matched to the layer. The match-
ing conditions are

A0 ¼ 1; a�1 sinðaR0 þ �Þ ¼ �R0	: (42)

The stress energy of the Israel boundary layer is calculated
from jumps in the extrinsic curvatureKab going from Levi-
Civita (þ ) across the Israel layer to the string interior
(� ), with the jumps calculated from hKabi ¼ Kþ

ab � K�
ab,

K ¼ Ka
a . The layer stress energy is
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� 8�Sab ¼ hKabi � hKiglayerab : (43)

The extrinsic curvatures needed to calculate the jumps are

Kþ


 ¼ �	2R0;

Kþ
tt ¼ 0;

Kþ
zz ¼ 0;

K�


 ¼ a�1 sinðaR0 þ �Þ cosðaR0 þ �Þ;
K�

tt ¼ 0;

K�
zz ¼ 0:

(44)

The surface of the anisotropic string has an Israel stress-
energy content

8�Stt ¼ �hKi;
8�S

 ¼ 0;

8�Szz ¼ hKi
hKi ¼ �1=R0 � a cotðaR0 þ �Þ:

(45)

The equation of state of the GH string solution is found in
the boundary layer of the anisotropic string.

3. Angular deficit

In the GH static string, the angular deficit is related to
the mass/length, �, calculated from a t ¼ const, z ¼ const
integral of the density. For the anisotropic string, that mass
is composed of two parts. The contribution from the string
interior is

�1 ¼
Z 2�

0

Z R0

0
"
sinðarþ �Þ

a
drd


¼ 2�
Z R0

0

a2

8�

sinðarþ �Þ
a

dr

¼ 1

4
½cosð�Þ � cosðaR0 þ �Þ�; (46)

and the additional contribution from the boundary layer is

�2 ¼ �2�
sinðaR0 þ �Þ

8�a
hKi

¼ 1

4

�
sinðaR0 þ �Þ

aR0

þ cosðaR0 þ �Þ
�
: (47)

Combining the mass densities � ¼ �1 þ�2 yields

4� ¼ cosð�Þ þ sinðaR0 þ �Þ
aR0

: (48)

Substituting from the matching condition, Eq. (42), the
relation between the linear mass density and the angular
deficit is

4�� cosð�Þ ¼ �	: (49)

This is not the conventional ‘‘thin string’’ result 	 ¼ 1�

4�. A possible explanation is that there is a missing
potential energy associated with the shell assembly, as is
found in a matter shell bounding Schwarzschild and vac-
uum [28]. However, Futamase and Garfinkle [40] have
pointed out that the relation between angular deficit and
mass density depends on the matter in the string, and one
could take Eq. (49) as that relation for this anisotropic
string. A third possibility is that there is additional, uncon-
sidered structure at the axis. Noting that the metric along
r ¼ 0 describes a 2þ 1 hypersurface, the r ¼ 0 axis could
be an Israel layer boundary. This provides additional in-
terior structure whose mass needs to be considered in the
complete calculation. With this possibility, the actual string
would be the interior axial structure with the anisotropic
stress energy described in this example serving as an
atmosphere around the string.

IV. CONCLUSIONS

The 3þ 1 field equations can be written as a set of 2þ 1
equations on the space orthogonal to the Killing trajecto-
ries. In this paper we have presented a formalism that
generalizes a simple 2þ 1 action for a spacelike Killing
vector to describe a set of fluids with anisotropic stress.
The Lagrangian extension uses both a function K, and a
oneform sadx

a. The spatial part of sa describes the stress
anisotropy in the plane orthogonal to the Killing vector.
With the Killing vector in the (3) direction, K relates the
energy and stress and can describe the anisotropies be-
tween the (1,2) and (3) planes. sadx

a is not varied in the
action. One advantage of using a fixed form rather than a
field is its use as a modeling tool, with the anisotropies
related to complex motions rather than new physical fields.
The anisotropy is described in terms of stress but can be
due to a number of physical mechanisms, such as fluid
shear.
Two applications were considered. An anisotropic gen-

eralization of the GH cosmic string interior described an
interior solution with positive density and anisotropic
stress bounded by an Israel layer with the GH equation
of state. The Bianchi I example described a family of
power-law solutions containing both focusing and unfocus-
ing expansions. The family of stress energies was parame-
terized by a single constant, with the range of the constant
describing the entire stress range: tension through dust to
pressure. With the current strong interest in explaining
anomalies in the CMB, one could consider models with a
single anisotropic fluid whose stress shifts from pressure,
through dust to tension and focusing to unfocusing during a
series of expansion eras. Because the stress associated with
the Killing symmetry is proportional to the Ricci scalar, the
curvature will also evolve. In this model there is no expan-
sion along the direction associated with the Killing coor-
dinate. A completely anisotropic expansion could be
generated by considering a higher dimensional action and
associating the Killing symmetry with a higher dimen-
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sional manifold. Both applications considered here under-
line the potential value of formally considering anisotropic
stresses in relativity; while they form a more complicated

stress-energy description, anisotropic fluids can have dy-
namic features leading to simpler matter models than those
with equal stress.
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