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A generalized parametrization w�ðzÞ for the dark energy equation of state is proposed and some of its

cosmological consequences are investigated. We show that in the limit of the characteristic dimensionless

parameter � ! þ1, 0 and �1 some well-known equation of state parametrizations are fully recovered

whereas for other values of � the proposed parametrization admits a wider and new range of cosmological

solutions. We also discuss possible constraints on the w�ðzÞ parameters from current observational data.
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I. INTRODUCTION

The arrival of every new set of observational data has so
far reconfirmed the current cosmic acceleration, which in
turn poses to cosmology a fundamental task of identifying
and unveiling the cause of such a phenomenon. As is well
known, in the context of Einstein’s general relativity, this
phenomenon is directly associated with the existence of
new fields in high energy physics, the so-called dark en-
ergy or quintessence (see, e.g., [1] for recent reviews).

Following this route, the dark energy equation of state
(EoS), i.e., the ratio of its pressure to its energy density,
!ðzÞ � p=�, has become one of the most searched num-
bers nowadays in theoretical and observational cosmology.
This is so because if one could set (for some fundamental
principle or observational result) ! to be constant and
exactly �1, then there would be a great probability of
identifying the dark energy with the vacuum state of all
existing fields in the Universe, i.e., the cosmological con-
stant (�). Similarly, if a value !ðzÞ � �1 is unambigu-
ously found, then one could not only rule out � but also
seriously think of the dark pressure responsible for the
cosmic acceleration as the potential energy density asso-
ciated with a dynamical scalar field �.1

In practice, at least three different approaches could be
considered in order to find !ðzÞ from observations. The
first and most direct one is to solve the scalar field equation
for a particular theory. However, clearly such a procedure
cannot provide a model-independent parameter space to be
compared with the observational data. Another possibility
is to build a functional form for wðzÞ in terms of its current

value w0 and of its time-dependence w0 � dw=d lna that
avoids undesirable (and unphysical) behaviors in the past,
present and future evolution [5]. Recently, a number of EoS
parametrizations have been discussed in the literature (see,
e.g., [5–13] and references therein). As discussed in
Ref. [14], any functional form for wðzÞ may in principle
limit or even bias the physical interpretation of the data so
that a third, parameter-free approach, such as binned EoS,
decomposition into orthorgonal basis and principal com-
ponent analysis, has also been considered as an alternative
to EoS parametrization [14]. Although promising, it is fair
to say that such a procedure does not solve all the existing
problems and may also introduce new ones, such as model
dependence and uncertain signal-to-noise criteria (see [14]
for more on this subject).
In this paper, we follow the second approach discussed

above and consider a new parametrization for the dark
energy EoS, which is characterized by a dimensionless
parameter �. In the limits � ! (� 1, 0, þ1), this new
EoS form fully generalizes three of the most common EoS
parametrizations investigated in the literature whereas
8 � � ð�1; 0;þ1Þ it admits a much wider range of solu-
tions. Among these solutions, many of the different cos-
mological models that have been proposed to explain dark
energy as well as new ones can be incorporated into the
functional form here proposed. We emphasize that such
flexibility and generality are particularly important to our
research on wðzÞ not only because they increase the range
of possibilities to be tested but also because in principle
they may reduce the possibility for misleading results an
incorrect EoS parametrization can produce.
This paper is organized as follows. In Secs. II and IIIwe

discuss some features of this new EoS parametrization and
investigate its influence on the evolution of the dark en-
ergy–dark matter ratio and on the epoch of cosmic accel-
eration. In Sec. III we also test the viability of the
parametrization proposed by investigating constraints on
the 2-dimensional w0 � � and w� � � planes and on the

3-dimensional w0 � w� � � space from distance mea-
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1The possibility !ðzÞ � �1 still leads to two different routes,

i.e., either the so-called quintessence if �1<!ðzÞ<�1=3 [2]
or phantom fields if !ðzÞ<�1 [3]. Both cases violate the strong
energy condition �þ 3p > 0, but the latter goes even further
and also violates the null energy condition �þ p > 0 [4].
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surements of type Ia supernovae (SNe Ia), measurements
of the baryonic acoustic oscillations (BAO) and cosmic
microwave background (CMB), and measurements of the
Hubble expansion HðzÞ at low and intermediary redshifts.
We end this paper by summarizing our main results in
Sec. IV.

II. NEW PARAMETERIZATION

Let us start by presenting some of the most investigated
EoS parametrizations:

wðzÞ ¼
8<
:
w0 þ wP1z ðP1Þ ½6–8�
w0 þ wP2 lnð1þ zÞ ðP2Þ ½9�
w0 þ wP3z=ð1þ zÞ ðP3Þ ½10; 11�

(1)

where w0 is the current value of the EoS parameter, and wP

(P ¼ P1, P2, P3) are free parameters quantifying the time-
dependence of the dark energy EoS, which must be ad-
justed by the observational data. Note that the EoS asso-
ciated with � can be always recovered by taking wP ¼ 0
and w0 ¼ �1 (see also [13] for other parametrizations).

The Taylor expansion P1 was suggested in Refs. [6–8].
Observational constraints on P1 were first studied in
Ref. [6] by using SNe Ia data, gravitational lensing statis-
tics and globular clusters ages and also in [12], which
investigated limits to this parametrization from future
SNe Ia experiments. As commented in [6], P1 is a good
approximation for most quintessence models out to red-
shift of a few and it is exact for models where the EoS is a
constant or changing slowly. P1, however, has serious
problems to explain high-z observations since it blows up
at z > 1 as expð3wP1zÞ for values of wP1 > 0. The empiri-
cal fit P2 was introduced by Efstathiou [9] who argued that
for a wide class of potentials associated with dynamical
scalar field models the evolution of wðzÞ at z & 4 is well
approximated by P2. P3 was proposed in Refs. [10,11]
aiming at solving undesirable behaviors of P1 at high-z.
According to [15], this parametrization is a good fit for
many theoretically conceivable scalar field potentials, as
well as for small recent deviations from a pure cosmologi-
cal constant behavior (w ¼ �1).

To extend the EoS parametrizations above, let us con-
sider the following time-dependent function:

wðaÞ ¼ w0 � w�

a� � 1

�
ðP�Þ

¼ w0 � w�

ð1þ zÞ�� � 1

�
; (2)

where a ¼ 1=ð1þ zÞ is the cosmological scale factor and
we have set its present value a0 ¼ 1 (throughout this paper
both subscript and superscript 0 will denote present val-
ues). From the above expressions, it is straightforward to
show that the EoS parametrizations given by Eq. (1) are
fully recovered in the limits:

� ! �1 ) P� ! P1; � ! 0 ) P� ! P2;

� ! þ1 ) P� ! P3;

where we have used the equality lnx ¼ lim�!0ðx� � 1Þ=�
to obtain the limit for P2. This amounts to saying that the
introduction of the new parameter � is equivalent to insert
the EoS parametrizations (P1)–(P3) in a more general
framework that admits a wider and new range of cosmo-
logical solutions (P�_0).

Since the above parametrizations represent separately
conserved components, one can show from the energy
conservation law [ _�� ¼ �3 _að�� þ p�Þ=a] that the ratio

f� ¼ ��=�
0
� evolves as

f� ¼ a�3ð1þw0þw�=�Þ exp
�
3w�

�

�
a� � 1

�

��
: (3)

Some special cases of the above expression are

fP1 ¼ a�3ð1þw0�w1Þ exp
�
3w1

�
1

a
� 1

��
; if �¼�1; (4a)

fP2 ¼ a�3½1þw0�ðw2=2Þ lna�; if �¼ 0; (4b)

fP3 ¼ a�3ð1þw0þw3Þ exp½3w3ða� 1Þ�; if �¼ 1: (4c)

From Eq. (3), some cases of interest relating the parame-
ters w0, w� and � may be obtained:

(1) �> 0 (w� _ 0): At early times the dark energy is a

subdominant component if w0 þ w�=� � 0.

(2) �< 0 and w� > 0: At early times the dark energy

always dominates over the other material
components.

(3) �< 0 and w� < 0: At early times the dark energy

density vanishes.
To better visualize the cases discussed above, we show

in Figs. 1(a) and 1(b) the ratio ��=�m as a function of z for

some selected values of �, w0 ¼ �1 and �0
�=�

0
m ’ 2:33.

Two symmetric values of w� are considered, i.e., 0.2

[Fig. 1(a)] and �0:2 [Fig. 1(b)] and the corresponding
value of � is displayed right below the curve. We observe
that, for these particular combinations of w0 and w�, al-

most the entire range of P��0 solutions (which includes P2

and P3) are well-behaved.2 As expected, for w� ¼ 0:2

(w� > 0 in general) P�<0 parametrizations present unde-

sirable behavior due to the exponential term in Eq. (4a).
We also note that P� is flexible enough to incorporate

into it other dark energy scenarios. For example, models
well approximated by P3 (or, equivalently, P�¼1) with

w3 ¼ constð1þ w0Þ are clearly particular examples of
P�. This is the case of the linear potential scenario of the

2Note that, although well-behaved in the past evolution, P3
blows up exponentially in the future as z ! �1 for wP3 > 0. In
general, for �> 0 and w� < 0, �� ! 0 as z ! �1.
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type Vð�Þ ¼ V0 þ ð���0ÞV 0
0 studied in Ref. [16] and

also of the so-called mirage � model of Ref. [17]. Still in
the class of thawing scalar field models, the dynamics of
the Pseudo-Nambu Goldstone Boson (PNGB) model [18],
whose potential is given by Vð�Þ / 1þ cosð�=fÞ, can be
approximated by wðaÞ ¼ �1þ ð1þ w0ÞaF, where F is
inversely related to the symmetry scale f [19]. This
three-parameter EoS can be incorporated into P� by re-

defining w� ¼ ��ð1þ w0Þ. A similar identification can

also be made to the class of thawing models studied in
Ref. [20] whose potential is described by Vð�Þ / fð�Þ�
exp½��ð�þ ��2Þ� and EoS given exactly by wðaÞ ¼
�1þ �a2�. Clearly, P� can reproduce this latter wðaÞ
function by redefining � ¼ w�=�with the constraintw0 �
w�=� ¼ �1 (we refer the reader to Refs. [19,21] for a

complete analysis of several models discussed here and
others that may potentially be described by P�).

3

Finally, the Friedmann equation for our generalized
w�ðzÞ model is written as

H ðz; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

ma
�3 þ ð1��0

m ��kÞf� þ�0
ka

�2
q

;

(5)

where H ðz; sÞ ¼ H=H0, s � ð�0
m; w0; w�; �Þ, and H0,

�0
m and �0

k are, respectively, the current values of the

Hubble, matter and curvature density parameters.

III. OBSERVATIONAL ASPECTS

A. Transition redshift

In order to study the influence of the parameter � on the
epoch of cosmic acceleration, we first derive the decelera-
tion parameter,

qðaÞ ¼ 1

2

�0
ma

�3 þ ð1��0
m ��kÞðf0�=a� 2f�Þ

�0
ma

�3 þ ð1��0
m ��kÞf� þ�0

ka
�2

; (6)

where f0�=a ¼ 3ð1þ!0 þ !�

� Þf� � 3!�a
�

� f�. The transi-

tion redshift zt, at which the Universe switches from de-
celeration to acceleration, can be obtained from the
following expression,

�0
my

3 þ g�ð1��0
m ��0

kÞy3ð1þw0þðw�=�ÞÞ ¼ 0; (7)

where y ¼ ð1þ ztÞ and

g� ¼
�
1þ 3w0 þ

3w�

�
ð1� y��Þ

�
exp

�
3w�

�

�
y�� � 1

�

��
:

As one may easily check, for values ofw0 ¼ �1 andw� ¼
0, Eq. (7) reduces to the well-known standard expression

y�CDM ¼ ½2ð1��0
mÞ=�0

m�1=3.
Figure (1c) shows the transition redshift zt as a function

of � [Eq. (7)] by assuming w0 ¼ �1 and �0
m ¼ 0:3. Four
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FIG. 1. (a) The ratio ��=�m as a function of the redshift parameter z for w0 ¼ �1:0, w� ¼ 0:2 and �0
�=�

0
m ’ 2:33. The value of � is

displayed below the corresponding curve. Note that the class of P�<0 models presents an undesirable behavior at high-z in agreement

with Eq. (3). (b) The same as in Panel (a) for w� ¼ �0:2. In this case, the dark energy contribution for negative values of � becomes

negligible at z * 4. (c) The influence of the parameter � on the transition redshift zt. To plot these curves we have fixed w0 ¼ �1:0
and �0

m ¼ 0:3. Solid horizontal lines stand for the interval 0:49 � zt � 0:88, which corresponds to �1� of one of the values for zt
estimated in Ref. [22].

3Note that most of the trivial (three-parameter) generalizations
of P1–P3 can be incorporated into P�. For example, let us take
the case of the model wðaÞ ¼ w0 þ wP3ð1� abÞ discussed in
Ref. [21], which is clearly a particular case of P� when w� ¼
�wP3.
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cases are shown: two in whichw� takes positive values (0.5

and 1.0) and two in which w� < 0 (� 0:5 and�1:0). Note

that, the more negative the value of� the lower (higher) the
transition redshift for negative (positive) values of w�. The

horizontal lines stand for the interval 0:49 � zt � 0:88,
which corresponds to �1� of the value for zt given in
Ref. [22].

B. Statistical analysis

The new parameter � opens the possibility for a multi-
tude of new cosmological solutions for different combina-
tions of w0, w� and �. In this section we investigate

observational bounds on the parametric spaces w0 � �,
w� � � and w0 � w� � � from a statistical analysis in-

volving four classes of cosmological observations.
Motivated by inflation and the recent results of the CMB

power spectrum [23] we assume from now on spatial flat-
ness (�k ¼ 0). We use the most recent compilation of
distance measurements to SNe Ia, the so-called constitu-
tion set (CS) [24] of 397 SNe Ia. This SNe Ia sample covers
a redshift range from z ¼ 0:015 to z ¼ 1:551, including
139 SNe Ia at z < 0:08, and constitutes the largest SNe Ia
luminosity distance sample currently available.

We also use CMB and BAO data to help diminish the
degeneracy between the dark energy parameters w0, w�

and �. For the CMB, we use only the measurement of the
CMB shift parameter [23,25]

R �
ffiffiffiffiffiffiffiffi
�0

m

q Z zls

0

dz0

H ðz0; sÞ ¼ 1:70� 0:03; (8)

where zls ¼ 1089 is the redshift of the last scattering
surface. The BAO parameter is given by [26]

A ¼ DV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�moH

2
0

q

z�
; (9)

where the SDSS value is Aobs ¼ 0:469� 0:017, z� ¼
0:35 is the typical redshift of the SDSS sample and DV ¼
½D2

M=z�Hðz�; sÞ�1=3 is the dilation scale, defined in terms of
the comoving distance to z�, i.e., DM ¼ Rz�

0 dz0=Hðz0; sÞ. It
is worth emphasizing that the value ofA is obtained from
the data in the context of the �CDM model, and can be
considered a good approximation only for models whose
dark energy contribution at early times is not very large
[27]. Therefore, since for values of �< 0 and w� > 0 P�
gives rise to early dark energy models, we must have in
mind that the inclusion of BAO data (as well as the CMB
shift parameter) rigorously limits the range of the parame-
ter space considered in the analysis.
Finally, we also use 9 determinations of the Hubble

parameter as a function of redshift, as given in Ref. [28].
The use of these data to constrain cosmological models
seems to be interesting because, differently from distance
measures, the Hubble parameter is not integrated over (see,
e.g., [28,29] for more details). Thus, in our statistical
analysis we minimize the function �2 ¼ �2

SNe þ �2
CMB þ

�2
BAO þ �2

HðzÞ, which takes into account all the data sets

discussed above.
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FIG. 2. Contours of �2 in the plane w0 � � (Panel a) and w� � � (Panel b). Contours are drawn for ��2 ¼ 2:30 (1�) and 6.17 (2�).
From Panel (b), we clearly see that the observational data are compatible with the class of P�<0 models predominantly for values of

w� < 0.
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C. Results

Figure 2(a) and 2(b) shows, respectively, the parametric
spaces w0 � � and w� � � that arise from the joint analy-

sis described above. As expected, we note that similarly to
what happens with most of the time-dependent EoS pa-
rametrizations the current observational bounds on w� and

� are quite weak since they appear as the argument of the
exponential term in the energy density [Eq. (3)]. Because
of the CMB shift estimate R at high-z, we see from Panel
(2b) that the observational data are compatible with the
class of P�<0 models predominantly for values of w� < 0,

which is compatible with the cases of interest discussed
in Sec. II and also with the ��=�m-z history shown in

Figs. 1(a) and 1(b). We also show in Fig. 3 contours of
��2 in the 3-dimensional parametric space w0 � w� � �,

using all data sets. The contours are drawn for��2 ¼ 3:53
and 8.02 (corresponding, respectively, to 1� and 2� for 3

parameters). In particular, for the combination of data
discussed earlier, the best-fit occurs for values of w0 ’
�1:0, w� ’ 0:28 and � ’ 0:1 with �2

	 ’ 1:17 (�2
	 �

�2
min=	 where 	 stands for degrees of freedom). We note

that, when the CMB shift parameter is not considered in the
�2 analysis [SNe Iaþ BAOþ HðzÞ], the best fit for �
changes considerably to � ’ �3:04 (w0 ’ �0:98, w� ’
0:1). This difference in the results with and without the
CMB shift estimate R seems to be in agreement with a
recent analysis for P3 discussed in Ref. [30].

IV. FINAL REMARKS

In principle, to check the validity of a model or a theory,
it is interesting for several reasons to insert it in a more
general framework. This not only brings to light new sets
of solutions but also may provide a more accurate consis-
tency check to the original model. In this paper, a general
framework for a class of EoS parametrization (P1)–(P3),
quantified by a dimensionless parameter �, has been pro-
posed and some of its cosmological consequences studied.
As an interesting consequence, we have shown that be-
tween (and beyond) P2 (� ¼ 0) and P3 (� ¼ 1), there is a
family of P�>0 solutions, whose behavior seems to be

compatible with current observational data. Although a
reasonably precise estimate for � (as well as for w�)

cannot be extracted from current data, we believe that the
next generation of dark energy experiments dedicated to
this issue (mainly those measuring the expansion history
from high-z SNe Ia, baryon oscillations, and weak gravi-
tational lensing distortion by foreground galaxies (see, e.g.,
[31]) will probe cosmology with sufficient accuracy to
decide which (if any) interval of the parameters w� and

� is preferable from an observational viewpoint (see also
[21] for a discussion on some EoS parametrizations and
possible constraints on their parameters from future SNe
Ia, CMB and weak lensing experiments).
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