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The discovery of cosmic acceleration has presented a unique challenge for cosmologists. As observa-

tional cosmology forges ahead, theorists have struggled to make sense of a standard model that requires

extreme fine-tuning. This challenge is known as the cosmological constant problem. The theory of

gravitational aether is an alternative to general relativity that does not suffer from this fine-tuning problem,

as it decouples the quantum field theory vacuum from geometry, while remaining consistent with other

tests of gravity. In this paper, we study static black hole solutions in this theory and show that it manifests

a UV-IR coupling: Aether couples the space-time metric close to the black hole horizon, to metric at

infinity. We then show that using the trans-Planckian ansatz (as a quantum gravity effect) close to the

black hole horizon, leads to an accelerating cosmological solution, far from the horizon. Interestingly, this

acceleration matches current observations for stellar-mass black holes. Based on our current under-

standing of the black hole accretion history in the Universe, we then make a prediction for how the

effective dark energy density should evolve with redshift, which can be tested with future dark energy

probes.
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I. INTRODUCTION

The discovery of recent acceleration of cosmic expan-
sion was one of the most surprising findings in modern
cosmology [1,2]. The standard cosmological model (also
known as the concordance model) drives this expansion
with a cosmological constant (CC). While the CC is con-
sistent with (nearly) all current cosmological observations
[3], it requires an extreme fine-tuning of more than 60
orders of magnitude, known as the cosmological constant
problem [5].

In the context of the concordance cosmological model,
there are (at least) three different aspects of the CC prob-
lem. For decades, physicists worried about why the value
of the cosmological constant/vacuum energy seemed to be
nearly zero by particle physics standards (known as the old
CC problem) [6], and the conventional wisdom was that it
should vanish exactly, as a result of a yet unknown sym-
metry of nature. The accelerated cosmic expansion has
thus challenged us to address this question on two new
fronts. First is the new CC problem: why is the vacuum
energy density so close to zero, but nonvanishing? Second
is the coincidence problem: Why did the dark energy
dominance and structure formation happen at approxi-
mately coincident times?

The race is on to simultaneously address the old and new
CC problems, as well as the coincidence problem. A
popular alternative approach to the cosmological constant
is a model that modifies Einstein’s theory of gravity.

Traditionally, this involves adding higher order curvature
terms to the geometric side of Einstein’s equation.
However, in [7], one of us proposed a novel approach to
modified gravity. This model introduces gravitational
aether, as a necessary ingredient to decouple the quantum
field theory vacuum from gravity while simultaneously
satisfying other tests of gravity. Unlike many models of
modified gravity, the gravitational aether model modifies
the energy-momentum content of the space-time, instead
of adding higher order curvature terms.
In this model, the right-hand side of the Einstein field

equation is modified as:

ð8�G0Þ�1G�� ¼ T�� � 1
4T

�
�g�� þ p0ðu0�u0� þ g��Þ; @

(1)

where G0 is 4=3 times the Newton’s constant, and p0 and
u0� are aether pressure and four-velocity that are fixed by

requiring the conservation of the energy-momentum tensor
T�� and the Bianchi identity. As argued in [7], while

consistent with precision tests of gravity, this theory is
preferred to the standard model by the combination of
cosmological observations (with the notable exception of
4He primordial abundance).
In this paper, we pursue a detailed understanding of

static spherical black hole solutions in the gravitational
aether theory. The solution we find is, at first glance, a
perturbed Schwarzschild metric. However, upon closer
inspection we find that this perturbation is divergent both
near to and far away from the horizon (where we refer to an
infinite redshift surface as a horizon). Thus, the static
solution in the presence of gravitational aether is funda-
mentally different from Schwarzschild, which can be char-
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acterized as a UV-IR connection: the metric near and far
from the horizon is set by the same integration constant.
Here, we will explore possible meanings of this property,
and whether the cosmological behavior is set by a trans-
Planckian ansatz close to the black hole horizon.

We note that the static black hole solution found here
also applies to the cuscuton models [8,9] which have the
same energy-momentum tensor as the gravitational aether
in the limit of vanishing cuscuton potential.

In Sec. II, we introduce our gravitational aether black
hole solution. We describe the properties of the solution,
including a preferred coordinate system and the location of
the event horizon. We also establish asymptotic properties
of the black hole, which are characterized by the same
integration constant both close in and far away from the
horizon of the black hole.

Section III explores the trans-Planckian ansatz, as a way
to fix the aforementioned integration constant, through
quantum gravity effects close to the horizon. We suggest
a way to connect the presence of black holes to the exis-
tence of a pervasive pressure that behaves like dark energy
on cosmological scales.

In Sec. IV, we present a study of the contribution that
many such black holes would make to the global/cosmo-
logical structure of space-time, while Sec. V provides a
census of average black hole mass through cosmic history,
which translates into a prediction for the history of cosmic
acceleration. Finally, we will discuss open questions and
future prospects in Sec. VI.

Throughout the paper, we use the natural Planck units:
@ ¼ c ¼ GN ¼ kB ¼ 1. Moreover, we will replace pres-
sure p0 by 3p=4 in Eq. (1), so that the vacuum field
equations for the aether theory resembles general relativity
sourced by a perfect fluid with pressure p and zero density.

II. BLACK HOLE IN GRAVITATIONAL AETHER

We find a solution for the static black hole in the
gravitational aether model using assumptions similar to
those that lead to the Schwarzschild solution. Namely,
we assume a space-time with no matter content, and we
assume spherical symmetry. Given that the aether takes
fluid form, the metric in this model is the same as the
general static, spherically symmetric metric that describes
the interior of a star, as modeled by a perfect fluid. The only
notable divergence from the star model is the absence of a
matter density, leaving an energy-momentum tensor of the
following form:

T�� ¼ pðu�u� þ g��Þ: (2)

We find the following metric:

ds2 ¼ �e2�dt2 þ
�
1� 2m

r

��1
dr2 þ r2d�2: (3)

With components obeying the following differential equa-
tion, known as the Tolman-Oppenheimer-Volkoff equa-

tions [10]:

d�

dr
¼ mþ 4�r3p

rðr� 2mÞ ; (4)

dp

dr
¼ �pðmþ 4�r3pÞ

rðr� 2mÞ : (5)

We see immediately that expð�Þ and p are inversely re-
lated:

p ¼ p0e
��; (6)

where p0 is an integration constant. Notice that Eq. (6) is
equivalent to the condition of hydrostatic equilibrium for
aether, and is valid independent of the assumption of
spherical symmetry, for any static space-time [11]. Now,
we may rewrite Eq. (4)

d�

dr
¼ mþ 4�r3p0e

��

rðr� 2mÞ : (7)

We can solve this equation by noting that it is a first-
order inhomogeneous linear differential equation in e�,
with the standard solution

e�ðrÞ ¼ 4�p0

�
1� 2m

r

�
1=2

�Z ð1� 2m
r Þ�1=2r2

r� 2m
drþ const

�
:

(8)

To put this into more familiar terms, we can set the
constant, so that we recover the Schwarzschild solution
as p0 ! 0

e�ðrÞ ¼
�
1� 2m

r

�
1=2½4�p0fðrÞ þ 1�; (9)

where fðrÞ is given by

fðrÞ ¼ 1

2

�
1� 2m

r

��1=2ð�30m2 þ 5mrþ r2Þ

þ 15

2
m2 ln

�
r

m
� 1þ r

m

�
1� 2m

r

�
1=2

�
; (10)

and is shown in Fig. 1. In the limit where r is large (r � m)

fðrÞ ¼ r2

2
þ 3mrþO½m2�; (11)

while close to the ‘‘Schwarzschild horizon’’ we find

fðrÞ ¼ �8

ffiffiffi
2

p
m5=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2mþ r

p þO½m3=2ðr� 2mÞ1=2�: (12)

Thus, the correction to the Schwarzschild metric domi-
nates in both UVand IR regimes (corresponding to close to
and far from the BH horizon). This a nice tie, even for
arbitrarily small values of the integration constant p0.
Therefore, a very suggestive conclusion is that, unlike in
general relativity, the gravitational aether ties the forma-
tion of black hole horizons to cosmological dynamics.
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But then, is there really an event horizon for this space-
time? Looking at the trace of the Einstein’s equation, we
find that the Ricci scalar is proportional to the pressure of
aether p, which is in turn inversely proportional to the 00
component of the metric e�. We define the surface where
e� ! 0 as the black hole horizon. Therefore, the pressure
at the horizon, and thus the Ricci scalar, goes to infinity
(p / R ! 1) implying that this surface coincides with a
real metric singularity (as opposed to a coordinate
singularity).

It appears that we have established that any static event
horizon in a theory of gravitational aether (like the one we
have modeled) coincides with a real metric singularity. In a
traditional formulation of general relativity, such a sce-
nario may be given to ambiguous physical interpretation.
Cognizant of the fact that a modified gravity will display
properties divergent from traditional relativity, we expect
that such a picture is best contextualized by a more com-
prehensive theory of quantum gravity.

Indeed, any process (for example, quantum gravity) that
alleviates/regulates metric singularities, will inevitably re-
move event horizons from the theory of gravitational
aether. In other words, static event horizons cannot exist
in a UV completion of gravitational aether. This is inde-
pendent of the assumption of spherical symmetry, and only
relies on the aether hydrostatic equilibrium condition (6).
However, we note that, as the singularity is a null surface,
the space-time does not violate theweak cosmic censorship
principle.

Back to the spherical aether black hole space-time (9),
we now notice that the static metric solution is only well
defined for r � 2m, as the solution becomes complex in-
side the Schwarzschild radius r < 2m. More surprisingly,
for negative values of p0, unlike a Schwarzschild black

hole, a free-falling observer can reach this boundary within
a finite coordinate time. The reason is that the redshift of a
static source at the Schwarzschild radius is now finite as
seen by distant observers [12]:

1þ z ¼ e��

’
��

1� 2m

r

�
1=2 � 32�p0m

2

��1
< 1þ zmax

¼ � 1

32�p0m
2
: (13)

As to what happens inside r ¼ 2m, it is clear that our
current choice of coordinates does not give us a physical
metric for r < 2m. However, is it possible that with an
appropriate choice of coordinate, we can analytically con-
tinue the static solution beyond the Schwarzschild radius?
Indeed, we can define a new radial coordinate

� �
Z r

2m
dr0

ffiffiffiffiffiffiffi
grr

p ¼
Z r

2m
dr0

�
1� 2m

r0

��1=2

¼ 2½2mðr� 2mÞ�1=2 þO½ðr� 2mÞ3=2m�1=2�; (14)

which is equivalent to the constant-time proper radial
distance. In terms of �, the metric takes the form

ds2 ¼ �e2�dt2 þ d�2 þ rð�Þ2d�2; (15)

where

e� ¼ �32�p0m
2 þ �

4m
þO½p0�

2; �3m�3=2�; (16)

rð�Þ ¼ 2mþ �2

8m
þO½�4=m2�: (17)

In other words, the metric is analytic and real in terms of
the new radial coordinate � at and beyond the
Schwarzschild radius, which now corresponds to � ¼ 0.
Moreover, a static event horizon, which as we argued
corresponds to a real curvature singularity, now exists for
all (small) values of p0, as e

� ¼ 0 at

�H ’ 128�p0m
3: (18)

In the next section, we study the implications of this
solution for cosmology. However, we shall postpone a full
investigation of the causal structure of this space-time, as
well as its possible analytic continuations, to future studies.

III. TRANS-PLANCKIAN ANSATZ AND COSMIC
ACCELERATION

In the last section, we saw that within spherical space-
times in the gravitational aether theory, the integration
constant p0 ties the geometry close to the horizon to the
geometry at infinity. While, in the classical theory, p0 is an
arbitrary integration constant, here we speculate that its
value is fixed by quantum gravity effects, especially since

FIG. 1 (color online). Function fðrÞ [Eq. (10)] as a function of
the distance from the Schwarzschild radius ( ¼ 2m). The devia-
tion from the Schwarzschild metric is proportional to p0fðrÞ,
where p0 is the integration constant. If p0 is small, as we argue in
Sec. III, the corrections only become important at the horizon,
and on cosmological scales.
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the horizon is now a curvature singularity, where quantum
gravity effects should become important.

We first note that the temperature of sources that fall
through the Schwarzschild horizon, as seen by distant
observers, approaches the Hawking temperature [13]

TH ¼ 1

8�m
: (19)

Furthermore, we assume that the maximum rest-frame
temperature of sources is comparable to the Planck tem-
perature (or one in Planck units)

Tmax ¼ �P ¼ O½1�: (20)

Here, �P is a dimensionless constant that measures Tmax in
units of Planck temperature, which we shall call the trans-
Planckian parameter. We then adopt the trans-Planckian
ansatz, which is the idea that the maximum redshift at
Schwarzschild radius [Eq. (13)] is roughly set by the ratio
of the Planck to Hawking temperatures:

1þ zmax ¼ � 1

32�p0m
2
¼ Tmax

TH

¼ 8��Pm; (21)

or

p0 ¼ � 1

256�2�Pm
3
: (22)

With this ansatz, we further see that

�H ¼ � 1

2��P
¼ O½1�; (23)

i.e. the event horizon is roughly a Planck length away from
the Schwarzschild radius. Equivalently, the short-distance
aether corrections to the Schwarzschild metric only be-
come important at about a Planck distance from the hori-
zon/singularity, which is a reasonable expectation from a
possible quantum gravitational mechanism.

While this may imply that tests of strong gravity close to
the horizon of a black hole may have a hard time testing the
influence of aether on the space-time metric, the trans-
Planckian ansatz has a curious prediction for the numerical
value of p0, i.e. aether pressure far from the black hole.
Comparing the scale of p0 with the density ( ’ �pressure)
of the cosmological dark energy, ��

p0

��
¼ � 2

3
��1
P

�
m

85M�

��3
; (24)

where we assumed �� ¼ 0:7 and H0 ¼ 70 km=s=Mpc.
The resulting deviation from the Schwarzschild metric is
shown in Fig. 2 for stellar-mass black holes.

This leads us to a very interesting possibility, which was
first conjectured in [7]: that the formation of stellar-mass
black holes could trigger the onset of cosmic acceleration,
especially since aether and dark energy have similar pres-
sures, assuming that the aether pressure is set by the trans-
Planckian ansatz for stellar-mass black holes. To see this,

we can explicitly compare the black hole space-time
[Eqs. (3) and (11)] far from the black hole (r � m)

ds2 ¼ �ð1þ 2�p0r
2Þ2dt2 þ dr2 þ r2d�2; (25)

with the de Sitter space-time

ds2 ¼ �ð1� 8���r
2=3Þdt2

þ ð1� 8���r
2=3Þ�1dr2 þ r2d�2: (26)

We thus notice that nonrelativistic particles close to the

origin, but far from the black hole horizon (2m � r �
jp0j�1=2) see the same Newtonian potential (or gtt) in both
space-times, if p0 ¼ �2��=3. In other words, close-by
nonrelativistic test particles (such as galaxies, stars, or
other black holes) accelerate away from the origin/black
hole, similar to a de Sitter space. Moreover, this accelera-
tion will correspond to the current cosmological observa-
tions, if the mass of the black holes is roughly

m ’ 85��1=3
P M�: (27)

So far, our solution has neglected the effects of black
hole spin. Indeed, spin is expected in realistic black holes,
which are fed by astrophysical accretion disks. For ex-
ample, the dimensionless spin parameter a� ¼ a=m was
recently measured for two stellar-mass black holes, to be
within the range 0.65–0.85 [14]. In order to include this
effect, we conjecture that p0 scales as T

3
H (as suggested in

[7]), for general black hole spins. This is justified, as the
trans-Planckian ansatz is controlled by the Hawking tem-
perature TH, while fðrÞ also depends on the surface gravity
close to the black hole horizon, which is also proportional
to TH. With this assumption, the scale dependence should
go as

FIG. 2 (color online). Predicted large distance deviation from
the vacuum Schwarzschild solution for 1, 10, and 100M� black
holes, based on the trans-Planckian ansatz. Here, we assumed
�P ¼ 100 in Eq. (22) for nonrotating black holes to find p0,
which is then plugged into Eq. (9) to find the metric. As pointed
out in the text, the corrections become important on today’s
cosmological horizon scale for solar/stellar-mass black holes.
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p0ðm; a�Þ
p0ðm; 0Þ ¼ 8½1þ ð1� a2�Þ�1=2��3; (28)

which is in the range 0.2–0.6 for a� ¼ 0:65–0:85.
While this paper only deals with static vacuum solu-

tions, it was shown in [7] that for nonrelativistic fluids (e.g.
stars, planets) p0 	 �T�

�=4þ const, i.e. the local matter
density sets the aether pressure up to a constant. One
expects that the constant term would be set by the bound-
ary conditions at infinity, or by cosmology. Alternatively,
what we suggest in this section is that the boundary con-
dition can be set at the horizons of the black holes. The fact
that this can naturally explain the onset of cosmic accel-
eration is certainly very suggestive, but the best way to test
this hypothesis is to see how/if this boundary condition can
emerge from the process of (classical or quantum) gravi-
tational collapse into a black hole. We leave this question
to future studies.

A further implication of this hypothesis is that solar/
stellar mass is the minimummass of black holes allowed in
the model. A discovery of significantly sub-solar mass
black holes (e.g. primordial black holes with M � M�)
could potentially rule out the trans-Planckian ansatz, as it
would imply much larger than observed cosmic accelera-
tion rates for �P 
 1.

Of course, we also need to patch together and coarse-
grain individual black hole spacetimes into a de Sitter
space, in order to rigorously prove this correspondence.
However, the above argument is already very suggestive,
as long as there are many black holes within the cosmo-
logical/de Sitter horizon, so that one can trust the above
Newtonian argument. In the next section, we provide an
approximation to the cosmological space-time of multiple
black holes.

IV. GLOBAL CONTRIBUTION OF MULTIPLE
BLACK HOLES

In this section, we will seek an approach to approxi-
mately find the space-time of multiple black holes with
gravitational aether, which can be used to describe an
approximate Friedmann-Robertson-Walker (FRW) cos-
mology. Here, for simplicity, we focus on the quasistatic
Newtonian regime, where we could assume hydrostatic
equilibrium for aether in the vacuum (6). For simplicity,
we ignore the matter in-between black holes [15], and
assume that black holes are much farther apart than their
horizon sizes, but are much closer than the cosmological
horizon. In this limit, using Eq. (6) we have

r2 lnp ¼ �r2� ¼ 0; (29)

where the assumption of r2� ¼ 0 is the equivalent of the
Poisson equation in Newtonian gravity, for zero matter
density (which also applies to aether). We thus see that
fixing the aether pressure in the vicinity of black holes,
through the trans-Planckian ansatz (22), is equivalent to

solving the Laplace Eq. (29) with Dirichlet boundary con-
ditions at (or close) to the horizon of the black holes [16].
This problem is analogous to finding the electrostatic

potential between multiple conducting spheres, which can
be solved using the Green’s function for the appropriate
geometry. For a single sphere of radius at the origin (and in
a flat space), there is an exact expression for the Green’s
function, which can be found using the method of images
(e.g. [17])

GDðx;x0Þ ¼ 1

jx� x0j �
a

x0jx� a2

x02 x
0j : (30)

For n spheres (black holes) at positions xi and with radii ai
( ¼ 2mi), we may expand this Green’s function, up to first
image, as

GDðx;x0Þ ¼ 1

jx� x0j
�Xn

i¼1

ai

jx0 � xijjx� xi � a2i
jx0�xij2 ðx0 � xiÞj

þO
�

a2

j�xj3
�
; (31)

which is a good approximation, as long as the distance
between the spheres/black holes is much larger than their
sizes. Now, using Green’s theorem, we can find aether
pressure in-between the black holes, in terms of the pres-
sure on the surfaces of the spheres, pi’s

lnpðxÞ � ln �p ¼ � 1

4�

Xn
i¼1

I
Si

ds0 � @GD

@x0 ½lnpiðx0Þ � ln �p�;

(32)

where ln �p is the log of pressure at infinity, and
H
Si
ds0 are

surface integrals over the horizons of the black holes
(assuming a flat geometry), while pi / m�3

i are fixed by
the masses of the blacks holes, using the trans-Planckian
ansatz (22). Since the Green’s function (31) is analogous to
superposition of electrostatic potentials of point charges,
we can use Gauss’s theorem to evaluate the surface inte-
grals:

lnpðxÞ � ln �p ¼ Xn
i¼1

ai½lnpiðx0Þ � ln �p�
jx� xij : (33)

Now, using the assumption of statistical homogeneity, we
expect the spatial/ensemble average of lnp to be the same
as ln �p. If we take ensemble averages of both sides of Eq.
(33), this yields

ln �p ¼ hai lnpii
haii ; (34)

or alternatively,
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�p¼�2

3
�DE;eff ¼� 1

256�2�Pm
3�
; lnm� � hmi lnmii

hmii ;

(35)

where we used pi / m�3
i and ai ¼ 2mi, as well as Eq. (22).

In other words, in the presence of multiple black holes, the
mean aether pressure, and thus FRW cosmology, is set by
m�, which is the mass-weighted geometric mean of black
hole masses. Subsequently, the correspondence of this
mean aether pressure with an effective dark energy or
cosmological constant density was demonstrated in the
last section.

Furthermore, taking the Laplacian of Eq. (33), we can
find an equation for the perturbation of effective dark
energy, for subhorizon perturbations (but on scales larger
than the size of the blacks holes):

r2	DE;eff ¼ �8��BH lnðpi= �pÞ; (36)

where 	DE;eff is the overdensity of the effective dark en-

ergy, while �BH is the black hole density. Equation (36) can
be, in principle, used to track cosmological structure for-
mation and the impact on CMB anisotropies (through the
Integrated Sachs-Wolfe effect), but we postpone a study of
these effects to future work.

In the next section, we will provide a quantitative picture
of how the cosmic history of accretion into stellar and
supermassive black holes (or active galactic nuclei) leads
to an estimate of m� as a function of redshift, and its
implications for the effective dark energy scenarios.

V. COSMIC HISTORY OF BLACK HOLES AND
COSMIC ACCELERATION

An up-to-date inventory of cosmic energy at the present
day, including the contribution from stellar-mass and
supermassive black holes, is provided by [18]. In order to
measure m�ðzÞ we need to take this a step farther and
understand the mass distribution of such black holes, and
their redshift evolution.

The mass distribution of stellar-mass black holes is not
well-determined observationally, but estimates are that it is
fairly broad, with a mean of around 
7M� [19,20]. We
base our calculations on the theoretical predictions of [21],
which show that the distribution can be approximately
represented by a power-law such that the number density
of black holes decreases by a factor 5 between M ¼ 3M�
and M ¼ 15M�. Assuming this distribution, the average
black hole mass is 8:2M�. We will treat the uncertainty in
this distribution by varying the slope sufficiently to alter
this mean mass by �1M�. To determine the redshift evo-
lution in black hole abundance, we use observations of the
cosmic star formation history, from [22]. There is signifi-
cant uncertainty in the shape of this history; however, it
must obey the integral constraint that the total stellar-mass
density today be �� ¼ 0:0027�crit ¼ 3:67

108M� Mpc�3, which is known to a precision of 
30%

[18]. We will therefore normalize the black hole number
density at z ¼ 0 to 1:46
 106 Mpc�3 at z ¼ 0 [18]. We
assume that changes to the initial mass function do not
significantly alter the shape of the star-formation-rate den-
sity evolution, but primarily affect the number of black
holes formed. By default we assume a Kroupa IMF [23],
which is the ‘‘second model’’ considered in [18]. For this
choice, 0.19% of stars formed end up as black holes; a
more useful number is that for every solar-mass of stars
formed 0.0025 black holes are created. These numbers
change by less than 5% if we assume a Chabrier IMF
[24]; we expect therefore the uncertainty on the normal-
ization of the black hole mass function to be dominated by
the 30% uncertainty in the present day stellar-mass func-
tion. Note, however, that a pure Salpeter IMF [25] would
produce significantly fewer black holes, only 0.0013 for
every solar mass formed.
We base our estimate of the supermassive black hole

mass distribution on observations of the quasar luminosity
function. This requires assumptions about the lifetime and
obscuring column density of quasars; for this we adopt the
model of [26] who describes a merger-driven scenario of
black hole growth. Using this model, the z ¼ 0 mass
density of supermassive black holes is 2:9þ2:3

�1:2 

105M� Mpc�3. This is somewhat smaller than the value
of 5:4
 105M� Mpc�3 determined from the correlation
between black hole mass and bulge luminosity [27,28], as
computed by [18]. However, the uncertainty on the latter is
a factor of 2, and a lower value of 3:4
 105M� Mpc�3 is
obtained [18] if one uses the correlation with velocity
dispersion for early type galaxies [29,30] rather than
luminosity.
With this in hand we are able to compute the expected

m�ðzÞ, and this is shown in the bottom panel of Fig. 3. Our
best estimate of the local, mass-weighted geometric mean
of black hole masses ism�ð0Þ ¼ 12:7M�. The dashed lines
represent the range of uncertainty on this z ¼ 0 normal-
ization. A larger value of m� is obtained by reducing the
contribution of stellar-mass black holes (assuming the
local density is 30% lower than our fiducial model, and
assuming the mass distribution is more steeply weighted to
lower masses, so the average mass is 7:2M�), and increas-
ing the contribution of supermassive black holes (by in-
creasing the z ¼ 0 space density within the 1
 uncertainty,
to 5:2
 105M� Mpc�3). This yields m�ð0Þ ¼ 24:7M�.
Pushing the numbers in the opposite direction, we obtain
m�ð0Þ ¼ 10:5M�. Using Eq. (27) for the current effective
density of dark energy, and ignoring the spin of black
holes, this range in m�ð0Þ translates to a range for the
trans-Planckian parameter �P

�P ¼ ð0:4� 5Þ 
 102: (37)

We can consider spinning black holes, using our scaling
argument from Sec. III and taking a nominal value of a� ¼
0:75. This implies a lower range for the trans-Planckian
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parameter, �P ¼ 20–300, in order to match the current rate
of cosmic acceleration. The fact that �P 
 1, further jus-
tifies a trans-Planckian, or quantum gravitational origin for
the observed ‘‘dark energy phenomenon.’’

The evolution of the stellar-mass black hole mass den-
sity is dependent upon the shape of the star-formation-rate
density plot from [22]. To consider the effect of this, we
construct two star formation histories that are consistent
with those data within the 1
 error bars, but which produce
as many stars as possible at either high redshift (z > 1) or
at low redshift (z < 0). We still renormalize this to match
the local stellar mass density. These extremes are shown in
Fig. 3 as dashed lines. The evolution of the supermassive
black hole distribution is very model dependent, and not
well constrained. We note that the two different predictions
shown by [26], which make different assumptions about
the quasar space density evolution at z > 2, have a subdo-
minant effect on the predictions shown here, relative to the
other uncertainties considered.

Within an effective dark energy description of FRW
cosmology, a fixed dark energy equation of state w implies

that dark energy density evolves as ð1þ zÞ3ð1þwÞ, as a

function of redshift z. The effective equation of state
(which is simply a way to parameterize cosmic expansion
history) is observationally constrained to

wðzÞ ¼ �1:06� 0:14þ ð0:36� 0:62Þ z

1þ z
; (38)

at 68% confidence level, based on cosmic microwave
background, baryonic acoustic oscillations, and
supernovae Ia observations, assuming a spatially flat cos-
mology [31], and a linear dependence of wðzÞ on the
cosmological scale factor ¼ ð1þ zÞ�1.
We can define a mean equation of state as

1þ �wð<zÞ � 1

3

ln½�DE;effðzÞ=�DE;effð0Þ�
lnð1þ zÞ

¼ � ln½m�ðzÞ=m�ð0Þ�
lnð1þ zÞ ; (39)

since �DE;effðzÞ / m�3� ðzÞ, as we saw in the last section. We

show this estimate of w for the models described above, in
the top panel of Fig. 3. Our fiducial model predicts a value
of w that deviates from�1 by less than % out to z
 2, but
predicts it should reach w ¼ �0:8 by z ¼ 3. There is
considerable uncertainty on this, however, due both the
unknown distribution of black hole masses at z ¼ 0
(dashed lines) and the unknown shape of the star-forma-
tion-rate density evolution (dotted lines).
While most these models are consistent with the current

bounds on the effective dark energy equation of state
[using Eq. (38)]:

�wð<zÞ ¼ �1:06� 0:14þ ð0:36� 0:62Þ



�
1� z

ð1þ zÞ lnð1þ zÞ
�
; (40)

stage IV dark energy missions, as quantified by the Dark
Energy Task Force report [32], are expected to have per-
cent level sensitivity to �wð<1� 3Þ, and thus should be able
to distinguish the aether model with these m�ðzÞ histories
from a cosmological constant.

VI. CONCLUSIONS AND FUTURE PROSPECTS

We have shown that static black hole solutions exist in
the gravitational aether model of [7]. The model is an
attractive alternative to the cosmological constant, which
does not suffer from the tremendous fine-tuning problem of
the vacuum energy in the standard model. We find that in
the presence of a gravitational aether, the Schwarzschild
black hole is sufficiently perturbed so as to result in a trans-
Planckian connection between physics near the black hole
horizon and cosmology. This could be a phenomenological
product of quantum gravity, and it naturally explains the
present-day acceleration of cosmic expansion as a result of
formation of stellar/solar-mass black holes.
Indeed, the recent discovery of cosmic acceleration, or

dark energy [1,2] might be the first concrete evidence for

FIG. 3. Bottom panel: The mass-weighted geometric mean of
black hole masses m� in units of M� as a function of redshift.
Our fiducial model (solid, black line) assumes our best estimates
of the mass distribution evolution of the black hole mass distri-
bution. Dashed lines indicate the range of uncertainty expected
due to the unknown relative contribution of supermassive and
stellar-mass black holes at z ¼ 0, while the dotted lines represent
the uncertainty in the shape of the star formation density evolu-
tion from [22]. Top panel: The prediction of the equation of state
parameter �wð<zÞ from Eq. (39), for the same models. The
dashed area shows the region excluded at 68% confidence level
for this parameter, as measured from independent observations
[31].
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quantum gravity and/or trans-Planckian physics. Future
work may include an exploration of quantum properties
of this black hole solution. In particular, a natural next step
would be to understand how quantum gravity can resolve
the null singularity at the event horizon.

As discussed in Sec. III, another important question yet
to be addressed is whether dynamical evolution could lead
to the static solutions found in this work. While prior to
formation of black holes, the integration constant p0 is set
by large-scale conditions, as black hole horizons form, we
speculate that the constant is instead set by conditions at
the event horizon. In order to understand the causal tran-
sition between these two boundaries, and how fast the
effect will propagate away from the black hole, a more
complete dynamical picture is necessary.

Furthermore, in the presence of multiple black holes
with relative motion, the aether is expected to be locally
dragged by different black hole horizons. However, for
black holes at large separations compared to their horizon
sizes and nonrelativistic velocities (as expected in astro-
physical situations), the perturbations to the static solution
is expected to be small.

To conclude, we would like to entertain the exciting
possibility that the gravitational aether [7] might provide
a complete solution to the three aspects of the CC problem,
as discussed in the Introduction:

(1) Old CC problem: Gravitational aether theory decou-
ples quantum vacuum from geometry, which allows
a nearly flat space-time even in the presence of large
vacuum energy densities expected from the standard

model of particle physics. The model makes specific
predictions for physics at big bang nucleosynthesis
and radiation-matter transition era, which will be
tested with precision cosmological probes over the
next decade [7].

(2) New CC problem: Formation of black holes leads to
a UV-IR coupling, which connects near-horizon
Planck-scale physics to cosmology, and can natu-
rally lead to cosmic acceleration, even in the ab-
sence of a real dark energy component.

(3) Coincidence problem: As we showed in Sec. V, the
stellar-mass black holes expected in standard star
formation, can naturally lead to the observed
present-day acceleration of the Universe. The com-
petition between the contribution of stellar-mass
black holes, and supermassive black holes leads to
an evolution of the effective dark energy density,
which can be tested with NASA’s future Joint Dark
Energy Mission (JDEM) [33] or its European coun-
terpart Euclid [34].
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