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Classical stability of sudden and big rip singularities
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We introduce a general characterization of sudden cosmological singularities and investigate the
classical stability of homogeneous and isotropic cosmological solutions of all curvatures containing
these singularities to small scalar, vector, and tensor perturbations using gauge-invariant perturbation
theory. We establish that sudden singularities at which the scale factor, expansion rate, and density are
finite are stable except for a set of special parameter values. We also apply our analysis to the stability of
Big Rip singularities and find the conditions for their stability against small scalar, vector, and tensor

perturbations.
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L. INTRODUCTION

We have shown in [1] that general relativistic
Friedmann-Robertson-Walker (FRW) universes allow
finite-time singularities to occur in which the scale factor,
a(1), its time derivative, ¢, and the density, p, remain finite
while a singularity occurs in the fluid pressure, p — +o0,
and the expansion acceleration, with
Remarkably, the strong energy condition p + 3p > 0 con-
tinues to hold. Analogous solutions are possible in which
the singularity can occur only in arbitrarily high derivatives
of a(7), [2]. This behavior occurs independently of the 3-
curvature of the universe and can prevent closed FRW
universes that obey the strong energy condition from rec-
ollapsing [3]. These singularities can be seen in a wider
context by classifying the behaviors of FRW universes
containing matter with a pressure-density relation defined
by p + p = yp*, as shown in [4], and reviewed further in
[5]. The sudden singular behavior found for a range of
values of (y, A) also encompasses the evolution found in a
number of simple bulk viscous cosmologies studied in [6].
Subsequently, a number of studies have been carried out
which generalize these results to different cosmologies,
other density-pressure relationships, and theories of grav-
ity [7,8].

Other studies [9] have also related the sudden singularity
behavior to the formal classifications of 'weak’ singular-
ities according to the definitions introduced by Krolak [10]
and Tipler [11], investigated the behavior of geodesics,
classified the other types of future singularity that can arise
during the expansion of the Universe [12], discussed the
role of different energy conditions on different realizations
of sudden singularities [7,13], and explored some observa-
tional constraints on their possible future occurrence in our
visible Universe [14]. The Weyl invariant will not diverge
on approach to a sudden singularity (and there is no
geodesic incompleteness [15]), so it may represent part
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of a ’soft’” future boundary of the universe with low gravi-
tational entropy — which could be as close as 8.7 Myr in the
future.

Most recently, the effects of quantum particle production
have been studied and have been found to leave sudden
singularities in place [16]. Specifically, it was shown that
quantum particle production does not dominate over the
classical background density on approach to a sudden
singularity and does not stop it occurring or modify its
properties, as can be the case for the Big Rip future
singularities [17,18]. The effects of loop quantum gravity
have been studied in cosmologies exhibiting classical sud-
den singularities and they may remove the sudden singu-
larity under certain particular conditions [19]. Sudden
singularities have also been studied due to their occurrence
in various theories of modified gravity [20], and we would
only expect these modifications to be significant in this
respect if they also dominate over general relativity effects
at late times.

In this paper, we will extend previous studies by inves-
tigating the classical stability of sudden singularities with
respect to small inhomogeneous scalar, vector, and tensor
perturbations using the gauge-invariant formalism intro-
duced by Mukhanov [21]. We introduce a new character-
ization of sudden singularities in terms of the series
expansion of the expansion scale factor on approach to
the singularity. We show that, except for a subset of special
parameter choices, they are stable to small perturbations if
and only if the density does not diverge near the singularity.
The latter is characteristic of sudden singularities. We also
extend this analysis and apply it to “Big Rip” singularities
and determine the conditions under which they are stable
and unstable.

II. BACKGROUND THEORY

Following [22], we consider perturbations of a general
FRW metric,

KO+ 2+ 2\2, .
ds® = az(T)(de - 5,»j(l + Kty +2) i} < )) dx’dxﬂ’),
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where K =0, 1, —1 depending on whether the three-
dimensional hypersurfaces of constant 7 time are spatially
flat, closed or open. Here, 7 denotes conformal time, and is
related to the comoving proper time, ¢, by a dt = dt. We
shall also assume that the primary component of matter is a
perfect fluid with energy-momentum tensor (index nota-
tionstun 1 =4, j=3,0=<a, B8 =3)

T = (p + puug — p5§, (1

but we shall not necessarily be specifying a specific equa-
tion of state linking p and p.

For this background universe, the equations for the scale
factor a(t), density p and pressure p are as follows (in units
with 877G =1 and ¢ = 1), where the overdot denotes
d/dt:

p==32(+p) )
R
e

and we shall assume an equation of state with a functional
form p = p(p). We can see by inspection that these equa-
tions permit finite-time singularities such that a, @ and p
are finite but p and d diverge as t — f,.

We shall adopt the following definition [23]: a sudden
singularity will be said to occur at time ¢ = ¢, if the scale
factor a(f) can be written in the form

a(t) = co + ¢ty — Hh + cy(ty — D+ (5)

in a generalized power series about 7, where the c;, A; are
real constants, with ¢; # 0, ¢y >0and 0 < A <A, <....
with at least one of the A; nonintegral (so that some
derivative of a(r) blows up near the singularity). Note
that the series (5) need not be infinite. Also, our form of
(5) assumes that the sudden singularity occurs in the future;
however, the stability results we derive will also hold for
past sudden singularities, defined in the analogous way
using

a(t) = co + ci(t — t)M + ot — t)2 + -+ (6)

This characterization encompasses the particular finite
series expressions for FRW models with sudden singular-
ities introduced in Refs. [1,2], those arising in the solutions
found in Ref. [4], and those studied in Refs. [5,7,8].

The energy-momentum tensor defined in (1) leads to the
following gauge-invariant perturbations [21]

1
8TY = &p, STV = — + po)du;,
0 =26p i = (po + po)du; o
8T; = —6pd; = —p'(p)ops;.
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Here, 6p, 6 p and Su; are the gauge-invariant perturba-
tions of the density, pressure and velocity. We shall now
consider separately the behavior of the tensor, vector and
scalar modes as t — t,.

III. TENSOR PERTURBATIONS

Under tensor perturbations, the most general form of the
line element is

K
ds*> = a2(7)<d7'2 - [(1 + Z()C2 +y*+ Zz))‘sij

- hij]dxidxj),

where h! = 0, hll’] = 0, where a slash indicates a covariant
derivative with réspect to the spatial 3-metric. Note that the
quantity h;; is gauge-invariant.

In conformal time, the equation for tensor perturbations
is [24]

, . 24

where a prime denotes a derivative with respect to confor-
mal time. The cosmic time analogue of this equation is
a?h;; + 3adah;; + k*h;j + 2Kh;; =0 ©)

for a plane wave perturbation with wave number k. We now

set h;; = ve;;, where ¢;; is a time-independent polarization
tensor. This leads to the differential equation
a*v + 3aav +(k* + 2K)v = 0. (10)
From (5), we see that in the limit t — ¢, we have
a(t) =co+c,(t, — M + -+~ (11)
a(t) = —c Mg — M T4 (12)

where A; > 0, and ¢(, ¢; # 0. We can substitute these into
(10) to obtain the asymptotic ordinary differential equation

C%U - 3C0C|)\]T)‘Iill.) + (kZ + 2K)U = 0, (13)

where we have taken 7T = t, — ¢t and dots now indicate
differentiation with respect to 7. We would like to
investigate whether solutions to (13) exhibit blow-up near
T=0.

In the case A; <1, a very similar analysis to that de-
scribed in the Appendix shows that v tends to a constant as
T — 0. Egs. (A4) onwards still hold.

In the case A; = 1, all coefficients of (13) are nonsin-
gular, so the ordinary differential equation is regular and
hence has no singularity at 7 — 0. In fact, if k&> + 2K >0,
we end up with a simple harmonic oscillator (which is
damped if A; = 1), whose solutions are bounded at 7 = 0.

Hence, both long- and short-wavelength tensor pertur-
bations are bounded near the singularity. This clearly holds
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for all values of the A;, and the sudden singularity is
always stable against inhomogeneous gravitational-wave
perturbations.

IV. VECTOR PERTURBATIONS

For vector perturbations, the most general form of the
line element is

ds*= 612(7')(517'2 +28,dx'dr
- 1+K(2+ 2+2%))8,;— Fij— Fj,; |dx'dx/
Zx y Tz ij i ji |ax dxs ),

where Sli = Fl" = 0. The quantity V; = S, — F! is gauge-
invariant.

The only part of the energy-momentum tensor which
contributes to vector perturbations is [21]

1
8T} = —(po + po)du, (14)

where 6u | ; is the part of Su; with zero divergence, and p,,
and p, are the background density and pressure, respec-
tively. The equations for the vector perturbations are

(2K — K*)V; = 2a(py + po)du 15)

For both long- and short-wavelength perturbations, we
obtain as a consequence of the conservation of angular
momentum:

1
V; = const X —, (17)
a

: 1
dv' = const X ———, (18)
a*(po + po)
where the physical velocities v’ are defined by dv' =
—a~'8u ;. Hence, vector perturbations of the metric are
bounded on approach to the sudden singularity since a —
as<oo,p0—>ps<ooandp0—>oo,

V. SCALAR PERTURBATIONS

A. Overview

We have shown, above, that tensor and vector perturba-
tions do not diverge near the sudden singularity, for all
values of A; in the form (5). The analysis of scalar pertur-
bations is slightly more involved, and we shall need to
consider various cases according to the values taken by A
and A,. This is not unexpected. The sudden singularity is
primarily created by the behavior of the pressure and so we
expect the scalar perturbation modes associated with pres-
sure inhomogeneities to play a significant role in control-
ling the stability.
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Under scalar perturbations, the most general form of the
line element is

ds*= a2(7)((1 +2¢)d7* — 2B, dx'dt
K2, 2.2
—| =291+ 302 437 +2) )8, + 2B,
X dxidxj),
and we can define the usual gauge-invariant quantities
1 a
®=¢——[a(B-E)] and Y=y +—(B-E)
a a

The equations for scalar perturbations are, following
[22]:

o=V (19)

a*® + (4 + 3p'(p))aa ® +Q2adi + (a* — K)(1 + 3p/(p))
+ p'(p)A)D =0 (20)
for plane wave perturbations with wave number k, where

p'(p) =dp/dp. We can then find the gauge-invariant
perturbed quantities as follows:

o . 2 + .2
8p = _6_aq)_<u)q), @1
a a
dp = p'(p)dp. (22)

B. The general case

First, consider the case when A; = A is nonintegral. In
this case we find, in the limit t — #,:

a(t) =co+c,(ty, — ) + - - (23)
a(t) = —c Aty =+ (24)
() = c) A — D(t, — A2+ - (25)

and from (3) and (4) we obtain the leading-order approx-
imations

3K 3A%32 _
— ? Tl(ts _ 1)2()\ D4... (26)
0 0

K 2c,AA—1)

p=——
C% Co

(ty = DA 2+ -+ (27)

for the density and pressure, respectively. (Note that, re-
gardless of the value of K, the density diverges if and only
if A <1, and the pressure diverges if and only if A <2.)
We also find that
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( )_dp_dp/dt_ 1<a3—a22i+1<a)
PP = ap " dpjdi ~ 3\alai — @ — K)
Co(A_z) ~2
=-2" Z¢ -1 28
3 (t, —1) (28)

to leading order, regardless of the value of K.

Substituting the above forms into (20), and neglecting
higher-order terms, gives us the following equation (where
T = t, — t and dots now indicate differentiation with re-
spect to T):

d— (A -7 b + (ﬁ A2TA-2

Co
(k> —3K)(A—2) K)
— TA-—=)P=0 (2
3cociA c(z) @9)

ko

€

A, it will be dominated in magnitude by one of the other

two terms making up the coefficient of @, as T — 0. We

will now consider the cases A < 1 and A > 1 separately.
If A <1, then (29) becomes

and we can neglect the last (£2) term since, for all values of

H-—A-2)T ' b+ 22 =0  (30)
Co

and applying the substitutions P = TU"V/2d and x =
CT*/? gives the equation

4oy (A — 1)
C0C2 AZ

P'x%2 + Plx + ( )P = 30, 31)
where primes denote differentiation with respect to x. If

¢, >0, we set C = 24/c; /¢y, and obtain a Bessel equation
with solution

P(x) = AJ,(x) + BY,(x)

with A, B arbitrary constants. Since we are considering the
limit x — 0, the leading-order solution is

P(x) = AxWA=1/A 4 px(1=0/4A (32)
or
®(r) = A(t, — )" ' + B, (33)

where A, B are new constants. Therefore, since A < 1, ®(r)
diverges in general as r— ;. The case ¢; <0 can be
treated similarly. Note that this result holds, independently
of k, for both long- and short-wavelength perturbations and
for all K.

Now suppose that A > 1. Then (29) becomes

b-A—-2)T'd-DT'd =0 (34)
where D = W# Analogously to the above, we
0C1
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substitute P = TU~Y/2®, and then x = CT'~*/2, which
leads to the Bessel equation

(1—2)? A—1
P'x* + P! +(2——)P=0 =
X x+(x 2= 12 Y=
(35)
where we have set C = 24/|D|/|A — 2|.
As x — 0, this has the asymptotic solution
P(x) = AxA=D/Q=1) 4 gx(1=1/2=4) (36)
or
®d(r) = A(t, — )M ' + B. (37)

Thus, if A > 1, the scalar metric perturbations do not
diverge as t — ¢,. Again, note that this holds for all values
of K, and for both long- and short-wavelength
perturbations.

Hence, the scalar metric perturbations diverge for all
0 < A; <1, and are bounded for all nonintegral A; > 1. In
fact, the analysis above also holds for all integral A; > 2. In
this case, the density and pressure tend to constants near
the singularity, and the metric perturbations do not diverge.
Thus, we just need to deal separately with the boundary
casesof Ay = 1 and A| = 2.

C.Thecase A =1, A, # 2

Consider the case A} = 1< A, <.... and assume first
that A, # 2. So, as t — t:

a(t) =co+c,(t, — 1)+ cy(t, — )P + - -+ (38)
a(t) = —c; — caAy(ty — )71+ - (39)
i) = Ay (Ay — Dty — )72 4 -+ (40)

a(t) = —c; (A = DAy = 2)(t;, — )73 + - -+ (41)

K+ ¢t
= u 4+ .. (42)
c
_ (K + C%) _ 2C2/\2(/\2 - 1)(ts - I)Az_z +
3 o
(43)

We can see that p tends to a constant as we approach the
singularity, but p tends to a constant if and only if A, = 2,
and diverges otherwise.
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We can also obtain the following expressions:

—cdg—;;”(zs—g—l if1<a, <2
'2(,' - - — .

| ek s i<, <3

plp)=1q ., 0"
6cger—cy—Key if A, =3
301(K+C%) 1 2
~1 if A, >3
if K+ ¢} # 0, and
co(Ay —2) _
plp) = -2 = 3zc (ty — 1)
1

forall Ay, if K+c?=0(Ge K=—1,¢, = *1).
First, we consider the case K + ¢? # 0. Substituting the
forms of p’(p) into (20) gives

D+HAT 'O+ BT IO =0 if 1<, <2
O+ ATR 3D + BTR D =0 if 2<2, <3
b+ AD+BD=0 if A, =3

where A and B are always constants. The first differential
equation yields an asymptotic solution d(r) = A’ +
B'(t; — )71, so the scalar perturbations are bounded in
this case. Showing that solutions of the second differential
equation are bounded as 7 — 0 is more cumbersome: a
derivation is given in the Appendix. For A, = 3, the co-
efficients of the differential equation are constants, so the
general solution has the form

O(1r) = A’exp(A;(t; — 1)) + B'exp(Ay(1; — 1), (44)

which is bounded as r — ¢,.

The same analysis can be used to show that the solution
in the case K + ¢ = 0 is also bounded as T — 0. Notice
that these results hold for both long- and short-wavelength
perturbations.

D.Thecase A =1, A, =2
Nowlet Ay =1, A, =2<A3<---.Ast— 1

a(t) = co + cy(ty — 1) + cplty — 1)* + 3ty — O + - -

(45)
a(t) = —c; = 2¢5(t; — 1) — e3A3(e, — )71 (46)
a(t) - 2C2 + C3)\3()l3 - 1)(t5 - t)/\3_2 + .- (47)

a(t) = =c3h3(A3 = DA = 2ty = 73 + -+ (48)

3(K + ¢}
:( 2cl)+... (49)
o
(K + %) 4c
p=- > U_ T2 (50)

CO Co

so the density and pressure tend to constants near the
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singularity. Also:

ctesA (A —1)(A3-2) _ A3
@ k2ge) s TONT i 2< A <3
H(p) = § Se—Kei—cl if Ay =
p (p) 3CI(C%+K72COC2) lf /\3 3
‘2+K .
< if A>3

3(2cper—ci—K)

and we can now substitute these into (20) to get the
following functional forms of the scalar perturbation equa-
tion (where T = t, — ¢, dots indicate derivatives with re-
spect to T, and A, B are constants):

b+ ATH 3D + BT 3D =0

y . if2<A;<3
O+ AD + BD =0 '

if Ay =3

Equations of this form arose in the previous section, and
we showed that their solutions are bounded as 7' — O.
The above expressions for p/'(p) are not well-defined if
K = 2c¢yc, — 2. For this special case, we can calculate
S S ) PR |
p'(p) = : e (5 1t)
- ﬁ (ts - t)

if2<A3<3
if A; =3

and the corresponding scalar perturbation equation is
d+AdD +BP/T = 0.

Solutions of this differential equation can be expressed in
terms of Whittaker functions, and are bounded as 7 — 0.

Hence, the scalar perturbations are bounded for A; = 1,
A, = 2. This is quite a strong result, since most ‘“‘nice”
functions a(#) can be expressed as power series. We have
shown that for all such functions, as long as the coefficient
of the ¢ term is nonzero near the singularity (i.e. a(z,) # 0),
the sudden singularity is a stable solution of the FRW
equations.

E. The case A; = 2
The final case to consider is:
a(t) = co + cy(ty — 1* + cyt, — ) + -+ -, (51)

where the ¢; # 0, ¢g >0 and 2 < A, <.... with at least
one of the A; nonintegral. As t — t,, we have:

a(t) = _2Cl([s - [) - CZAZ(IS - t)/\271 + - (52)
Cl(t) - 2C1 + 62)\2()\2 - 1)([s - [)/\2_2 2 I (53)

a(t) = —c3h(Ay — DAy = 2)(t; — )73 + -+ (54)

and p — 3K/c}, p — —(4c ¢y + K)/c}.
First, let us assume K = 0. There are three cases to
consider for p/'(p):
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L= 1)(A,—2 4 .
_ coeao( 1226%)( > )(ts _ t)’\z 4 4f2< X <6
_ ] 2¢3-30¢2 .
P'(p) = =z e — 1) if A, =6
Sty -1 if A, >6

We now substitute these expressions into the equation for
scalar perturbations (20). Using A, B, .... to denote con-
stants, the functional forms of the differential equations
obtained are:

O+ AT 3D + (BT 2+ CPT D =0 if2< ), <4
O +ATD +BD=0 if A, =4

The solutions of the second differential equation are
bounded as 7 — 0. If we assume that k& # 0, the solution
of the first differential equation can be expressed in terms
of hypergeometric functions, and is bounded as 7' — 0.

Now suppose that K # 0. There are two subcases: K #
2¢ycg and K = 2c¢¢. For the first subcase, we have:

c2cr (A —1)(A,—2) Y W
e (s DT i 2< A <4
/ = 24ctc,—2Kc . _
PP =1 e if A, =4
K .
32e1c0-K) if 1, >4

and the corresponding differential equations are

O +ATR 3D + (BTR 72+ CIPTR D =0 if 2< 1, <4
®+ATd +BD=0 if A, =4

with the same stability results as above.
Finally, we treat the special case K = 2¢;c¢,. We obtain:

(p) = — el -T2 if2< N, <4
mr — ety =077 if A, =4
and this corresponds to:
= 0c,C . 3(k* - K)C
(I)——Cl T_lq)‘l'%T_z(D:O
o o

for all A, > 2, where p’(p) = CT 2. In general, the solu-
tions of this equation are of the form ®(T) = T” where

y? 4+ (=6¢,C/cy — 1)y + 3(k* = K)C/c} = 0.

For boundedness we need the two roots of this equation
to be non-negative, i.e. we require —6¢,C =< ¢, and (k* —
K)C = 0. It is easy to see that the first condition only holds
for A, = 3. So, in this subcase, we only have boundedness
if A, =3 and (k> —2c;cy)C =0, and divergence
otherwise.

So all the perturbations are bounded except for the
very special case K # 0, K = 2¢cg, A, > 3 (and perhaps
Ay =3).
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F. Consideration of the sign of c?

Note that our analysis here has not assumed a simple
fluid equation of state of the form p = wp, or indeed any
functional relation between the density and pressure of the
matter source, as would characterize a perfect fluid of
k-essence or its generalizations (see [25] for a discussion).
Thus there is no general constraint arising from the pos-
itivity of the square of an effective speed of sound, c2. In
cases that reduce to fluids, or to k-essence and its relatives,
it should be possible to introduce further constraints upon
the series coefficients in order to preserve the positivity
of 2.

VI. EXTENSIONS TO BIG RIP MODELS

We can extend the above analysis easily to Big Rip
models [26], where the scale factor behaves as:

a(t) = CO(ts - t)’?o + Cl(ts - t)m + ) (55)

where 1y <0, o <m; <...,and also ¢y >0, ¢; # 0 for
all i. Then, to leading order, we have

a(t) = —mocolty — )M~ 1 + -+ (56)
(1) = mo(mo — Deglty — )72 + - (57)

a(t) = —mo(no — D(ng — 2eolty = ™3 + -+ (58)

p=3n5t;— )2+ (59)
p=02=3n)nlty, =) 2+ (60)
p'(p)=2/3ny—1+---. (61)

Note that a(z), p, p — o as t — f,. It is easy to see that,
near the singularity, the tensor perturbations h;; and the
vector perturbations V; decay to zero. However, the physi-
cal velocities dv' are proportional to (¢, — )2~ 47, so for
them to be finite as t — ¢, we need 9y = —1/2.
Scalar perturbations obey the following equation:
i 2 2 _

b+ 0+ 1’0)94_ (2(1( k )+2(k 3K)
r c 310¢3

)T‘2"06D =0

(62)

where T = t, —t and dots denote differentiation with
respect to 7. A solution of (62) can be found in terms of
Bessel functions, and we find that the solutions asymptoti-
cally tend to

O(T) = C, + C, T~ "™, (63)

So there is divergence as t — f, if 1y > —1, otherwise
@ is bounded.

Note that these results match those of [27], which shows
that, for equations of state of the form p = ap (where « is
a constant), there is a discrepancy in behavior between the
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cases a > —5/3 and o < —5/3. It can easily be checked
that these correspond to the cases 7o < —1 and g > —1
respectively.

VII. CONCLUSION

We have produced a simple general characterization of
sudden singularities in FRW universes. By the use of
gauge-invariant perturbation theory we have investigated
whether the existence of sudden singularities in a FRW
cosmology is stable to small scalar, vector, and tensor
inhomogeneities. We have shown that the existence of
sudden singularities is stable when the density is bounded
near the singularity except for some cases with special
parameter choices. This result holds regardless of whether
the background metric is spatially flat, closed or open. We
also applied our analysis to a complementary characteriza-
tion of Big Rip singularities and showed that they are stable
if the leading term in the time-dependence of the FRW
scale factor is proportional to a(r) = (¢, — )" where
no = —1, and unstable otherwise. As discussed in the
introduction, there have been a number of identifications
of sudden singularity occurrence in theories of gravity
other than general relativity. The approach described in
this paper can also be straightforwardly applied in these
theories to determine whether the sudden singularities that
occur there are also stable.
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APPENDIX: EQUATIONS OF THE FORM
D+ ATD + BT*D =0
Consider the equation
& + ATS® + BT® =0 (A1)

where ® = ®(T), —1 < s <0 and A, B are arbitrary con-
stants. We want to investigate the behavior of this equation
as T — 0.
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We first reduce the equation to canonical form ¢ +
f(T)¢ = 0. The substitution ® = ¢ exp(—AT"1/2(s +
1)) achieves this, and yields

. 1 1
¢+ (BTS - EAsT“‘_l - ZAZTZ“)qb =0. (A2

We now let Y(r) = r¢p(1/1) and this gives
.. 1 1
Y+ (BFS*“ - EAst*S*3 - ZAZFZY"‘)Y =0. (A3)

where 1 = 1/T and we now study the behavior as t — +o0.
The substitutions Y(r) = exp(¢p(r)) and u(r) = ¢(r) trans-
form (83) into a Riccati equation, which (after neglecting
subleading terms) becomes:

1
u+ u?— EAst*S*3 = (. (A4)

Finally we make the substitution u = y/y to obtain the
Emden-Fowler equation

1
j = EAsyt*“*. (A5)

This has a solution in terms of Bessel functions:

VoD t(—s—l)/z)

—s—1

2NTD s

—s—1

y(t) = t1/2<C1J1/(s+1)(

+ C2Y1/(s+1)( )) if D<0 (A6)

D
y(t) = t1/2<C111/(s+1)< VD 1 f(_s_lm)
-

N/
—s—1

+ C,K, /(m)( z<—~"—1>/2)) if D>0 (A7)

where D = As/2. We use the asymptotic behavior of the
Bessel functions as t — +oo0 to obtain
y(t) ~ C3 + Cyt (A8)

and u(t) ~ 1/t. So Y(t) ~ t and ®(T) — const as T — 0.
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