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Hořava-Lifshitz gravity, a recent proposal for a UV-complete renormalizable gravity theory, may lead

to a bouncing cosmology. In this article we argue that Hořava-Lifshitz cosmology may yield a concrete

realization of the matter bounce scenario and thus give rise to an alternative to inflation for producing a

scale-invariant spectrum of cosmological perturbations. In this scenario, quantum vacuum fluctuations

exit the Hubble radius in the prebounce phase, and the spectrum is transformed into a scale-invariant one

on super-Hubble scales before the bounce because the long wavelength modes undergo squeezing of their

wave functions for a longer period of time than shorter wavelength modes. The scale invariance of the

spectrum of curvature fluctuations is preserved during and after the bounce. A distinctive prediction of this

scenario is the amplitude and shape of the bispectrum.

DOI: 10.1103/PhysRevD.80.043516 PACS numbers: 98.80.Cq

I. INTRODUCTION

Recently, Hořava (based on the pioneering work of [1])
proposed [2,3] a model for quantum gravity which is
power-counting renormalizable and hence potentially UV
complete. This model does not have the complete diffeo-
morphism invariance of general relativity, but the action
has a fixed point in the IR which is that of general relativity
with a negative cosmological constant. In the UV, however,
the theory flows to a different fixed point, a fixed point at
which space and time scale differently and which has much
better UV behavior of perturbation theory. Since Hořava’s
theory is modeled after a scalar field model studied by
Lifshitz [4] in which the full Lorentz symmetry also
emerges only at an IR fixed point, the theory is now called
Hořava-Lifshitz gravity.

Specific solutions of the simplest version of Hořava-
Lifshitz gravity have recently been analyzed. In [5], homo-
geneous vacuum solutions with gravitational waves were
studied. In [6,7], cosmological solutions with matter were
explored, and in [8], black hole solutions were analyzed,
As pointed out in [6,7], the analogs of the Friedmann
equations in Hořava-Lifshitz gravity include a term which
scales as dark radiation and contributes a negative term to
the energy density. Thus, it is possible in principle to obtain
a nonsingular cosmological evolution with the big bang of
standard and inflationary cosmology replaced by a bounce.

In [2,7], it was argued that the different ultraviolet
behavior of the theory might provide an alternative to
cosmological inflation for solving the problems of standard
cosmology such as the horizon and flatness problems.
Specifically, the divergence of the speed of light in the
far ultraviolet leads to the possibility of solving the horizon
problem as proposed a while back in [9,10]. In [6] it was
emphasized that if the wavelength of fluctuations pene-
trates the UV region, then the usual arguments for the
origin of a scale-invariant spectrum of cosmological per-

turbations from an inflationary phase might break down, as
suggested more generally in the context of the ‘‘trans-
Planckian problem’’ for inflationary fluctuations [11,12].
However, if Hořava-Lifshitz cosmology leads to a cos-

mological bounce, then it is not necessary to invoke a
period of inflationary expansion to produce the observed
spectrum of cosmological perturbations. The purpose of
this paper is to point out that Hořava-Lifshitz cosmology
may provide a UV-complete realization of the ‘‘matter
bounce’’ scenario (see [13] for an introduction to this
scenario), an alternative to cosmological inflation for ex-
plaining the origin of the observed structure in the
Universe.
As realized in [14–16], perturbations which start out as

quantum vacuum fluctuations and exit the Hubble radius
during a matter-dominated phase of contraction acquire a
scale-invariant spectrum. Given a nonsingular bouncing
background cosmology, the fluctuations can be followed
unambiguously through the bounce. If the energy density
at which the bounce occurs is smaller than the Planck scale,
then the wavelength of the fluctuations which are being
probed in today’s observations are in the far IR (they are a
fraction of a millimeter). Hence, the equations which de-
scribe these fluctuations are those of the IR fixed point of
the theory, which is the Einstein action in the case of
Hořava-Lifshitz cosmology. It has been shown [17–20]
that, provided the duration of the bounce phase is short
compared to the wavelength of the fluctuations being con-
sidered, then the spectrum of curvature fluctuations is not
changed during the bounce. Thus, a scale-invariant spec-
trum of curvature perturbations will persist in the post-
bounce expanding phase. Specific predictions of the matter
bounce scenario include a specific form of the non-
Gaussianities as measured by the amplitude and shape of
the bispectrum [21].
In this paper we give an overview of the Hořava-Lifshitz

matter bounce cosmology, leaving details for future inves-
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tigations. We begin with a space-time sketch depicting the
relevant phases (Fig. 1). The vertical axis is time, with t ¼
0 denoting the bounce time. In some early phase of con-
traction, the equation of state of matter is assumed to be
dominated by nonrelativistic pressureless matter, in the
same sense that our current expanding universe is. For
times between �tm and the bounce, the equation of state
can be different from that of pressureless matter. The
horizontal axis denotes comoving spatial coordinates.
Vertical lines correspond to fixed comoving wavelengths,
and the dashed line is the comoving Hubble radius H�1.
Fluctuations which cross the Hubble radius during the
matter phase of contraction acquire a scale-invariant spec-
trum, and those which cross later have a nontrivial spectral
slope whose magnitude depends on the specific equation of
state (see e.g. [22]).

The outline of this article is as follows. We review the
action of Hořava-Lifshitz gravity in Sec. II. In Sec. III, we
review the equations for cosmological backgrounds and
study the possibility of obtaining a bouncing cosmology
with a matter-dominated phase of contraction. In Sec. IV
we review the evolution of fluctuations in the contracting
phase of the matter bounce scenario, and in Sec. V we
study how fluctuations pass through the bounce in Hořava-
Lifshitz cosmology. Section VI concludes with a discus-
sion of some of the many open issues.

II. REVIEW OF HORı́AVA-LIFSHITZ GRAVITY

We begin with a brief review of Hořava-Lifshitz grav-
ity.1 The dynamical variables are the lapse and shift func-
tions N and Ni, respectively, and the spatial metric gij
(roman letters indicate spatial indices). In terms of these
fields, the full metric is

ds2 ¼ �N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; (1)

where the indices of N are raised and lowered using the
spatial metric gij.

The scaling symmetry of the coordinates in the simplest
version of Hořava-Liftshitz gravity is (we are following the
notation of [7])

t ! l3t and xi ! lxi: (2)

The full action of this version of Hořava-Lifshitz gravity
is

S ¼
Z

dtd3x
ffiffiffi
g

p
N

�
2

�2
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2w4
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; (3)

where

Kij ¼ 1

2N
ð _gij �riNj �rjNiÞ; (4)

and Cij is the Cotton tensor

Cij ¼ �ijkffiffiffi
g

p rk

�
Rj
i �

1

4
R�j

i

�
: (5)

The tensor �ijk is the totally antisymmetric unit tensor, � is
a dimensionless constant, and � is related to the cosmo-
logical constant in the IR limit. The variables �, w, and �
are constants with mass dimensions �1, 0, and 1,
respectively.
In the IR limit, the action reduces to

SE ¼
Z

dtd3x
ffiffiffi
g

p
N½�ðKijK

ij � �K2Þ þ �Rþ ��; (6)

with

� ¼ 2

�2
; (7)

� ¼ �2�2

8ð1� 3�Þ�; (8)

and

FIG. 1. A space-time sketch of the matter bounce scenario.
The vertical axis is time, with t ¼ 0 being the bounce time. The
horizontal axis denotes comoving distance. The curve with the
label H is the Hubble radius H�1; in comoving coordinates, the
vertical line labeled by k denotes the comoving wavelength of a
fluctuation mode. This mode crosses the Hubble radius in the
contracting phase before the time�tc, when the period of matter
domination ends.

1This section is based completely on the analysis of [7].
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� ¼ �3
�2�2

8ð1� 3�Þ�
2: (9)

In order to obtain the Einstein action, we require � ¼ 1. In
this case, the variables of the Hořava-Lifshitz action go
over into the following expressions for the speed of light c,
Newton’s gravitational constant G, and the effective cos-
mological constant �E:

c ¼
ffiffiffiffi
�

�

s
; (10)

16	G ¼
ffiffiffiffiffiffi
�

�3

s
; (11)

�E ¼ � �

2�
: (12)

In the following we will consider scalar field matter in
the contracting phase. The action for matter is

SM ¼
Z

dtd3x
ffiffiffi
g

p
NLm; (13)

where the matter Lagrangian Lm depends on the scalar
matter field ’ and the metric. In the IR limit, this action
reduces to the usual scalar field matter action in curved
space-time. The form of the scalar field Lagrangian, valid
also in the UV, is given in [7] but will not be used in this
paper.

III. MATTER BOUNCE IN HORı́AVA-LIFSHITZ
COSMOLOGY

To obtain the equations for Hořava-Lifshitz cosmology
we assume that the metric is homogeneous and isotropic,
i.e.

N ¼ NðtÞ; Ni ¼ 0; and gij ¼ a2ðtÞ
ij; (14)

where 
ij is a maximally symmetric constant curvature

metric. We will denote the spatial curvature parameter by
�k.
The equations of motion are obtained by varying the

action with respect to N, a, and ’, and setting N ¼ 1 at the
end of the calculation. The resulting equations are

H2 ¼ �
�k

a2
��E

3
� 2 �k2ð� þ 3�Þ

�a4
þ 

6�
; (15)

�
_H þ 3

2
H2

�
¼ �

�k

2a2
��E

2
þ

�k2ð� þ 3�Þ
�a4

� p

4�
; (16)

and

€’þ 3H _’þ V0 ¼ 0; (17)

where H ¼ _a=a, p, and  are the pressure and energy
density of the scalar matter field, respectively; a prime
denotes the derivative with respect to ’, the dimensionless

constant �

� ¼ �2�2ð1� 4�Þ
32ð1� 3�Þ (18)

is the coefficient of the R2 term in the gravitational action,
and the dimensionless constant � is given by

� ¼ ��2�2

8
: (19)

The key new term in the cosmological equations of
motion is the second to last term on the right-hand sides of
(15) and (16). This term corresponds to ‘‘dark radiation’’
with a negative energy density. This term is present only if
the spatial curvature of the metric is nonvanishing. If the
energy density of regular matter increases less fast than
a�4 as the scale factor decreases, the dynamics will lead to
a cosmological bounce provided that2�



4
� p

�
> 0: (20)

To obtain a bounce in Hořava-Lifshitz cosmology we
will assume that matter in the prebounce epoch is described
by a scalar field ’ with a potential

Vð’Þ ¼ 1
2m

2’2: (21)

As studied in detail in quintom bounce [19,20,23] scenar-
ios, we take the scalar field to be oscillating during the
contracting phase, with an amplitude AðtÞ.
As the Universe contracts, the amplitude AðtÞ �

aðtÞ�3=2 will increase. Once the amplitude reaches the
value

A crit ¼ ð12	Þ�1=2mpl; (22)

where mpl is the Planck mass, then the field oscillations

will stop and ’ will enter a ‘‘slow-climb’’ phase, the time
reversal of the inflationary slow-roll phase. During this
phase, the matter energy density is approximately constant
but the scale factor is rapidly decreasing. Hence, the dark
radiation term in the Hubble equation rapidly catches up
with the matter energy term. Since in the slow-climb phase
the pressure of matter is negative, the condition (20) is
satisfied. Thus, we obtain a cosmological bounce.
Note that the slow-climb phase is unstable with respect

to the presence of the second mode in the scalar field
equation of motion, a mode which is exponentially decay-
ing in an inflationary slow-roll phase and thus ensures that
the slow-roll trajectory in large-field inflation is a local
attractor [24]. In the slow-climb phase, the second mode is
increasing. Thus, the slow-climb trajectory is a repeller.3

However, coming out of the oscillatory phase, the initial

2The contributions scaling like curvature or a cosmological
constant can be neglected.

3We thank Misao Sasaki and Takahiro Tanaka for discussions
on this point.
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amplitude of the unstable mode is sufficiently small such
that the instability does not have time to develop before the
bounce takes place.

IV. FLUCTUATIONS IN THE MATTER BOUNCE
SCENARIO

In the following we assume that the contracting phase
before the bounce was first dominated by cold matter,
matter with an equation of state w ¼ 0, where w is the
ratio of pressure p divided by energy density . We will
now review how an initial vacuum spectrum of cosmologi-
cal perturbations on sub-Hubble scales in the contracting
phase develops into a scale-invariant spectrum for wave-
lengths which exit the Hubble radius in the matter-
dominated phase.

As has proven to be convenient in inflationary cosmol-
ogy, we track the cosmological fluctuations in terms of the
variable R, the curvature fluctuations in comoving coor-
dinates [25–28]. This variable is conserved at phase tran-
sitions and is constant on super-Hubble scales in an
expanding universe.

If we work in longitudinal gauge in which the metric in
the absence of anisotropic stress takes the form

ds2 ¼ a2ð�Þ½ð1þ 2�Þd�2 � ð1� 2�Þdx2�; (23)

where � is conformal time, x are comoving spatial coor-
dinates, and�ðx; �Þ describes the metric fluctuations, then
R is given by (modulo terms which are suppressed on
super-Hubble scales)

R ¼ 2

3
ðH�0 þ�Þ 1

1þ w
þ�; (24)

H denoting the Hubble expansion rate in conformal time
and a prime indicating the derivative with respect to �.

The variable R is closely related to the variable v (see
[29] for an in-depth review of the theory of cosmological
fluctuations and [30] for an introductory overview) in
terms of which the action for cosmological fluctuations
has the canonical kinetic term:

R ¼ v

z
; (25)

where z is a function of the background which is propor-
tional to the scale factor a as long as the equation of state of
matter is constant.

The equation of motion for the Fourier mode vk of v is

v00
k þ

�
k2 � z00

z

�
vk ¼ 0: (26)

This shows that on length scales larger than the Hubble
radius, where the k2 term is negligible, v does not oscillate,
its time evolution being determined by the gravitational
background, whereas on sub-Hubble scales vk is oscillat-
ing with approximately constant amplitude.

On super-Hubble scales, the equation of motion for vk in
a universe which is undergoing matter-dominated contrac-
tion is

v00
k ¼ 2��2vk; (27)

which has the general solution

vkð�Þ ¼ c1�
�1 þ c2�

2; (28)

where c1 and c2 are constants. Since for a matter-
dominated phase

að�Þ � �2; (29)

it follows that the c2 mode is the mode for which R is
constant on super-Hubble scales, whereas for the c1 mode
R scales as ��3, which is decaying in an expanding
universe but growing in a contracting phase. It is this
growth which is responsible for turning an initial vacuum
spectrum of fluctuations into a scale-invariant one.
To see this, let us compute the power spectrum of R on

super-Hubble scales late in the contracting phase:

PRðk; �Þ � k3jvkð�Þj2a�2ð�Þ

� k3jvkð�HðkÞÞj2
�
�HðkÞ
�

�
2 � k3�1�2

� const: (30)

In this first step, we have used the definition of the power
spectrum, replaced R by v via (25) and used the scaling
zð�Þ � að�Þ. In the second step, we made use of the growth
of the c1 mode, the dominant mode, to relate the value of v
at late times to its value at the time �HðkÞwhen the mode k
crosses the Hubble radius. Finally, in the last step we insert
the vacuum spectrum for v on sub-Hubble scales and the
Hubble radius crossing condition �HðkÞ � k�1.

V. EVOLVING FLUCTUATIONS THROUGH THE
BOUNCE

If the bounce phase is short compared to the wavelength
of the fluctuations which are being followed, then the
spectrum of R is unchanged through the bounce. This
result can be obtained by explicitly evolving fluctuations
through a nonsingular bounce using the equations of mo-
tion for fluctuations which follow from Einstein’s theory
(see e.g. [17–20]). This result also agrees with what is
obtained by replacing the bounce phase by a matching
surface and making use of the Hwang-Vishniac [31]
(Deruelle-Mukhanov [32]) matching conditions.
If the energy density at the bounce is of the order of

ð1016 GeVÞ4, the wavelength of a mode which corresponds
to the current Hubble radius is about 1 mm, i.e. in the far
IR. Since in the Hořava-Lifshitz bounce, the bounce time is
set by the UV scale, it is well justified to assume that in the
context of the use of the Einstein equations for the gravi-
tational fluctuations the spectrum of R does not change
across the bounce.

ROBERT BRANDENBERGER PHYSICAL REVIEW D 80, 043516 (2009)

043516-4



In addition, again since the scales we are interested in
are in the far IR, it should be justified to use the IR limit of
Hořava-Lifshitz cosmology to propagate the fluctuations.4

Thus, we argue that the scale invariance of the spectrum
of cosmological perturbations will be preserved after the
bounce. SinceR is constant on super-Hubble scales in the
postbounce expanding phase, it then immediately follows
that the spectrum of fluctuations at late times will be scale
invariant.

A bouncing cosmology in the context of Hořava-Lifshitz
gravity can thus provide an alternative to inflation for
providing a scale-invariant spectrum of cosmological per-
turbations, provided that we begin in the contracting phase
with quantum vacuum fluctuations and provided that the
relevant scales exit the Hubble radius in a period of cold
matter domination (the case of initial thermal fluctuations
is analyzed in [35]).

Since the curvature perturbation R grows on super-
Hubble scales, a matter bounce leads to a larger amplitude
of non-Gaussianities than slow-roll single-field inflation.
Since it is a different mode of R which dominates, the
shape of the non-Gaussianities is also different from what
is obtained in slow-roll single-field inflation models. The
specific predictions for the amplitude and shape of the
three-point function (the ‘‘bispectrum’’) were worked out
in [21]. In particular, the predicted amplitude of the bis-
pectrum is very close to the level which could be detected
using the Planck satellite experiment.

VI. CONCLUSIONS AND DISCUSSION

In this paper we have shown how to obtain a matter
bounce in Hořava-Lifshitz gravity. Such a bounce is ob-
tained because of a dark radiation term which appears in
the equations of motion for cosmological solutions, a term
which stems from the terms in the quantum gravity theory
which appear in the UV and help render the theory renor-
malizable. Note, however, that the presence of the dark
radiation term requires nonvanishing spatial curvature.

To obtain a cosmological bounce it is important that no
source of matter is present which redshifts equally fast or
faster than that of the dark radiation term. Only in this case,
can the energy density of dark radiation grow with respect
to the regular matter energy, a condition which is required
to obtain a bounce. This condition appears to be rather
restrictive since it even rules out regular radiation before
the bounce.

We have presented a model in which a bounce can be
obtained. In this model, matter is modeled by a scalar field
with a standard mass term. The scalar field oscillates at

early times in the contracting phase, leading to a matter
equation of state which is that of cold matter. Once the
amplitude of scalar field oscillations reaches a critical
value, the field enters a deflationary slow-climb phase
during which its energy density is approximately constant
and its pressure is negative. Hence, a bounce occurs.
In the matter bounce model thus constructed, initial

quantum vacuum fluctuations which exit the Hubble radius
in the contracting matter-dominated phase acquire a scale-
invariant spectrum of curvature fluctuations, as already
envisioned in [14–16] and recently studied in detail in
[20]. Thus, one of the main messages of this article is
that it is not necessary to force a period of inflationary
expansion into Hořava-Lifshitz cosmology. The alternative
matter bounce scenario predicts an amplitude of the nor-
malized bispectrum which is the order of 1, and a specific
shape of this three-point function, as studied in detail in
[21]. These specific predictions are potentially within the
reach of upcoming cosmic microwave background mis-
sions such as PLANCK.
To obtain a successful late-time cosmology, the model

presented here must be supplemented with a mechanism to
transfer the energy at late times to standard model matter
and radiation. If we include such matter in the basic
Lagrangian, then an initial condition problem arises: in
order for a bounce to occur, the initial energy density of
radiation must be so low that the radiation never comes to
dominate during the contracting phase. All of these issues
deserve further study.
While this article was being prepared for submission, a

very interesting paper by Mukohyama [36] appeared show-
ing that in the UV region, fluctuations of a scalar field in
Hořava-Lifshitz gravity acquire a scale-invariant spectrum,
a spectrum which can be later transformed to curvature
fluctuations via a transfer from entropy to adiabatic modes
such as the curvaton mechanism. Thus, one can obtain a
scale-invariant spectrum of cosmological fluctuations. An
advantage of this mechanism is that it also operates in a
background cosmology without a bounce (e.g. in the case
of zero spatial curvature). However, in the case of a matter
bounce background, it is unclear whether the scaling of the
correlation functions used in [36] would extend to the large
IR scales required to match with observations, the scales on
which our mechanism works nicely.
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4This claim should be justified with an explicit calculation in
the same way that the corresponding claim was justified [33] in
the bouncing scenario obtained by using the special higher
derivative gravitational action of [34] which is ghost free about
Minkowski space-time.
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