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Recently, a number of analytic prescriptions for computing the nonlinear matter power spectrum have

appeared in the literature. These typically involve resummation or closure prescriptions which do not have

a rigorous error control, thus they must be compared with numerical simulations to assess their range of

validity. We present a direct side-by-side comparison of several of these analytic approaches, using a suite

of high-resolution N-body simulations as a reference, and discuss some general trends. All of the analytic

results correctly predict the behavior of the power spectrum at the onset of nonlinearity, and improve upon

a pure linear theory description at very large scales. All of these theories fail at sufficiently small scales. At

low redshift the dynamic range in scale where perturbation theory is both relevant and reliable can be quite

small. We also compute for the first time the two-loop contribution to standard perturbation theory for cold

dark matter models, finding improved agreement with simulations at large redshift. At low redshifts

however the two-loop term is larger than the one-loop term on quasilinear scales, indicating a breakdown

of the perturbation expansion. Finally, we comment on possible implications of our results for future

studies. A software package implementing the methods presented here is available at http://mwhite.

berkeley.edu/Copter.
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I. INTRODUCTION

The character and evolution of the large-scale structure
of the Universe has been the subject of much research in
recent decades. As it is currently understood, the large-
scale structure grows through a process of gravitational
instability starting from a nearly scale-invariant spectrum
of Gaussian fluctuations at early times. On very large
scales the matter distribution of our universe today is
well modeled by linear perturbation theory. On scales
below about 10 Mpc, on the other hand, the dynamics are
highly nonlinear and we must resort to direct numerical
simulations of the N-body problem to understand the clus-
tering of matter or its tracers.

On intermediate, or quasilinear, scales there is the pos-
sibility that the matter distribution may be modeled ana-
lytically by extending perturbation theory beyond linear
order. This possibility has received renewed attention re-
cently due to the interest in using baryon acoustic oscil-
lations (BAO) as a probe of the expansion history of the
Universe and of the nature of dark energy [1]. Since the
baryonic features are at large scales (Oð100Þ Mpc) it is
plausible that higher-order perturbation theory could
model subtle corrections to the linear result with some

accuracy. More generally, investigation of perturbation
theory may allow some improvement in theoretical pre-
dictions for the next generation of very large surveys.
Consequently, a number of new ideas have been intro-

duced in recent years for computing statistical properties of
the matter distribution, most importantly the two-point
function or power spectrum. Regrettably these approaches
involve uncontrolled approximations, providing no simple
way of estimating the theoretical uncertainty. Since per-
turbation theory is expected to fail on sufficiently small
scales, the domain of validity of any particular approach is
therefore unclear, and the only known way to test their
accuracy is to compare their predictions with the results of
N-body simulations. In the past this has been done on a
case-by-case basis, with one theory tested for one cosmol-
ogy against one suite of N-body simulations, focusing
primarily on the power spectrum. Recently there have
been some attempts to compare multiple theories simulta-
neously [2,3], or to examine statistics other than the power
spectrum [4–6]. However, a comprehensive comparison
has been lacking, and with the recent proliferation of
analytic techniques it is natural to ask how well these
theories actually perform. With near-future observations
potentially depending on these techniques and with recent
advances in N-body algorithms and computing power, it is
timely to revisit this issue.
In this paper we present a direct comparison of several

recent analytic predictions for the clustering of matter on
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quasilinear scales. We restrict our attention to the matter
fluctuations, because very few of the existing treatments
can handle biased tracers such as dark matter halos and
galaxies. We use modern, high-resolution N-body simula-
tions as our reference points, which provide highly accu-
rate [7–9] (though computationally expensive) estimates
for statistical observables of the matter distribution. By
comparing the analytic predictions for two cosmologies,
one close to the current best-fit model and one more
extreme, we are able to judge the relative merits of each
approach.

The paper is organized as follows. In Sec. II we start by
reviewing the dynamical equations that govern the evolu-
tion of the matter distribution and discuss the relevant
statistical quantities that one may compute. We then con-
tinue by summarizing the different analytic approaches we
consider in this paper. In Sec. III we describe the N-body
simulations that are used as a reference point for the
comparison. In Sec. IV we plot the various approaches
together, discuss qualitatively how well they agree with

simulations, and propose several ways to quantify this
agreement. We discuss the results of this comparison in
Sec. V, and make some closing remarks in Sec. VI.

II. ANALYTIC METHODS

We start by reviewing the different analytic methods we
consider—our goal is not to provide a comprehensive
description of each method, but to provide an overview
and highlight the relationships between the different
methods.

A. Dynamics and linear theory

By far the most popular approach to an analytic descrip-
tion of large-scale structure is to approximate the matter
distribution as an irrotational fluid, characterized by a
density contrast �ðxÞ ¼ �ðxÞ= ��� 1 and a peculiar veloc-
ity divergence �ðxÞ ¼ r � vðxÞ. The fluid equations, in
Fourier space, are then (see Appendix A for a detailed
derivation)

@�ðkÞ
@�

þ �ðkÞ ¼ �
Z d3q

ð2�Þ3
k � q
q2

�ðqÞ�ðk� qÞ; (1a)

@�ðkÞ
@�

þH�ðkÞ þ 3

2
�mH 2�ðkÞ ¼ �

Z d3q

ð2�Þ3
k2q � ðk� qÞ
2q2jk� qj2 �ðqÞ�ðk� qÞ: (1b)

Here d� ¼ dt=aðtÞ is conformal time, �mð�Þ ¼
��ð�Þ=�critð�Þ, and H ¼ aH is the conformal Hubble pa-
rameter. [Note that we adopt the Fourier transform con-
vention that puts the ð2�Þ3 in the wave vector integral. We
also omit the tilde that is usually used to decorate Fourier
space quantities.] The nonlinear nature of these equations
is manifest in the mode-coupling integrals.

Working to linear order in � and �, we obtain

�Lðk; zÞ ¼ DðzÞ
DðziÞ�iðkÞ (2)

and

�Lðk; zÞ ¼ �H ðzÞfðzÞ DðzÞ
DðziÞ�iðkÞ; (3)

where �i is the density contrast at some early time zi when
linear theory is certainly valid, D is the linear growth
function (normalized to 1 at z ¼ 0), and f �
d lnD=d lna. At early times �m � 1 and D / a. For con-
venience we define �0 to be the linear density contrast
today, i.e. �0ðkÞ ¼ �Lðk; z ¼ 0Þ. When convenient we also
follow common practice and use � ¼ lnD as a time vari-
able; for brevity we often suppress the time dependence of
quantities altogether. It is further convenient to group �
and � into a two-component vector, �aðkÞ ¼ ð�ðkÞ;
��ðkÞ=H fÞ which is proportional to (1, 1) in linear
theory.

B. Statistical observables

Inflation predicts, and observations have confirmed, that
the initial fluctuations are predominantly adiabatic [10],
almost scale invariant [10], and very close to Gaussian
[11]. Under the assumption that the initial field is
Gaussian all expectation values of moments of the evolved
density and velocity fields can be expressed as integrals
over the linear theory power spectrum. For example, the
evolved two-point function

ð2�Þ3�Dðkþ k0ÞPabðkÞ ¼ h�aðkÞ�bðk0Þi; (4)

whose components are all equal to PLðkÞ in linear theory,
can be expressed as integrals over n powers of PL in nth
order perturbation theory [e.g. Eq. (A20)].
In general, to give a complete statistical description of

the matter distribution at a given time, one would need to
specify the entire hierarchy of connected n-point correla-
tors. For initially Gaussian fields which are close to linear,
the higher-order connection functions are small and have
been compared to simulations in [12]. We shall confine our
attention to the two-point function in this paper.
The nonlinear propagator [13,14] (also known as the

response function [5]) measures the correlation between
the evolved field �aðk;�Þ and the initial conditions
�aðk;�iÞ. It is formally defined as a functional derivative,
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�Dðk� k0ÞGabðk;�;�iÞ ¼
�
��aðk;�Þ
��bðk0;�iÞ

�
; (5)

though its significance is easier to understand from the
relation

h�aðk;�Þ�bðk0;�iÞi ¼ Gacðk;�;�iÞ
� h�cðk;�iÞ�bðk0;�iÞi; (6)

which we shall take as a definition henceforth. At early
times or at large scales, there is near-perfect correlation
(Gab � 1), but Gab ! 0 on small scales as nonlinear evo-
lution washes out the initial conditions [15,16].

Because we will make reference to it later, we also
introduce here the quantity

�2 � 1

3�2

Z 1

0
dqPLðqÞ; (7)

which characterizes the scale at which nonlinearities be-
come important. In the Lagrangian formalism (see below)
�2 gives the variance of each component of the linear (or
Zel’dovich) displacement.

C. Beyond linear theory

The program is now to compute the statistics of the
evolved density field in terms of the initial density field.
This is simple in principle but difficult in practice, because
the equations of motion are both nonlinear and nonlocal (in
both configuration space and Fourier space). Nonlinearity
forces one to seek a perturbative solution, since exact
solutions to Eqs. (1) (even if they could be found) could
not be combined to construct a realistic solution. A
straightforward perturbative approach is hampered by
computational costs, as nonlocality implies that higher-
order terms involve mode-coupling integrals of ever higher
dimension.

This situation has prompted a study of higher-order
methods for statistical observables like the power spec-
trum. Many of these methods were borrowed from other
areas of physics (notably particle physics and fluid me-
chanics [17]) where they achieved mixed success. We
review these below, highlighting the relationships between
the different methods; the methods we consider are sum-
marized in Table II.

The most straightforward approach is to define a series
solution to the fluid equations in powers of the initial
density field �i (or equivalently, the linearly evolved den-
sity field, �0). This is the basis behind standard perturba-
tion theory (hereafter SPT [18–23]); a detailed description
(including explicit expressions for Pab to third order in PL)
is presented in AppendixA.

Comparisons with simulations (including those pre-
sented below) have shown that the domain of applicability
of second order (in PL) perturbation theory is rather small
at z � 0. Furthermore, as we show below, going to third

order is not guaranteed to improve agreement, leading one
to question the convergence properties of such a series
expansion. If one could carry out any expansion to infinite
order it would (trivially) give the correct answer. This
however is usually not possible. This has led various
authors to investigate ways of summing subsets of the
terms to arbitrary order in some expansion coefficient.
Renormalized perturbation theory (hereafter RPT, see

[13,14,25]) is a variant of Dyson-Wyld resummation (see
[17] for a discussion in the context of hydrodynamics) and
attempts to reorganize the perturbation expansion in terms
of the nonlinear propagator and nonlinear vertex to im-
prove convergence. In particular, if the vertex is approxi-
mated by its tree-level form then the power spectrum can
be written as an expansion in the nonlinear propagator. The
resulting series is therefore no longer an expansion in
powers of the initial density contrast, but rather ‘‘an ex-
pansion in orders of the complexity of the interaction’’
[29].
In [14] the dominant contributions to the nonlinear

propagator are identified and summed explicitly in the

high-k limit, giving Gab � e��2k2=4 for large k (see also
[15,16]). Matching this behavior with the one-loop propa-
gator (valid at low k) gives a nonperturbative prediction for
Gab. Substituting this propagator in the first few diagrams
of the reorganized expansion then gives a nonperturbative
prediction for the power spectrum [25]. We implemented
the one-loop and two-loop mode-coupling contributions as
described in [25].
The above methods work at the level of the density and

velocity fields; an alternative approach is to use the fluid
equations to derive equations of motion for the power
spectrum and higher-order correlators directly. Such an
approach results in an infinite hierarchy of equations,
which must be somehow truncated. The closure theory
approach [3] does so by approximating the three-point
correlator h�a�b�ci by its leading order expression in
SPT. As in [14], Gab can be computed explicitly in the
low-k and high-k limits, and matched naturally in inter-
mediate regimes. The power spectrum is then obtained
order by order via a Born-like series expansion.
A variant of this approach (hereafter time-RG theory

[26]) assumes a vanishing trispectrum to truncate the hier-
archy. The resulting equations of motion for the power
spectrum Pab and bispectrum Babc can then be numerically
integrated forward in time, starting at some sufficiently
early redshift zi (where P ¼ PL and B ¼ 0). Since the time
evolution is performed numerically, the method also allows
the proper treatment of models where the linear growth
factor is scale dependent (e.g. models with quintessence or
massive neutrinos [30]). This approach may be seen as a
generalization of the renormalization group perturbation
theory (hereafter RGPT) of [31], which is an attempt to
regulate the relative divergence of one-loop SPT using
renormalization group methods.
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In [32–34] a path-integral formulation of the Vlasov
equation is developed in terms of the distribution function
fðx;p; tÞ. In [27] a similar technique is applied to the fluid
equations [Eq. (A10)]. The key insight here is that statis-
tical observables like the power spectrum may be obtained
by taking functional derivatives of an appropriately con-
structed path integral (the generating functional).
Straightforward perturbative evaluation of the generating
functional reproduces the results of SPT, whereas applying
large-N expansion techniques and truncating at fixed order
in 1=N leads to approximations for the power spectrum and
propagator. These approximate solutions agree with SPT
up to a fixed order in P0, but also include nonperturbative
contributions corresponding to infinite partial resumma-
tions of the standard expansion. We focus attention on
the steepest-descent method of [27] (hereafter large-N),
as it is considerably easier to implement than the 2PI
effective action method. (At one-loop order the 2PI method
gives the same results as closure theory [35].)

Lagrangian resummation theory (hereafter LagR,
[28,36]) is an extension of the well-developed
Lagrangian perturbation theory. Lagrangian perturbation
theory (hereafter LPT; see [37–39]) has received less at-
tention recently than its Eulerian counterpart as a method
for investigating nonlinear structure growth, partly because
the Lagrangian picture breaks down once shell crossing
occurs. However, recent work [28] has demonstrated that
Lagrangian perturbation theory not only reproduces the
SPT power spectrum at the lowest nontrivial order, but
with a slight modification also yields a nonperturbative
prediction for the power spectrum that corresponds to
resumming an infinite set of terms in the standard expan-
sion. We review LPT and the cumulant expansion in
Appendix B.

III. SIMULATIONS

In order to assess how well the perturbative expansions
are doing, we need a reference for any given cosmology.
We use a new set of large dynamic range N-body simula-
tions well suited to this purpose. These computer programs
simulate the same basic physical system (a collisionless
matter ‘‘fluid’’ interacting only through gravity) that the
perturbative methods attempt to describe; hence the results
of the two methods, though arrived at very differently, are
directly comparable.

We have elected to investigate several different cosmol-
ogies, in an attempt to better identify where and why
various analytic techniques succeed and/or fail. For sim-
plicity we consider only flat models in the cold dark matter
(CDM) family. We will highlight two: the first in which a
cosmological constant dominates the late-time evolution
and which is close to the best-fit cosmology (�CDM:
�M ¼ 0:25, �bh

2 ¼ 0:0224, h ¼ 0:72, n ¼ 0:97, and
�8 ¼ 0:8) and an extreme model (cCDM: �M ¼ 1,
�bh

2 ¼ 0:1, h ¼ 0:5, n ¼ 1, and �8 ¼ 1) with a critical

density in matter and a larger present-day normalization
which emphasizes the effects of nonlinearity and the era-
sure of baryon acoustic oscillations through mode
coupling.
For each cosmology the transfer function, TðkÞ, was

computed by evolving the coupled Boltzmann, fluid, and
Einstein equations using the publicly available package
CAMB [40]. The resulting power spectra were then used

both as input to the perturbative methods and to generate
initial conditions for the N-body simulations (Table I gives
the amplitude of the dimensionless power at some fiducial
wave numbers).
A number of numerical issues need to be addressed in

order to ensure that our simulations provide an adequate
reference. Our workhorse simulations each employ 10243

equal mass dark matter particles in a periodic, cubical box
of side length 2h�1 Gpc. By employing such large vol-
umes we are highly insensitive to the periodicity of the
box, which represents a fair sample of the Universe [9].
There is very little power at the fundamental mode, even at
z ¼ 0: �2ðkf; z ¼ 0Þ< 10�4. The lowest few modes obey

linear growth to sub-percent accuracy and we run enough
different realizations to ensure that the spectrum at the
scales of interest is well determined. The large number of
particles ensures that the spectrum is well converged for
the k modes of interest, which we checked explicitly by
comparing simulations of different box sizes. The simula-
tions are evolved from zi ¼ 100, with the particles per-
turbed from an initially uniform grid using the Zel’dovich
approximation. The rms particle move was about 5% of the
mean interparticle spacing. Comparison with second order
Lagrangian perturbation theory initial conditions showed
that this starting redshift is sufficiently high that transients
from the Zel’dovich start are irrelevant for the scales and
redshifts of interest.
Most of the evolutions were performed with a parallel

particle-mesh code. To cross-check our results we used two
high force resolution N-body codes: the TreePM code [41]
and GADGET-II [42]. These have each been tested against a
suite of other codes [7–9], with very good agreement. We
ran a subset of our simulations using all three codes to
quantify the level of precision for the box size and particle
loading of relevance here. With its default time stepping,

TABLE I. The value of the dimensionless, linear power spec-
trum at z ¼ 1 and z ¼ 0 at several fiducial wave numbers for our
two example cosmologies. k is given in h Mpc�1.

�2
Lðz ¼ 1Þ �2

Lðz ¼ 0Þ
k �CDM cCDM �CDM cCDM

0.05 0.03 0.03 0.09 0.14

0.10 0.11 0.09 0.27 0.36

0.15 0.19 0.22 0.49 0.90

0.20 0.29 0.27 0.72 1.07

0.25 0.37 0.38 0.94 1.51
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the TreePM code produces dark matter power spectra in
agreement with those from GADGET-II to better than 0.2%
out to k ’ 1h Mpc�1 and toOð10�4Þ for k < 0:1h Mpc�1.
However, these runs prove to be quite time consuming. If
we set the time step in the TreePM code to

ð� lnaÞ�2 ¼
�

1

0:05

�
2 þ

�
a

0:01

�
2
; (8)

which evolves from 5% steps at early times to 1% steps as
a ! 1, we find a shortfall of power of approximately 1%
at k ’ 1h Mpc�1 but very little difference for k <
0:1h Mpc�1. We choose the same time stepping for the
particle-mesh code, which results in very short run times
allowing an ensemble of simulations to be performed. With
this step the particle-mesh power spectra show a significant
deficit of power (compared to TreePM or GADGET-II) be-

yond k � 0:7h Mpc�1 but for k < 0:2h Mpc�1, the region
of interest here, the agreement is better than 1%.
To compute the power spectrum at different output

times, the particles were binned onto a regular, Cartesian
grid using charge-in-cell assignment [43] and the resulting
density field was Fourier transformed. The Fourier modes
were squared, corrected for the gridding by dividing by the
Fourier transform of the charge assignment scheme, and
binned into bins equally spaced in logk. The average of
�2ðkÞ was assigned to the average k in the bin and shot
noise was subtracted assuming it was Poisson. The binning
introduces artifacts at low k, where the sampling on the
grid is sparse and the dimensionless power spectrum is
steep, but these are small for the scales of most relevance to
us. Similarly there is some evidence that the shot noise in
simulations is not scale invariant (Poisson), but the correc-
tion is negligibly small on the scales of interest here.

FIG. 1 (color online). SPT power spectrum at linear (black; dotted), one-loop (red; solid), and two-loop (blue; dashed) order. The
squares with error bars show the mean and error from our N-body simulations. The four panels show�CDM (left) and cCDM (right) at
redshifts 0 (top) and 1 (bottom). Each curve has been divided by the no-wiggle power spectrum of [60] to reduce the dynamic range.
We also indicate the domain of validity of one-loop SPTaccording to the heuristic prescription of [45] (�2 < 0:4), and according to the
criterion Pð3Þ <�PL for � ¼ 0:01, 0.03.
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The nonlinear propagator was computed by cross corre-
lating the initial density field with the final one [14].
Similar to the power spectrum, this quantity is obtained
by Fourier transforming both fields, multiplying their
Fourier coefficients, correcting for gridding, and then bin-
ning the results.

The velocity statistics are more problematic, because
while the density and momentum fields must vanish where
there are no tracer particles, the same is not true of the
velocities. Thus estimates of the velocity field must employ
a smoothing technique. Similarly, the velocity field is more
sensitive to finite force resolution. On the other hand,
comparison of the velocity fields with the density fields
is less sensitive to finite volume scatter. For this reason we
use a different set of simulations, with more particles (up to
three billion) in smaller boxes (1:25h�1 Gpc down to
720h�1 Mpc) evolved with the TreePM code, for the ve-
locity statistics. Comparison with different smoothing

schemes, box sizes, and particle loadings show that with
these choices our results are well converged on the scales
of interest [44].

IV. COMPARISON

A. The power spectrum

We begin our analysis by comparing the predictions of
SPT against our simulation results. Figure 1 shows the
linear theory, one-loop SPT, and two-loop SPT power
spectrum for �CDM and cCDM. While two-loop SPT is
a marked improvement over one-loop SPT at z ¼ 1, it is
actually worse than one-loop at z ¼ 0. The effect is most
apparent in cCDM, which has larger �8 and �b. This
breakdown in standard perturbation theory is not entirely
surprising: since the nth order term in SPT goes like
D2nðzÞ, at any given scale one expects higher-order terms
to become comparable in magnitude to lower order terms

FIG. 2 (color online). Comparison of the tree-level, one-loop and two-loop power spectrum from RPTand closure theory, for�CDM
(left) and cCDM (right). Each curve has been divided by the no-wiggle power spectrum of [60] to reduce the dynamic range. The
(black) dotted line is linear theory, the (red) solid line is tree-level RPT, the (green) dashed line is one-loop RPT, the (blue) long-dashed
line is two-loop RPT, the thick (yellow) short-long-dashed line is tree-level closure, the (magenta) dot-long-dashed line is one-loop
closure, and the (cyan) dot-dashed line is two-loop closure.
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at sufficiently late times. Our results suggest that at BAO
scales (roughly k ¼ 0:05–0:25h Mpc�1) the breakdown
occurs between z ¼ 1 and z ¼ 0.

A common heuristic prescription dictates that one-loop
SPT can be trusted to 1% for wave numbers satisfying
�2

LðkÞ & 0:4 [45]. On the other hand, a strict application of
perturbation theory implies that one-loop SPT can be
trusted to 1% for wave numbers where the two-loop con-
tribution is 1% of linear theory. In Fig. 1 we indicate the
predicted domain of validity of one-loop SPT according to
these two criteria. For comparison, we also indicate where
the two-loop contribution is within 3% of linear theory.
One sees that the agreement with simulations is slightly
better than what our more rigorous criterion suggests.
For instance, for �CDM at z ¼ 0, �2

L ¼ 0:4 at k� �
0:12h Mpc�1. At this wave number one-loop SPT over-
shoots the reference spectrum by about 3%, whereas two-
loop SPT undershoots the reference spectrum by 5%. For

cCDM at z ¼ 0 the situation is much worse, with one-loop
SPT overshooting by only 6% at k� � 0:11h Mpc�1, but
two-loop SPT undershooting by almost 20%.
RPTand closure theory have also been developed to two

loops. Given the above conclusions about SPT, it is natural
to make the same comparison between the one-loop and
two-loop predictions from RPT and closure theory. In
Fig. 2 we show the matter power spectrum for these
theories at tree, one-loop, and two-loop order for both
�CDM and cCDM. For closure theory it appears that
going to two-loop order extends the range of agreement
with simulations, although the wiggles of the power spec-
trum are not matched in detail. For RPT, as with SPT, the
two-loop result is systematically high, whereas the one-
loop result performs fairly well below k � 0:15h Mpc�1.
Agreement with simulations can be improved by changing
the damping scale in the propagator. In [25] the damping
scale was modified by calculating � with the linear theory

FIG. 3 (color online). Comparison of the power spectrum for the remaining theories. Each curve has been divided by the no-wiggle
power spectrum of [60] to reduce the dynamic range. The (red) solid line is one-loop SPT, the (magenta) dot-long-dashed line is
large-N theory, the (green) dashed line is Lagrangian resummation, the thick (yellow) short-long-dashed line is time-RG theory, and
the (cyan) dot-dashed line is RGPT.
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expression [Eq. (7)], but using the nonlinear power spec-
trum and integrating only up to k ¼ 4knl. This leads to a
�10% additional suppression of GðkÞ and hence PðkÞ on
the relevant scales, bringing the theory into better agree-
ment with simulations [25]. At present this correction has
not been derived from first principles and we have not
included it, but it appears that improvements in this direc-
tion could be important.

Figure 3 shows the predicted power spectrum for the
remainder of the theories that we consider in this work.
With Figs. 1 and 2, these figures give an overview of the
agreement between our N-body simulations and the per-
turbation theories for �CDM and cCDM. Some of the
trends can be seen easily in these figures, and are generic
across cosmologies and redshifts. For instance, one-loop
SPT, which is the same as one-loop LPT, always over-
predicts PðkÞ at high k. Lagrangian resummation theory on
the other hand is much too strongly damped beyond the
first wiggle. Large-N theory more or less traces one-loop
SPT before turning over, while time-RG theory and RGPT
follow the general trends of the N-body data without fitting
any particular feature precisely. (Note that the nearly per-
fect agreement between RGPT and simulations for cCDM
at z ¼ 1 is likely spurious, as this level of agreement is not
seen for other cosmologies or at other redshifts.) RPT and
closure give nearly identical tree-level predictions, and
very similar one-loop predictions for PðkÞ. Closure theory
appears to benefit greatly from going to two-loop order,
whereas for RPT even at z ¼ 1 it appears that two-loop
does worse than one-loop.

While we have run many realizations of each cosmology
to reduce run-to-run variance, one sees in Figs. 1–3 that the
N-body data are still noisy at low k, which makes it
difficult to make quantitative statements about the per-
formance of the perturbation theories. To overcome this
we define a ‘‘reference spectrum’’ which interpolates the
N-body results at high and intermediate k with the one-
loop SPT calculation at low k. This eliminates the large
scatter from the finite number of modes in the simulations
and any biases from the finite bin sizes at low k, while still
retaining the information from the simulations at larger k.
This gives a smooth function, defined for all k, which can
be used as a reference to make a quantitative comparison.
Given the large number of simulations we have run, the
uncertainty in the N-body results is small before perturba-
tion theory becomes invalid and we can see a significant
range of k for which theory and simulation agree well. This
makes our final results insensitive to how the matching is
done. Our recipe for producing a reference spectrum is to
treat both the N-body results and one-loop SPT as inde-
pendent measurements of the true power spectrum, with
errors given by the run-to-run variance within a wave
number bin [46] in the former case, and by the two-loop
SPT term in the latter case. Then the reference spectrum at
any given k is defined by fitting a polynomial to all avail-

able measurements within a small wave number range [k�
�k, kþ�k] and evaluating that polynomial at k. For
simplicity we chose to fit to a cubic with �k ¼
0:01h Mpc�1, though the resulting reference spectrum is
rather insensitive to these choices.
All of the theories beyond linear correctly predict the

‘‘dip’’ below linear theory which can be most clearly seen
in Fig. 4 around k ’ 0:04h Mpc�1. This is sometimes

FIG. 4 (color online). Comparison between analytic models
for Pðk; z ¼ 0Þ and the reference spectrum (Sec. IV) for model
cCDM, focusing on large scales. Each curve has been divided by
the no-wiggle power spectrum of [60] to reduce the dynamic
range. The points with error bars are the ‘‘reference spectrum’’
defined in the text. The (black) dotted line is linear theory, the
(red) solid line is two-loop SPT, the (blue) long-dashed line is
two-loop RPT, the (green) short-dashed line is Lagrangian
resummation, the (cyan) dot-dashed line is two-loop closure
theory, the thick (magenta) dot-long-dashed line is the large-N
expansion, and the thick (yellow) short-long-dashed line is time-
RG theory.

TABLE II. The methods we consider in this work and the
lowest k (in h Mpc�1) at which each method departs from our
reference spectrum by 1%, as a function of redshift for our
chosen �CDM cosmology.

kmaxðzÞ
z ¼ 0 0.3 0.7 1 1.5

Methods D ¼ 1 0.87 0.72 0.63 0.52

Linear 0.03 0.08 0.09 0.09 0.09

One-loop SPT [18–23] 0.08 0.10 0.11 0.13 0.14

Two-loop SPT [24] 0.04 0.06 0.09 0.23 0.20

One-loop RPT [13,14,25] 0.10 0.13 0.15 0.16 0.20

Two-loop RPT 0.08 0.08 0.11 0.11 0.13

One-loop closure [3] 0.09 0.10 0.14 0.15 0.18

Two-loop closure 0.08 0.13 0.17 0.27 0.21

Time-RG [26] 0.04 0.05 0.06 0.09 0.10

Large-N [27] 0.08 0.11 0.12 0.14 0.17

LagR [28] 0.07 0.08 0.09 0.10 0.13
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referred to as previrialization, and arises because the non-
linear growth of the density and velocity fields is slower
than linear on scales where the effective spectral index is
more positive than (about) �1:5 (see [12] for further dis-
cussion). In this region use of any of the methods provide
significant improvements over linear theory.

To gain an overview of the range of validity of the
various methods, we list in Table II the smallest value of
k at which each method departs from our reference spec-
trum by 1% for �CDM (a comparison with other schemes
defined in the literature is presented in Table III). As
expected, the methods perform better at smaller scales
the higher the redshift. All of the methods outperform
linear theory, owing to the marked effects of previrializa-
tion, however none of the methods appear to be accurate
beyond k ’ 0:1h Mpc�1 at z ¼ 0.

In Fig. 5 we show the fractional residuals of each theory
compared to our reference spectrum for the �CDM cos-
mology at z ¼ 0 and z ¼ 1. The effects of previrialization

are clearly visible between k ¼ 0:02h Mpc�1 and k ¼
0:07h Mpc�1.

B. Testing the dynamics

While comparison of the power spectrum is the most
common test for perturbation theory, it is also useful to test
if perturbation theory is correctly describing the underlying
dynamics. To do so, we examine some of the constituent
pieces from the simulations, and compare to the perturba-
tion theory predictions.
Figure 6 compares the nonlinear propagator

~G 1ðkÞ ¼ G11ðkÞ þG12ðkÞ � h�NL�
�
Li

h�L�
�
Li

(9)

from the simulations with the predictions of analytic mod-
els. Only RPT and Lagrangian resummation give the ex-

pected behavior, ~G1 ! 0, for large k.
Comparisons of perturbation theory with simulations

typically focus on the density autocorrelation function or
power spectrum. However, perturbation theory also makes
predictions for the (irrotational) velocity field which can be
checked against simulations. In Fig. 7 we show the cross-
correlation coefficient

rðkÞ � P��ðkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P��ðkÞP��ðkÞ

q
(10)

for several theories, compared with the same quantity
measured from simulations. In linear theory rðkÞ ¼ 1 iden-
tically. On physical grounds, one expects to see a decoher-
ence of density and velocity fields on small scales, and
indeed the simulations show rðkÞ ! 0 for large k. None of
the analytic theories correctly reproduce this behavior. SPT

FIG. 5 (color online). The fractional deviation of each method from the reference spectrum, for �CDM at z ¼ 0 (left) and z ¼ 1
(right). This figure focuses on the region k < 0:15h Mpc�1 where linear theory is inadequate but higher-order methods are still viable.
As in Fig. 4 the (black) dotted line is linear theory, the (red) solid line is two-loop SPT, the (blue) long-dashed line is two-loop RPT, the
(green) short-dashed line is Lagrangian resummation, the thick (cyan) dot-short-dashed line is two-loop closure theory the thick
(magenta) dot-long-dashed line is the large-N expansion, and the thick (yellow) short-long-dashed line is time-RG theory.

TABLE III. The value of k, in h Mpc�1, to which various
flavors of perturbation theory can be trusted according to various
published criteria. See [2] for discussion.

�CDM cCDM
Reference Method z ¼ 0 z ¼ 1 z ¼ 0 z ¼ 1

[45] SPT 0.12 0.28 0.07 0.25

[47] SPT 0.10 0.19 0.08 0.19

[2] SPT 0.08 0.09 0.08 0.09

[28] LagR 0.08 0.13 0.07 0.15

[2] RPT 0.09 0.09 0.09 0.10

[2] Closure 0.09 0.09 0.09 0.10
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and time-RG theory follow the downward turn of the
simulation data initially, but then predict an unphysical
rðkÞ> 1 very soon after nonlinear corrections become
important. RPT and closure theory perform somewhat

better, in that rðkÞ never exceeds unity, but the level of
agreement with simulations is still not good above k ’
0:1h Mpc�1. (Note that we have displayed here only the
one-loop predictions from these theories.) The deviation in
rðkÞ seems to be driven mostly by the densities, with
perturbation theory performing better at the same scale
for the velocities than the densities (see Fig. 8).

V. DISCUSSION

Standard perturbation theory has a simple and direct
theoretical motivation, and results in explicit integral ex-
pressions at any order. If taken to infinite order, it provides
an exact solution (though to an idealized problem). While
standard perturbation theory works well at high redshift
and large scales, our results indicate that the standard
expansion is badly behaved at the redshifts and scales
most accessible to observation, in that higher-order terms
are comparable in magnitude to lower order terms.
Although one expects the expansion to converge if taken
to sufficiently high order, this comes at a great computa-
tional cost. With advances in raw computing power it may
one day become possible to perform the calculation to the
requisite order, but in the near future this approach seems
impracticable.
On the other hand, it should be emphasized that SPT

performs rather well at high redshifts, z * 1. Figure 1
shows that two-loop SPT at z ¼ 1 agrees with simulations
to 1% out to k ¼ 0:2h Mpc�1 or beyond (where the simu-
lations themselves become unreliable). At these redshifts
SPT not only provides a reasonable theoretical prediction
for the matter power spectrum on observationally relevant
scales, but also an estimate of the theoretical uncertainty on
this prediction.
RPT is essentially a rearrangement of the standard ex-

pansion, so like SPT it is an exact solution if carried out to
all orders. While this rearrangement appears to improve the
convergence properties of the perturbation series, it makes
it unclear what small quantity (if any) we are actually
expanding in. Furthermore, RPT does not actually provide
closed-form expressions for the power spectrum, but rather
integral relations where Pab is expressed in terms of mode-
coupling integrals of itself. Thus in addition to truncating
the loop expansion at finite order, a fully consistent im-
plementation of RPT requires solving for Pab according to
an iterative scheme, of which the explicit expressions
presented in [25] represent only the first step. The error
associated with this approximation has (to our knowledge)
yet to be quantified.
Closure theory derives from a very different perturbative

scheme than RPT, yet the results obtained are superficially
quite similar. There is no obvious way to provide error
estimates on the results of closure theory, however, as the
closure equations are obtained from heuristic approxima-
tions rather than a systematic expansion. Furthermore the
propagator in closure theory shows unrealistic oscillations

FIG. 6 (color online). The nonlinear propagator (normalized to
1 at k ¼ 0) for �CDM at z ¼ 0. The (red) solid line is SPT, the
(green) short-dashed line is Lagrangian resummation, the (blue)
long-dashed line is RPT, the thick (cyan) dot-short-dashed line is
closure theory and the thick (magenta) dot-long-dashed line is
the large-N expansion.

FIG. 7 (color online). A comparison of the density-velocity
cross correlation predicted analytically with that measured in
simulations, for �CDM at redshift z ¼ 0 (top) and z � 1 (bot-
tom). As in Fig. 4, the solid (red) line is SPT, the dashed (blue)
line is RPT, the dot-dashed (cyan) line is closure theory, and the
short-long-dashed (yellow) line is time-RG theory. For simplic-
ity we show only the one-loop predictions for SPT, RPT, and
closure theory.
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for large k. As mentioned previously, the closure equations
are solved approximately in [3] by means of a Born-like
expansion. Recently [48] an attempt has been made to
solve the closure equations numerically without resort to
such a Born-like expansion. The resulting predictions for
the power spectrum appear to agree better with simulations
than the results presented here, although it is difficult to
draw any firm conclusions from the information provided.

Time-RG theory is based on a single well-defined ap-
proximation: the vanishing of the trispectrum. The validity
of this approximation can easily be checked in simulations,
and in principle this could allow one to quantify the
theoretical uncertainty in the method. As most easily
seen in Fig. 5, although time-RG theory follows the general
trends of our reference spectrum over a wider range than
other methods, it comes up short by 1%–2% over the entire
quasilinear regime. It also gives an unphysical prediction
for the density-velocity cross correlation.

The large-N expansion utilizes more sophisticated theo-
retical machinery than other resummation techniques.
While the path-integral formalism for computing cluster-
ing statistics is exact, the errors introduced by the large-N
expansion are difficult to quantify, as ‘‘N’’ is a fictitious
parameter. Although the large-N expansion corresponds to
an infinite partial resummation of the standard perturbative
expansion, from our results it seems that this resummation
offers little improvement over one-loop SPT in the quasi-
linear regime. The grossly unphysical behavior of the
propagator in this theory is likely responsible for this
effect. As mentioned previously, we have focused attention
on the steepest-descent method rather than the 2PI effec-
tive action method of [27]. The latter method produces a
more reasonable propagator, and likely results in a better
prediction for the power spectrum, although at an increased
computational cost.

Like SPT, the Lagrangian resummation prescription of
[28] also results in easy to compute, explicit integral ex-
pressions. These are well behaved at large k, allowing e.g.
	ðrÞ to be computed, and there are natural extensions to
redshift space and to halo bias [36]. For the real-space mass
power spectrum considered here, it offers a marginal im-
provement over one-loop SPT for k�< 1=2, although the
damping prefactor strongly overcompensates as one moves
further into the quasilinear regime.
Our results have interesting implications for generating

a suite of simulations aimed at constraining the matter
power spectrum. If we can trust perturbative methods for
k�< xc, then we can focus the computational resources on
higher k. Assuming Gaussian fluctuations, obtaining 1%
accuracy in a bin ðk; �kÞ requires 2� 104 modes. There
are ðkLboxÞ3ð�k=kÞ=ð2�2Þ modes from a periodic box of
side length Lbox, so our 1% constraint at k� ’ xc translates
into

Lbox ’ �

xc

�
2�2N

�k=k

�
1=3

� 3 Gpc

�
0:5

xc

��
�

10 Mpc

��
N

2� 104

�
1=3
�
0:1

�k=k

�
1=3

(11)

or an equivalent volume of smaller simulations. This con-
straint is most difficult to meet at z ¼ 0, since � is larger
and the simulations must be evolved for longer. As an
example with the default parameters listed above we would
require 27 simulations, each 1h�1 Gpc on a side, to obtain
percent level constraints on the power spectrum of �CDM
in a 10% band near k ’ 0:1h Mpc�1 at z ¼ 0 but at z ¼ 1
we could trust perturbation theory at this scale and focus
the simulations on k ’ 0:15h Mpc�1 where 3 times fewer
simulations of the same size are needed.

FIG. 8 (color online). The density-velocity cross spectrum (left) and the velocity-velocity autospectrum (right) for the�CDMmodel
at z ¼ 0. As in Fig. 7 the (black) dotted line is linear theory, the (red) solid line is one-loop SPT, the (blue) long-dashed line is one-loop
RPT, the (cyan) dot-short-dashed line is one-loop closure theory, the thick (magenta) dot-long-dashed line is large-N theory, and the
thick (yellow) short-long-dashed line is time-RG theory.
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VI. CONCLUSIONS

Perturbative methods have a long history in cosmology,
and are widely used in many fields of physics. Many of the
techniques reviewed herein were first developed in other
fields and applied to other problems, with varying levels of
success, before being pressed into service for modeling
cosmological perturbations. In this paper we have studied a
variety of these methods as applied to predicting the large-
scale clustering of cold, collisionless matter in an expand-
ing Universe. Our results indicate that the analytic theories
correctly model the approach to nonlinearity and work well
when the perturbations are small, but none of the available
theories are up to the challenge of fully describing the
behavior of matter on quasilinear scales at late times. We
have emphasized the need to study a range of different
cosmologies and to look at a variety of different statistical
observables, as accidental agreement between theory and
simulations is possible if one only considers the power
spectrum. We have computed the two-loop contribution
to SPT and found that the standard perturbative expansion
is badly behaved at low redshifts, even on scales where
one-loop SPT was previously believed to be valid. This
provides further motivation for studying alternative ana-
lytic approaches based on nonperturbative methods,
though at the same time it emphasizes the need for error
control in analytic methods.

This work has made use of a large number of high
dynamic range N-body simulations, against which we
can compare the analytic models. We make these data
public in Table IV to aid future work in the field. In
addition, a flexible software package that implements the
perturbation schemes described in this paper is available
online [49].
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APPENDIX A: EULERIAN PERTURBATION
THEORY

Here we briefly recap the derivation of the fluid equa-
tions in the Eulerian picture, and the assumptions that are
made in perturbative treatments [18–23] (see [12] for a
review). The matter content of the Universe is modeled as a
large collection of identical particles of massm, interacting
only through mutual gravitational attraction. For low den-
sities and subhorizon scales, such forces are adequately
described by Newtonian gravity in a uniformly expanding
background, with the Newtonian potential sourced by in-
homogeneities in the density field. The distribution func-
tion for such a set of particles obeys the Vlasov equation.
The N-body methods are essentially a Monte Carlo evolu-
tion of the Vlasov equation where the Monte Carlo tracer
superparticles move along characteristics.
Analytically one typically invokes the single-stream

approximation, which assumes that all particles at a given
point x move together with the same velocity vðxÞ. This
amounts to demanding that fðx;pÞ / �D½p�mavðxÞ�,
where f is the distribution function and �D is the Dirac
delta function. This assumption is explicitly violated once
shell crossing occurs in gravitational collapse (see [50] for
a development of this idea), but is thought to be a reason-
able approximation for small density contrasts. The veloc-
ity moments of the Vlasov equation then give the familiar
fluid equations (e.g. [18])

@�

@�
þ r � ½ð1þ �Þv� ¼ 0; (A1)

@v

@�
þHvþ ðv � rÞvþ r� ¼ 0; (A2)

where H ¼ d lna=d� ¼ aH is the conformal Hubble
parameter.
It is conventional to further assume that the vorticity

w ¼ r� v of the velocity field vanishes, i.e. that the fluid
is irrotational. This assumption is motivated by noting that
w / a�1 at linear order, and is well supported by simula-
tions [51,52]. Under this approximation the velocity field is
completely specified by its divergence � ¼ r � v, and the
fluid equations reduce to

@�

@�
þ � ¼ �r � ð�vÞ; (A3)

@�

@�
þH�þ 4�Ga2 ��� ¼ �r � ½ðv � rÞv�: (A4)

TABLE IV. Our input linear theory spectrum, at z ¼ 0, for the
�CDM model as a function of wave number (in h Mpc�1) and
the reference spectrum and propagator [GðkÞ] from our N-body
simulations. Our convergence tests indicate the spectra should be
accurate to <1% over the range of scales shown.

k �2
linðkÞ �2

refðkÞ GðkÞ
0.02 0.012 0.012 0.996

0.04 0.053 0.053 0.980

0.06 0.130 0.129 0.950

0.08 0.210 0.210 0.914

0.10 0.274 0.285 0.859

0.12 0.398 0.410 0.804

0.14 0.466 0.507 0.737

0.16 0.533 0.617 0.664

0.18 0.662 0.764 0.592

0.20 0.720 0.894 0.518
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In Fourier space vðkÞ ¼ �ik�ðkÞ=k2, giving
@�ðkÞ
@�

þ �ðkÞ ¼ �
Z d3q1d

3q2
ð2�Þ3 �Dðq1 þ q2 � kÞ

� k � q1
q21

�ðq1Þ�ðq2Þ; (A5)

@�ðkÞ
@�

þH�ðkÞ þ 3

2
�mH 2�ðkÞ

¼ �
Z d3q1d

3q2
ð2�Þ3 �Dðq1 þ q2 � kÞ

� k2ðq1 � q2Þ
2q21q

2
2

�ðq1Þ�ðq2Þ: (A6)

As long as � and � are small, the right-hand sides of the
fluid equations are small and can be dropped; this approxi-
mation defines linear theory. The solution to the resulting
linearized fluid equations may be written as

�Lðk; zÞ ¼ DðzÞ
DðziÞ�iðkÞ;

�Lðk; zÞ ¼ �H ðzÞfðzÞ DðzÞ
DðziÞ�iðkÞ;

(A7)

where �i is the density contrast at some early time zi when
linear theory is certainly valid, D is the linear growth
function (normalized to 1 today), and f � d lnD=d lna.
At early times �m � 1 and D / a. Note that a possible

decaying mode contribution, proportional to a�3=2 at early
times, is forced to zero in linear theory by the condition
that � be well behaved as a ! 0. Note also that the mode-
coupling integrals vanish for k ¼ 0, so linear theory is
always valid in some neighborhood of k ¼ 0, even at late
times. For convenience we define �0 to be the linear
density contrast today, i.e. �0ðkÞ ¼ �Lðk; z ¼ 0Þ.

It often proves convenient to use � ¼ lnD as a time
variable, and to combine � and � into a two-component
field

�aðkÞ ¼ �ðkÞ
��ðkÞ=H f

� �
: (A8)

If we introduce

�ðq1; q2Þ ¼ k � q1
q21

; 
ðq1; q2Þ ¼ k2ðq1 � q2Þ
2q21q

2
2

; (A9)

the fluid equations may be recast as�
�ab

@

@�
þ�ab

�
�bðk;�Þ

¼
Z d3q

ð2�Þ3 �abcðq; k� qÞ�bðq;�Þ�cðk� q;�Þ; (A10)

where

�abð�Þ ¼
0 �1

� 3�m

2f2
3�m

2f2
� 1

 !
(A11)

and the vertex �abcðq1; q2Þ only has nonzero
entries �121ðq1; q2Þ ¼ �112ðq2; q1Þ ¼ �ðq1; q2Þ=2 and
�222ðq1; q2Þ ¼ 
ðq1; q2Þ. The initial fields at time �i are
denoted

�aðkÞ � �aðk;�iÞ ¼ �iðkÞ 1
1

� �
; (A12)

and the linear theory solution is simply �ðLÞ
a ðk;�Þ ¼

e���i�aðkÞ.

1. Beyond linear order

Standard perturbation theory (hereafter SPT; [18–23])
defines a systematic series solution to the fluid equa-
tions (1) in powers of the initial density contrast �i (or
equivalently in powers of the current linearly evolved
density contrast �0). In an Einstein-de Sitter universe,

where H / a�1=2 and �mH 2 / a�1, the expansion
may be written as

�ðk; �Þ ¼ X1
n¼1

anð�Þ�nðkÞ;

�ðk; �Þ ¼ �H ð�ÞX1
n¼1

anð�Þ�nðkÞ;
(A13)

where �nðkÞ and �nðkÞ are time-independent mode-
coupling integrals over n powers of the initial density field:

�nðkÞ
�nðkÞ

� �
¼
Z d3q1 . . .d

3qn
ð2�Þ3n ð2�Þ3�D

�X
qi � k

�

� FnðfqigÞ
GnðfqigÞ

� �
�0ðq1Þ . . .�0ðqnÞ: (A14)

The kernels Fn and Gn satisfy recurrence relations that
follow straightforwardly from the equations of motion [21–
23]:

Fnðq1; . . . ; qnÞ ¼
Xn�1

m¼1

Gmðq1; . . . ; qmÞ
ð2nþ 3Þðn� 1Þ

�
ð1þ 2nÞ

� k � k1
k21

Fn�mðqmþ1; . . . ; qnÞ

þ k2ðk1 � k2Þ
k21k

2
2

Gn�mðqmþ1; . . . ; qnÞ
�
;

(A15)

Gnðq1; . . . ; qnÞ ¼
Xn�1

m¼1

Gmðq1; . . . ; qmÞ
ð2nþ 3Þðn� 1Þ

�
�
3
k � k1
k21

Fn�mðqmþ1; . . . ; qnÞ

þ n
k2ðk1 � k2Þ

k21k
2
2

Gn�mðqmþ1; . . . ; qnÞ
�
;

(A16)
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where k1 ¼ q1 þ � � � þ qm, k2 ¼ qmþ1 þ � � � þ qn, k ¼
k1 þ k2 and F1 ¼ G1 ¼ 1.

While the Einstein-de Sitter approximation is conve-
nient, it is not necessary [53]. However, we have confirmed
that an accurate approximation is to substitute the growth
factor DðzÞ for a,

�ðk; zÞ ¼ X1
n¼1

DnðzÞ�nðkÞ;

�ðk; zÞ ¼ �H f
X1
n¼1

DnðzÞ�nðkÞ;
(A17)

with the same mode-coupling integrals as above for �n and
�n. The validity of this approximation is ultimately traced
to the fact that the ratio�m=f

2 is very nearly unity over the
entire lifetime of the universe for �CDM cosmologies,
since f � �0:6

m [12].
To compute statistical observables, it is convenient to

introduce diagrammatic rules for keeping track of the
various terms in the perturbation series [21]. The function
�nðkÞ [or �nðkÞ] may be represented as in Fig. 9, where the
open circles denote factors of �0, and the vertex denotes a
momentum-conserving integral of Fn (or Gn) over inter-
mediate wave vectors qi. Algebraically the nth order con-

tribution PðnÞ is obtained by isolating all terms of order
ð�0Þ2n from the ensemble average h�ðkÞ�ðk0Þi, i.e.

ð2�Þ3�Dðkþ k0ÞPðnÞðk; zÞ ¼ D2nðzÞ X2n�1

m¼1

h�mðkÞ�2n�mðk0Þi:

(A18)

The quantity h�mðkÞ�2n�mðk0Þi may be represented dia-
grammatically by ‘‘multiplying’’ the diagrams for �mðkÞ
and �2n�mðk0Þ. Since the initial field �i (and hence �0) is
Gaussian, ensemble averages of powers of �0 may be
expanded in terms of the two-point function P0 according
toWick’s theorem. Then the product of the diagrams �mðkÞ
and �2n�mðk0Þ is given by summing over all possible pair-
ings of their open circles, where open circles are paired
according to the rule

with the additional understanding that any diagram con-
taining a tadpole (a fragment connected to the rest of the
diagram by a single edge) vanishes identically.

As an example we show in Fig. 10 how to obtain the 2nd

order contribution Pð2;2ÞðkÞ. Notice that after invoking mo-
mentum conservation at vertices and translational invari-
ance of the two-point function, only a single wave vector
remains to be integrated. In general all diagrams contrib-

uting toPðnÞ contain n� 1 loops, requiring integration over

n� 1 independent wave vectors. For this reason we often
classify power spectrum terms by their number of loops
rather than their ‘‘order,’’ which is a potentially ambiguous
concept.
With this expansion, statistical observables may be com-

puted straightforwardly in SPT to any fixed order. For
example, the first correction to the matter power spectrum
(second order in the initial power spectrum, fourth order in
the initial density contrast, or one-loop in the diagrammatic

FIG. 10. Diagrammatic prescription for computing Pð2;2ÞðkÞ. The overall factor of 2 comes from the two equivalent ways of pairing
the open circles. Only the single wave vector q must be integrated over, the rest being determined by momentum conservation at
vertices and translational invariance of the two-point function.

FIG. 9. Diagrammatic representation of the nth order contri-
bution to �ðkÞ.
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idiom) is given by

PðkÞ ¼ PLðkÞ þ Pð2;2ÞðkÞ þ Pð1;3ÞðkÞ; (A20)

where PLðk; zÞ ¼ D2ðzÞP0ðkÞ is the linear power spectrum and [22]

Pð1;3ÞðkÞ ¼ 1

252

k3

4�2
PLðkÞ

Z 1

0
drPLðkrÞ

�
12

r2
� 158þ 100r2 � 42r4 þ 3

r2
ðr2 � 1Þ3ð7r2 þ 2Þ ln

��������1þ r

1� r

��������
�
; (A21a)

Pð2;2ÞðkÞ ¼ 1

98

k3

4�2

Z 1

0
drPLðkrÞ

Z 1

�1
dxPLðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2rx

p
Þ ð3rþ 7x� 10rx2Þ2

ð1þ r2 � 2rxÞ2 : (A21b)

At low k, Pð2;2Þ is positive while Pð1;3Þ is negative, and there is a large degree of cancellation between them. For large k

Pð2;2ÞðkÞ � 1
4�

2k2PLðkÞ and Pð1;3ÞðkÞ � �1
2�

2k2PLðkÞ; (A22)

where � is defined by Eq. (7), so for sufficiently large k the total second order contribution is negative.
It is also straightforward to derive expressions for the velocity power spectrum [22]

Pð1;3Þ
�� ðkÞ ¼ 1

84

k3

4�2
PLðkÞ

Z 1

0
drPLðkrÞ

�
12

r2
� 82þ 4r2 � 6r4 þ 3

r2
ðr2 � 1Þ3ðr2 þ 2Þ ln

��������1þ r

1� r

��������
�
; (A23)

Pð2;2Þ
�� ðkÞ ¼ 1

98

k3

4�2

Z 1

0
drPLðkrÞ

Z 1

�1
dxPLðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2rx

p
Þ ð7x� r� 6rx2Þ2
ð1þ r2 � 2rxÞ2 ; (A24)

the density-velocity cross-spectrum (e.g. [54])

Pð1;3Þ
�� ðkÞ ¼ 1

252

k3

4�2
PLðkÞ

Z 1

0
drPLðkrÞ

�
24

r2
� 202þ 56r2 � 30r4 þ 3

r2
ðr2 � 1Þ3ð5r2 þ 4Þ ln

��������1þ r

1� r

��������
�
; (A25)

Pð2;2Þ
�� ðkÞ ¼ 1

98

k3

4�2

Z 1

0
drPLðkrÞ

Z 1

�1
dxPLðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2rx

p
Þ ð3rþ 7x� 10rx2Þð7x� r� 6rx2Þ

ð1þ r2 � 2rxÞ2 ; (A26)

and the propagator

GðkÞ ’ 1þ Pð1;3Þ þ Pð1;5Þ þ � � �
2PL

: (A27)

Though it is not usually considered, there is no real obstacle in going to the next order in the systematic perturbative

expansion described above. For the third order (two-loop) contribution, one finds Pð3ÞðkÞ ¼ Pð1;5ÞðkÞ þ Pð2;4ÞðkÞ þ Pð3;3ÞðkÞ
with [24]

Pð1;5ÞðkÞ ¼ 30PLðkÞ
Z d3q

ð2�Þ3
d3p

ð2�Þ3 F
ðsÞ
5 ðk; q;�q;p;�pÞPLðqÞPLðpÞ (A28)

Pð2;4ÞðkÞ ¼ 24
Z d3q

ð2�Þ3
d3p

ð2�Þ3 F
ðsÞ
2 ðq;k� qÞFðsÞ

4 ð�q; q� k;p;�pÞPLðqÞPLðpÞPLðjk� qjÞ (A29)

Pð3;3ÞðkÞ ¼
Z d3q

ð2�Þ3
d3p

ð2�Þ3 ½9F
ðsÞ
3 ðq;�q; kÞFðsÞ

3 ð�k;p;�pÞPLðkÞPLðqÞPLðpÞ
þ 6F3ðq;p; k� q� pÞF3ð�q;�p; qþ p� kÞPLðqÞPLðpÞPLðjk� q� pjÞ� (A30)

and with FðsÞ
n given by Eq. (A15) symmetrized over its n

arguments q1; . . . ; qn. Using rotational symmetry to elimi-
nate one azimuthal integration, the resulting expressions
require five-dimensional mode-coupling integrals which
are best performed using Monte Carlo methods.

Expressions for higher-order contributions are not diffi-
cult to derive, but the computational costs of evaluating
them quickly spiral out of control. In general the ‘-loop
contribution requires mode-coupling integrals of dimen-
sion 3‘ (3‘� 1 after rotational symmetry), making
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one-loop simple, two-loop possible, and higher orders
impracticable.

APPENDIX B: LAGRANGIAN PERTURBATION
THEORY

The Lagrangian description of structure formation [55–
57] relates the current, or Eulerian, position of a mass
element, x, to its initial, or Lagrangian, position, q, through
a displacement vector field: x ¼ qþ�ðqÞ. (Note that q is
used as a position vector in the Lagrangian picture,
whereas the same symbol is used as a wave vector in the
Eulerian picture.) The displacements can be related to
overdensities by [58]

�ðxÞ ¼
Z

d3q�Dðx� q��Þ � 1;

�ðkÞ ¼
Z

d3qe�ik�qðe�ik��ðqÞ � 1Þ:
(B1)

The displacements evolve according to

d2�

dt2
þ 2H

d�

dt
¼ �rx�½qþ�ðqÞ�; (B2)

where here and only here � is the gravitational potential.
Analogous to Eulerian perturbation theory, standard LPT
expands the displacement in powers of the linear density
field with [59]

�ðnÞðkÞ ¼ i

n!

Z Yn
i¼1

�
d3ki
ð2�Þ3

�
ð2�Þ3�D

�X
i

ki � k

�

�LðnÞðk1; . . . ; kn; kÞ�0ðk1Þ . . .�0ðknÞ; (B3)

and the LðnÞ have closed form expressions in terms of dot
products of wave vectors which can be generated by re-
currence relations. Expanding the exponential in Eq. (B1)

we obtain a perturbative series for the overdensity, � ¼
�ð1Þ þ �ð2Þ þ � � � where, e.g.,

�ð2ÞðkÞ ¼ 1

2

Z d3k1d
3k2

ð2�Þ3 �Dðk1 þ k2 � kÞ�0ðk1Þ�0ðk2Þ

� ½k �Lð2Þðk1; k2; kÞ þ k �Lð1Þðk1Þk � Lð1Þðk2Þ�
(B4)

is second order in the linear density field �0.
A similar expansion can be performed for the power

spectrum, which from Eq. (B1) can be written

PðkÞ ¼
Z

d3qe�ik�qðhe�ik���i � 1Þ; (B5)

where �� ¼ �ðqÞ ��ð0Þ and we have used translational
invariance.
Alternatively [28] suggested using the cumulant expan-

sion theorem for the exponential in Eq. (B5) and using the
binomial theorem to expand the term ðk ���ÞN . One
obtains two types of terms: those depending on � at the
same point and those depending on � at two different
points. Owing to statistical homogeneity the first type of
term is independent of position and can be factored out of
the integral leaving [28]

PðkÞ ¼ exp

�
�2

X1
n¼1

ð�1Þn�1h½k ��ð0Þ�2ni
�

�
Z

d3reik�r
	
exp

�X1
N¼2

ki1 . . . kiN
N!

BðNÞ
i1...iN

ðrÞ
�
� 1



;

(B6)

where ki1 . . . kiNB
ðNÞ
i1...iN

ðrÞ is shorthand for the second type

of term.
In a traditional perturbative calculation, one would ex-

pand this expression to a fixed order in �; this approach
indeed reproduces the SPT result to 2nd order. However,
one might expect that the position-independent cumulant
factors are more important on large scales than the
position-dependent ones, suggesting that these factors
should be left unexpanded in the exponential. Using
well-known previous results from LPT, the first corrections
to the power spectrum are then [28]

PðkÞ ¼ e�ðk�Þ2=2½PLðkÞ þ Pð2;2ÞðkÞ þ ~Pð1;3ÞðkÞ�; (B7)

where � is given by Eq. (7), Pð2;2ÞðkÞ is as in SPT
[Eq. (A21b)] and

~Pð1;3ÞðkÞ ¼ 1

252

k3

4�2
PLðkÞ

Z 1

0
drPLðkrÞ

�
�
12

r2
þ 10þ 100r2 � 42r4

þ 3

r3
ðr2 � 1Þ3ð7r2 þ 2Þ ln

��������1þ r

1� r

��������
�
: (B8)

Notice that this differs from the SPT result [Eq. (A21a)]
only by the replacement�158 ! 10 in the brackets. If the
exponential prefactor is expanded to first order in PL, the
SPT result is recovered exactly [28]. Also note that the first

term e��2k2=2PLðkÞ is identical to the tree-level RPT result
in the large-k limit.
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