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We present a set of formalisms for comparing, evolving, and constraining primordial non-Gaussian

models through the CMB bispectrum. We describe improved methods for efficient computation of the full

CMB bispectrum for any general (nonseparable) primordial bispectrum, incorporating a flat sky approxi-

mation and a new cubic interpolation. We review all the primordial non-Gaussian models in the present

literature and calculate the CMB bispectrum up to l < 2000 for each different model. This allows us to

determine the observational independence of these models by calculating the cross correlation of their

CMB bispectra. We are able to identify several distinct classes of primordial shapes—including equi-

lateral, local, warm, flat, and feature (non-scale invariant)—which should be distinguishable given a

significant detection of CMB non-Gaussianity. We demonstrate that a simple shape correlator provides a

fast and reliable method for determining whether or not CMB shapes are well correlated. We use an

eigenmode decomposition of the primordial shape to characterize and understand model independence.

Finally, we advocate a standardized normalization method for fNL based on the shape autocorrelator, so

that observational limits and errors �fNL can be consistently compared for different models.

DOI: 10.1103/PhysRevD.80.043510 PACS numbers: 98.80.Es, 98.80.Cq

I. INTRODUCTION

Constraints on non-Gaussianity arguably provide the
most stringent observational tests of the simplest infla-
tionary paradigm and, in the near future, these limits are
set to tighten substantially. Single-field slow-roll inflation
predicts to high precision that the CMB will be a Gaussian
random field and hence can be completely described by its
angular power spectrum. However, if there was a mecha-
nism for generating some non-Gaussianity in the initial
perturbations then its measurement would open up a wealth
of extra information about the physics governing the early
universe. Motivated by the first discussions of the local
case which is dominated by squeezed states, non-
Gaussianity is usually parametrized by fNL, a quantity
that can be extracted from CMB observations. The purpose
of this paper is to apply and improve the methods detailed
in Ref. [1] for calculating the CMB bispectrum for any
general (nonseparable) primordial non-Gaussian model,
and, on this basis, to determine the extent to which com-
peting models are independent and can be constrained by
present limits on fNL.

At present, CMB observations directly constrain only
three separable primordial non-Gaussian models because
of the calculational difficulties of using bispectrum esti-
mators in the general case. These are the local model and
the equilateral model (a separable approximation to the
Dirac-Born-Infeld (DBI) inflation) and warm inflation with
the latest (model-dependent) CMB constraints on fNL
becoming [2–4]

� 4< flocalNL < 80; (1)

� 151< fequiNL < 253; (2)

� 375< fwarmNL < 37: (3)

The above are 2� limits on non-Gaussianity, though we
note that there is a tentative claim [5] of a detection of flocalNL

at almost 3�, with limits 27< flocalNL < 147 (2�). Given the
growing range of theoretical possibilities for other (non-
separable) non-Gaussian bispectra, an important goal is the
development of methods which can be used to place direct
constraints in the general case [6]. However, our purpose
here is to note the models which are tightly constrained by
the present limits and, conversely, to identify those for
which further investigation is warranted.
The bispectrum has been shown to be optimal for detect-

ing primordial non-Gaussianity [7], but alternative ap-
proaches seem to be able to produce comparable limits.
Awavelet analysis of the WMAP 5 year data yields �8<
fNL < 111 (2�) [8] and positional information from wave-
lets can be used to examine the likelihood of specific
features. Minkowski functionals provide a geometric char-
acterization of the temperature fluctuations in the CMB,
yielding a slightly weaker constraint �70< fNL < 91
(2�) [9]. Of course, the effects of non-Gaussianity are
not only felt in the CMB but could be detectable in a
wide range of astrophysical measurements, such as cluster
abundances and the large scale clustering of highly biased
tracers. However, given the imminent launch of the Planck
satellite with a projected constraint jfNLj � 5 (2�) [10]
(almost at the level of cosmic variance, jfNLj � 3 (2�)),
the focus of this paper remains on the CMB bispectrum.
In Sec. II, we review the relationship between the pri-

mordial bispectrum and its counterpart in the CMB, noting
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the importance of separability for present estimators. We
also present a new analytic solution for the CMB bispec-
trum from a constant primordial model, against which it is
useful to normalize other models. In Sec. III, we introduce
the shape function relevant for nearly scale-invariant bis-
pectra, and we review the current literature classifying
current non-Gaussian models into center-, corner-, and
edge-weighted categories, as well as those which are not
scale invariant. We use a shape correlator to forecast the
cross correlation of the CMB bispectra for all these differ-
ent models, identifying five distinct classes of shapes. This
work takes forward earlier discussions of the non-Gaussian
shape (see, for example, [11–13]) but here we are able to
directly compare to the actual CMB bispectra for all the
models. Moreover, we propose a specific eigenfunction
decomposition of the shape function which offers insight
as to why particular shapes are related or otherwise.

In Sec. IV, we describe important improvements to the
numerical methods which we use to make accurate com-
putations of the CMB bispectrum for all the models sur-
veyed [1]. The most important of these are the flat sky
approximation and a cubic interpolation scheme for the
tetrahedral domain of allowed multipoles. What was pre-
viously regarded as an insurmountable computational
problem has now become tractable, irrespective of separa-
bility. In Sec. V, we present the main results detailing the
cross correlations for all the different models, while con-
firming the different classes of independent shapes previ-
ously identified, some of which remain to be fully
constrained (even by present data). We compare the results
of the shape and CMB bispectra correlators, noting the
efficacy of the shape approach in identifying models for
which quantitative CMB analysis is required. Finally, in
Sec. VI, we propose an alternative normalization proce-
dure for fNL which brings the constraints into a more
consistent pattern, allowing for a model-independent com-
parison of the true level of non-Gaussianity.

II. RELATING THE PRIMORDIAL AND CMB
BISPECTRUM

The primordial gravitational potential �ðkÞ induces
CMB temperature anisotropies which we represent using
alm’s, that is,

�T

T
ðn̂Þ ¼ X

lm

almYlmðn̂Þ:

The linear evolution which relates them is mediated by the
transfer functions �lðkÞ through the integral,

alm ¼ 4�ð�iÞl
Z d3k

ð2�Þ3 �lðkÞ�ðkÞYlmðk̂Þ: (4)

The CMB bispectrum is the three point correlator of the
alm,

B
l1l2l3
m1m2m3

¼ hal1m1
al2m2

al3m3
i; (5)

and so, substituting (4), we obtain

Bl1l2l3
m1m2m3

¼ ð4�Þ3ð�iÞl1þl2þl3
Z d3k1

ð2�Þ3
d3k2
ð2�Þ3

d3k3
ð2�Þ3

��l1ðk1Þ�l2ðk2Þ�l3ðk3Þh�ðk1Þ�ðk2Þ�ðk3Þi
� Yl1m1

ðk̂1ÞYl2m2
ðk̂2ÞYl3m3

ðk̂3Þ: (6)

The primordial bispectrum is defined as

h�ðk1Þ�ðk2Þ�ðk3Þi ¼ ð2�Þ3B�ðk1; k2; k3Þ
� �ðk1 þ k2 þ k3Þ; (7)

where the delta function enforces the triangle condition.
We replace the delta function with its integral form and
expand the exponential into spherical harmonics. If we
substitute this into Eq. (6) and integrate out the angular
parts of the three ki integrals, which yield delta functions,
then we can remove the summation to obtain

Bl1l2l3
m1m2m3

¼
�
2

�

�
3 Z

dxdk1dk2dk3ðxk1k2k3Þ2

� B�ðk1; k2; k3Þ�l1ðk1Þ�l2ðk2Þ�l3ðk3Þjl1ðk1xÞjl2
� ðk2xÞjl3ðk3xÞ

Z
d�xYl1m1

ðx̂ÞYl2m2
ðx̂ÞYl3m3

ðx̂Þ:
(8)

The integral over the angular part of x is known as the
Gaunt integral and has a geometric solution,

Gl1l2l3
m1m2m3

�
Z

d�xYl1m1
ðx̂ÞYl2m2

ðx̂ÞYl3m3
ðx̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4�

s

� l1 l2 l3

0 0 0

 !
l1 l2 l3

m1 m2 m3

 !
; (9)

where

l1 l2 l3
m1 m2 m3

� �

is the Wigner 3j symbol. First, as we expect the bispectrum
to be isotropic, it is common to work with the angle
averaged bispectrum,

Bl1l2l3 ¼
X
mi

l1 l2 l3
m1 m2 m3

� �
hal1m1

al2m2
al3m3

i: (10)

We will find it more convenient to work with the reduced
bispectrum where we drop the geometric factors associated
with the Gaunt integral,

Bl1l2l3
m1m2m3

¼ Gl1l2l3
m1m2m3

bl1l2l3 : (11)

In removing the 3j symbols it is important to remember
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some of the constraints that they place on the l values. The
first constraint is that the sum of the three li must be even.
The other is that if we treat the three li as lengths, they must
be able to form a triangle. This is analogous to the con-
straint that the three ki are able to form a triangle, which is
demanded by the delta function in (7), and in l space is
enforced through the x integral over the three spherical
Bessel functions, which evaluates to zero if the correspond-
ing triangle condition is violated. The reduced bispectrum
is of the form

bl1l2l3 ¼
�
2

�

�
3 Z

dxdk1dk2dk3ðxk1k2k3Þ2

� B�ðk1; k2; k3Þ�l1ðk1Þ�l2ðk2Þ
� �l3ðk3Þjl1ðk1xÞjl2ðk2xÞjl3ðk3xÞ: (12)

In looking for a way in which we can simplify the
integral associated with bl1l2l3 , the most obvious place to

start is to try to find simplifications for the primordial
bispectrum B�. The most common, and simplest, approach
is that pioneered by Komatsu and Spergel in [10]. Here
they expand the primordial gravitational potential pertur-
bation as a Taylor expansion around the Gaussian part,

�ðxÞ ¼ �GðxÞ þ fNLð�2
GðxÞ � h�GðxÞi2Þ; (13)

where fNL parametrizes the level of non-Gaussianity.
Simple calculation results in a primordial bispectrum of
the form

B�ðk1; k2; k3Þ ¼ 2fNLðP�ðk1ÞP�ðk2Þ þ P�ðk2ÞP�ðk3Þ
þ P�ðk3ÞP�ðk1ÞÞ: (14)

This is known as the localmodel as the non-Gaussianity of
the gravitational potential is local in space. Substituting
this into Eq. (12) for the reduced bispectrum we see that, as
the primordial bispectrum only consists of products of
functions of a single ki, the integral can be separated into
an integral over x of the products of integrals over k,

bl1l2l3 ¼ 2flocalNL

Z
x2dxð�l1ðxÞ�l2ðxÞ�l3ðxÞ

þ 2 permutationsÞ; (15)

where

�lðxÞ ¼ 2

�

Z
k2dk�lðkÞjlðkxÞ; (16)

�lðxÞ ¼ 2

�

Z
k2dkP�ðkÞ�lðkÞjlðkxÞ: (17)

This reduces the dimension of integration from four to two,
and the separation allows us to calculate the reduced
bispectrum easily.

If we choose to work in the Sachs-Wolfe approximation,
where we replace the transfer function with a Bessel func-
tion,

�lðkÞ ¼ 1
3jlðð�o � �decÞkÞ; (18)

the integral for the reduced bispectrum can be expressed in
closed form and it is possible to derive an analytic solution
in simple cases. The exact analytic result for the local
model on large angles is

Bl1l2l3 ¼ fNL

�
2A2

�

27�2

�
Gðl1; l2; l3Þ; (19)

where Gðl1; l2; l3Þ is shorthand for

Gðl1; l2; l3Þ ¼ 1

l1ðl1 þ 1Þl2ðl2 þ 1Þ þ
1

l2ðl2 þ 1Þl3ðl3 þ 1Þ
þ 1

l3ðl3 þ 1Þl1ðl1 þ 1Þ : (20)

Here, we present a second analytic solution, that of the
simplest primordial bispectrum that scales in the correct
manner,

B�ðk1; k2; k3Þ ¼ 1=ðk1k2k3Þ2; (21)

which we will denote as the constant model. Here the
reduced bispectrum integral becomes

bl1l2l3 ¼ fNL

�
2

3�

�
3 Z

x2dx�3
i¼1Ilið0; xÞ; (22)

where

Ilðp; xÞ ¼
Z

kpdkjlðkÞjlðxkÞ: (23)

The Ilð0; xÞ integral has a nice solution (see Ref. [14]
p. 405),

x > 1 ) �

2

x�ðlþ1Þ

2lþ 1
; x < 1 ) �

2

xl

2lþ 1
; (24)

from which we can obtain an exact large-angle solution for
the constant model bispectrum,

bl1l2l3 ¼
fNL
27

1

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ
�
�Z 1

0
xl1þl2þl3þ2dxþ

Z 1

1
x�l1�l2�l3�1dx

�

¼ fNL

�
1

3

�
3
Dðl1; l2; l3Þ; (25)

where we have defined

Dðl1; l2; l3Þ ¼ 1

ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ
�
�

1

l1 þ l2 þ l3 þ 3
þ 1

l1 þ l2 þ l3

�
: (26)

Unfortunately the bispectrum signal is too weak for us to
be able to measure individual multipoles directly from
data, so to compare theory with observations we must
use an estimator which sums over all multipoles. At the
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most basic level estimators can be thought of as performing
a least squares fit of the bispectrum predicted by theory,
hal1m1

al2m2
al3m3

i, to the bispectrum obtained from obser-

vations, aobsl1m1
aobsl2m2

aobsl3m3
. If we ignore the effects of sky cuts

and inhomogeneous noise the estimator can be written

E ¼ 1

N 2

X
limi

hal1m1
al2m2

al3m3
i

Cl1Cl2Cl3

aobsl1m1
aobsl2m2

aobsl3m3
; (27)

where

N ðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
li

B2
l1l2l3

Cl1Cl2Cl3

vuuut : (28)

The above estimator has been shown to be optimal [7] for
general bispectra in the limit where the non-Gaussianity is
small and the observed map is free of instrument noise and
foreground contamination. This is of course an idealized
case and we need to consider taking into account the effect
of sky cuts, inhomogeneous noise, and beam effects which
were considered in some detail in Refs. [12,15].

Here, for clarity we consider only the simple form of the
estimator (27), since all statements made about it can be
extended to the more complete version. If we consider the
local model we can rewrite it as

E ¼ 1

N 2

X
limi

Gl1l2l3
m1m2m3

bl1l2l3
aobsl1m1

aobsl2m2
aobsl3m3

Cl1Cl2Cl3

: (29)

From this we see that we only need to be able to calculate
the reduced bispectrum, bl1l2l3 , from theory rather than the

full bispectrum, hal1m1
al2m2

al3m3
i, which would be much

more challenging. For the local model we can use the
separation of bl1l2l3 , from Eq. (15), to separate the sums

in the estimator, so

E ¼ 1

N 2

Z
d3xAðxÞðBðxÞÞ2; (30)

where

AðxÞ � X
lm

�lðxÞa
obs
lm

Cl

Ylmðx̂Þ; (31)

BðxÞ � X
lm

�lðxÞa
obs
lm

Cl

Ylmðx̂Þ: (32)

From this we can conclude that if the primordial bispec-
trum is separable then we can overcome both the issue with
the multidimensional integration, and the calculation of the
3j symbols. Thus separability has become the cornerstone
of all non-Gaussian analysis.

III. THE SHAPE OF PRIMORDIAL BISPECTRA

A. Shape function

Here we will introduce the shape function for the pri-
mordial bispectrum. As the power spectrum is constrained
to be very close to scale invariant we expect that the
bispectrum will show similar behavior. Exact scale invari-
ance for the local model results in an equal k primordial
bispectrum of the form

Blocal
� ðk; k; kÞ ¼ 6fNL

A2
�

k6
: (33)

This equal-k behavior with B�ðk; k; kÞ / k�6 turns out to
be the expected scaling of a large number of non-Gaussian
models, and so the difference between these models is only
due to the dependence of the primordial bispectrum on the
ratios k1:k2 and k1:k3 [11]. As we already have the factor,
ðk1k2k3Þ2, in the integral for the reduced bispectrum (12), it
is natural to use it to divide out the scale dependence of the
primordial bispectrum. Thus, we can define the momentum
dependence through a shape function S as

Sðk1; k2; k3Þ ¼ 1

N
ðk1k2k3Þ2B�ðk1; k2; k3Þ; (34)

where N is an appropriate normalization, often taken to be
N ¼ 1=fNL. (Inconsistent definitions for fNL for different
models mean that it is difficult to compare their observa-
tional limits; we will discuss this further in Sec. VI, but
here we will generally factor out N).
The two most commonly discussed models are the local

model

Slocalðk1; k2; k3Þ / K3

K111

; (35)

and the equilateral model

Sequiðk1; k2; k3Þ /
~k1 ~k2 ~k3
K111

: (36)

However, we should also keep in mind the constant model
Sconstðk1; k2; k3Þ ¼ 1, for which we have a large-angle ana-
lytic solution Dðl1; l2; l3Þ. Here in Eqs. (35) and (36), and
throughout this section, we will adopt a shorthand notation
for the possible combinations of wave numbers that can
contribute to the bispectrum (i.e. the simplest terms con-
sistent with its symmetries):

Kp ¼ X
i

ðkiÞp with K ¼ K1; (37)

Kpq ¼ 1

�pq

X
i�j

ðkiÞpðkjÞq; (38)

Kpqr ¼ 1

�pqr

X
i�j�l

ðkiÞpðkjÞqðklÞr; (39)
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~k ip ¼ Kp � 2ðkiÞp with ~ki ¼ ~ki1; (40)

where �pq ¼ 1þ �pq and �pqr ¼ �pqð�qr þ �prÞ (no

summation). This notation significantly compresses the
increasingly complex bispectrum expressions quoted in
the literature.

One of the first models discussed with a specific shape
was Maldacena’s calculation for single-field slow-roll in-
flation [16]:

SMaldðk1; k2; k3Þ / ð3�� 2�Þ K3

K111

þ �

�
K12 þ 8

K22

K

�

� ð6�� 2�ÞSlocalðk1; k2; k3Þ
þ 5

3
�Sequiðk1; k2; k3ÞÞ; (41)

where Slocal and Sequi are normalized so that Slocalðk; k; kÞ ¼
Sequiðk; k; kÞ. While we know the predicted non-
Gaussianity in this case is negligible, there are more recent
models which yield similar combinations of equilateral and
local terms which are measurable (e.g. nonlocal inflation
[17]). We need to know, therefore, the extent to which we
can distinguish between the relative contributions from
these different shapes and the degree to which they are
observationally independent.

B. Shape correlator

One obvious way to distinguish between models is to use
the estimator discussed previously (27), replacing the ob-
served bispectrum with one calculated from a competing
theory,

C ðB;B0Þ ¼ 1

N ðBÞN ðB0Þ
X
li

Bl1l2l3B
0
l1l2l3

Cl1Cl2Cl3

: (42)

If the observational data contained a bispectrum of the
form B0

l1l2l3
then CðB; B0Þ is an estimate of the proportion

of the correct f0NL we would recover by using an estimator
based on Bl1l2l3 . However, this Fisher matrix approach is

extremely computationally demanding as we must calcu-
late the full bispectrum for each model before we can make
any comparison. What we would like in addition, there-
fore, is a simple method allowing us to predict the value of
the correlator directly from the shape functions, thus in-
dicating cases in which a full Fisher matrix analysis is
warranted.

If we return to Eq. (12) for the reduced bispectrum and
substitute the expression for the shape function we have

bl1l2l3 ¼ fNL

�
2

�

�
3 Z

V k

dV kSðk1; k2; k3Þ�l1ðk1Þ

��l2ðk2Þ�l3ðk3ÞIGl1l2l3ðk1; k2; k3Þ; (43)

where V k is the area inside the cube ½0; kmax� allowed by
the triangle condition (refer to Fig. 1). The integral IG is
given by

IGl1l2l3ðk1; k2; k3Þ ¼
Z

x2dxjl1ðk1xÞjl2ðk2xÞjl3ðk3xÞ: (44)

So Sðk1; k2; k3Þ is the signal that is evolved via the transfer
functions to give the bispectrum today, with IG giving an
additional, purely geometrical, factor. Essentially, IG acts
like a window function on all the shapes as it projects from
k to l space, that is, it tends to smear out their sharper
distinguishing features, but only erasing significant differ-
ences in extreme cases (as we shall discuss later). This
means that the shape function Sðk1; k2; k3Þ, especially in
the scale-invariant case, can be thought of as the primordial
counterpart of the reduced bispectrum bl1l2l3 before

projection.
To construct a shape correlator that predicts the value of

(42) correctly we then should consider something of the
form

FðS; S0Þ ¼
Z
V k

Sðk1; k2; k3ÞS0ðk1; k2; k3Þ!ðk1; k2; k3ÞdV k;

(45)

where ! is an appropriate weight function. We note that
authors in Ref. [11] define a cosine between shape func-
tions to be used as a correlator. However, we comment later
on the quantitative differences of their definition, notably
its breakdown in the non-scale-invariant case.
The question now is what weight function should we

choose? Our goal is to choose S2! in k space such that it
produces the same scaling as the estimator B2=C3 in l
space. Let us consider the simplest case where both k1 ¼
k2 ¼ k3 ¼ k and l1 ¼ l2 ¼ l3 ¼ l. For primordial bispec-
tra which are scale invariant, then,

S2ðk; k; kÞ!ðk; k; kÞ / !ðk; k; kÞ: (46)

FIG. 1 (color online). (a) The region of k space allowed by the
triangle inequality, i.e., for which the primordial bispectrum is
valid. The red (dark gray) lines are k1 ¼ k2, k3 ¼ 0; k2 ¼ k3,
k1 ¼ 0; k3 ¼ k1, k2 ¼ 0 and the allowed region is in yellow
(shaded). (b) This area can be parametrized into slices repre-

sented by the green triangle and the distance 2j ~kj= ffiffiffi
3

p
of the

center of the triangle from the origin.
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If we work in the large-angle approximation and assume
that lþ 1 � l, then we know Cl / 1=l2 and from the
analytic solutions G, D, (20) and (26) that blll / 1=l4.
The angle averaged bispectrum is related to the reduced
bispectrum by

Bl1l2l3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4�

s
l1 l2 l3
0 0 0

� �
bl1l2l3 :

(47)

For equal l, we can deduce that

Blll / l l l
0 0 0

� �
l�5=2: (48)

The Wigner 3J symbol has an exact solution for which

l l l
0 0 0

� �
� ð�1Þ3l=2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3lþ 1
p

ffiffiffiffiffiffi
l!3

3l!

s
ð3l=2Þ!
ðl=2Þ!3

� ð�1Þ3l=2
ffiffiffiffiffiffiffiffiffiffi
2ffiffiffi
3

p
�

s
1

l
; (49)

with the last expression using Stirling’s approximation,

l! � ffiffiffiffiffiffiffiffi
2�l

p ðl=eÞl. Combining these results gives

B2
lll

C3
l

/ l�1; (50)

and so we find that we should choose a weight function
wðk; k; kÞ / k�1. This is a very simple approximation
which ignores the cross sectional weighting inherent in
(42). Our analysis of the behavior in the ð�;�Þ slices
with a constant primordial shape function (Sð�;�Þ ¼
const) shows that B2=C3 is flat in the interior and then
grows to a finite value on the boundary. However, this
variation is confined to be very close to the boundary and
we choose to neglect this effect. As a result we take the
explicit flat k�1 weighting:

wðk1; k2; k3Þ ¼ 1

k1 þ k2 þ k3
: (51)

Note that this weighting does not incorporate damping due
to photon diffusion at large l, edge effects, or smoothing

due to the projection from k to l space. These could be
included using phenomenological window functions, but
our purpose here is simplicity. In any case, the choice of the
weight function may significantly improve forecasting ac-
curacy, but it does not impact important qualitative
insights.
With this choice of weight (51), the primordial shape

correlator from (45) then takes the form

�CðS; S0Þ ¼ FðS; S0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðS; SÞFðS0; S0Þp : (52)

This correlator is very simple to calculate and allows us to
quickly categorize new models and their degree of
independence.
Before surveying model shapes currently in the litera-

ture, we note the utility of this correlator (52) with the
simple shape examples discussed above. The local and
equilateral shapes (35) and (36) yield a 46% correlation.
Thus, supposing the universe to have local non-
Gaussianity, a highly significant observation using a local
estimator would be expected to produce a (less) significant
result also for an equilateral estimator. Nevertheless, 46%
is a relatively low correlation and the equilateral and local
shapes can be regarded as distinguishable in principle.
What of Maldacena’s shape with � � � (41) (as, for ex-
ample, in m2	2 inflation)? If this were indeed observable,
it would yield the rather striking result that it is 99.7%
correlated with the local shape (35) (see also [11]) and that
it is only 53% correlated with equilateral (36). As we shall
see, such strong correspondences between models with
apparently different shapes are rather common. In this
case, we need to go to a fine-tuned regime near � �
2:84� in order for (41) to have an equal 86% correlation
to both local and equilateral shapes; it is clearly generically
in the local class of models. Table I provides a summary of
the correlations between all the shapes we discuss in the
next sections.
Finally, we note that the definition in Ref. [11] of a

cosine correlator has three weaknesses. The first is that it
is calculated only on a 2D slice, k1 ¼ const, through the
tetrahedron (in contrast to our 3D integration over the k ¼
const slices in Fig. 1). This choice may be tolerable for

TABLE I. Shape correlations.

DBI Equi Feat FlatS Ghost Local Single Warm WarmS

DBI 1.00 0.99 �0:41 0.39 0.94 0.50 0.98 0.38 0.55

Equi 1.00 �0:36 0.30 0.98 0.46 0.95 0.44 0.63

Feat 1.00 �0:44 �0:26 �0:41 �0:46 �0:05 �0:08
FlatS 1.00 0.15 0.62 0.49 0.01 -0.03

Ghost 1.00 0.37 0.86 0.50 0.71

Local 1.00 0.55 0.30 0.27

Single 1.00 0.29 0.44

Warm 1.00 0.80

WarmS 1.00
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comparing shapes which scale in exactly the same way as
each slice will give the same correlation. However, if the
two models being compared have differing scale depen-
dence, like for comparisons with the feature model, then it
will produce poor results. Even in the case when compar-
ing shapes which scale in exactly the same way there is a
second more subtle issue which makes the cosine correla-
tor unsuitable. The region covered in the bispectrum cor-
relator is the intersection of the cube defined by ½0; lmax�
and the tetrahedron defined by the triangle condition on the
three li and so we should cover a similar region in k space.
If we just look at the correlation on one slice then we miss
the effect the shape of the region has on the result. If we
think of the region as being composed of many parallel
slices then some will be incomplete due to the effect of
restricting the individual ki < kmax. Different slices will
give different correlations depending on how much they
have been cut and so no slice is truly representative of the
true correlation. The third and related problem if that the
weight in (51) is required to give accurate representation of
the CMB correlation using shape functions in k space.

C. Shape decomposition

Given strong observational limits on the scalar tilt we
expect all shape functions to exhibit behavior close to scale
invariance, so that Sðk1; k2; k3Þ will only depend weakly on
j ~kj. Here, we choose to parametrize the magnitude of the

ki’s with both j ~kj ¼ ðk21 þ k22 þ k23Þ1=2 and the semiperim-

eter,

k � 1
2ðk1 þ k2 þ k3Þ: (53)

A consequence of this scaling behavior is that the form of
the shape function on a cross section is essentially inde-
pendent of k, so that for the models under consideration we
can write

Sðk1; k2; k3Þ ¼ fðkÞ �Sðk̂1; k̂2; k̂3Þ; (54)

where

k̂ 1 ¼ k1
k
; k̂2 ¼ k2

k
; k̂3 ¼ k3

k
; (55)

and we note that k̂1 þ k̂2 þ k̂3 ¼ 2. Since we are restricted
to the region where the three ki are able to form a triangle
by momentum conservation, we will reparametrize the
allowed region to separate out the overall scale k from
the behavior on a cross sectional slice Sk. This two-
dimensional slice is spanned by the remaining coordinates
(see Fig. 1),

k1 ¼ kð1� �Þ; k2 ¼ 1
2kð1þ �þ �Þ;

k3 ¼ 1
2kð1� �þ �Þ: (56)

The surface k ¼ const defines a plane with normal (1, 1, 1)

at a distance 2j ~kj= ffiffiffi
3

p
from the origin. Our new parameters

�, � parametrize the position on the triangular domain
formed by the intersection of the tetrahedral region and that
plane [18]. They have the following domains, 0 � k <1,
0 � � � 1, and �ð1� �Þ � � � 1� �. In this parame-
trization we can rewrite shape function (54) and the volume
element, respectively, as

Sðk1; k2; k3Þ ¼ fðkÞ �Sð�;�Þ;
dV k ¼ dk1dk2dk3 ¼ k2dkd�d�:

(57)

Here, we note that fðkÞ � const for all the model shapes to
be discussed in the next section, with the exception of the
feature and oscillatory models.
Having restricted our discussion to two-dimensional

ð�;�Þ slices, we now note that bispectrum symmetries
are such that we need only characterize the shape on
one-sixth of this domain (refer to Fig. 2). This is a right-
angled subtriangle with corners defined by the center of the
original triangle plus any corner together with the midpoint
of an adjacent side. Here, we choose the bottom right
triangle (containing k3 ! 0), with corners ð13 ; 0Þ, (1, 0),
and (0, 0) (i.e. the shaded region in Fig. 2). In order to set
up a straightforward eigenfunction decomposition, we
make the following coordinate transformation to take our
subtriangle to a unit square,

� ¼ 1� x; � ¼ yx=3; (58)

with 0 � x � 1 and 0 � y � 1. Analogous to polar coor-
dinates at r ¼ 0, this transformation expands the k3 ¼ 0
corner (see Fig. 2) and our Sk volume element becomes

d�d� ¼ xdxdy: (59)

Here, we note that x and k3 share the same squeezed limit
(x ! 0 as k3 ! 0).
With the simple weight functionwðx; yÞ ¼ xwe can now

decompose an arbitrary shape function �Sðx; yÞ defined on
Sk into a sum,

�Sðx; yÞ ¼X
m;n

cmnXmðxÞYnðyÞ; (60)

consisting of products of orthogonal eigenfunctions Xm

and Yn defined on the unit interval. One possible choice
would be Bessel functions XnðxÞ ¼ Jpð
pnxÞ (given the

weight w ¼ x) and trigonometric functions YmðyÞ ¼
A sinðnyÞ þ B cosðnyÞ. However, the shape function in
general is neither periodic nor vanishing on the boundary,
leading to an ill-conditioned problem with poor series
convergence. Given these arbitrary boundary conditions,
a better choice employs Legendre polynomials PnðyÞ in the
y direction and analogous radial polynomials RmðxÞ in the
x direction. The domain 0 � y � 1 requires shifted
Legendre polynomials �PnðyÞ which, unit normalized, be-
come
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�P 0ðyÞ ¼ 1; �P1ðyÞ ¼
ffiffiffi
3

p ð�1þ 2yÞ;
�P2ðyÞ ¼

ffiffiffi
5

p ð1� 6yþ 6y2Þ . . .
(61)

The eigenfunctions in the x direction can be created using
the generating function

RnðxÞ ¼ 1

N

�����������������������

1=2 1=3 1=4 . . . 1=ðnþ 2Þ
1=3 1=4 1=5 . . . 1=ðnþ 3Þ
. . . . . . . . . . . . . . .
1=n 1=nþ 1 1=nþ 2 . . . 1=ð2nþ 1Þ
1 x x2 . . . xn

�����������������������
;

(62)

with the first unit normalized polynomials given by

R0ðxÞ ¼
ffiffiffi
2

p
; R1ðxÞ ¼ �4þ 6x;

R2ðxÞ ¼
ffiffiffi
6

p ð3� 12xþ 10x2Þ; . . .
(63)

We can now find an eigenmode decomposition (60) on
the domain Sk for any given shape function Sðx; yÞwith the
expansion coefficients given by

cmn ¼
Z 1

0

Z 1

0
RmðxÞ �PnðyÞ �Sðx; yÞxdxdy: (64)

Exploiting eigenmode orthogonality, the counterpart of the
correlator (52) between two shapes S, S0 on the Sk slice
then is

�C Sk
ð �S; �S0Þ ¼

Z
Sk

�Sð�;�Þ �S0ð�;�Þd�d� ¼ X
n:m

cnmc
0
nm;

(65)

where we have assumed unit normalized �S, �S0 on Sk. Even
for scale-invariant shapes, the slice correlator (65) is not
identical to the overall shape correlator (52) because the
integration domain for the latter includes the cubic region
½0; kmax�, that is, for large k > kmax it integrates over in-
terior regions of the slices which weights the center more
heavily. (The integration domain is illustrated explicitly in
Fig. 12.) Nevertheless, �CSk

ð �S; �S0Þ is in close agreement

with �CðS; S0Þ for highly correlated shapes and is able to
reliably distinguish between independent shapes.
Eigenmode expansion matrices ðcmnÞ illustrating the two

qualitatively different results for the equilateral Sequil and

local Slocal shapes are, respectively,

:88 :35 �:10 :01
:27 :10 �:04 :01
�:02 �:02 :00 :00
�:01 �:01 :00 :00

0
BBB@

1
CCCA and

:55 �:07 :01 :00
�:39 :03 :00 :00
:34 �:03 :00 :00
�:28 :02 :00 :00

0
BBB@

1
CCCA:

(66)

The eigenmode coefficients converge rapidly for the equi-
lateral shape (left) and it can be very well approximated by
just three linear terms (with which it is 98% correlated):

Sequilðx; yÞ � 0:88þ 0:35R1ðxÞ þ 0:27P1ðyÞ
¼ �0:74þ 1:65xþ 1:76y: (67)

The local shape, on the other hand, which is divergent
except for a cutoff at kmin=kmax � 2=lmax, oscillates as

FIG. 2 (color online). Coordinate transformation from a shaded subtriangle on the equilateral ð�;�Þ slice to the uniform square ðx; yÞ
domain suitable for an eigenmode expansion, i.e. � ¼ 1� x, � ¼ yx=3. Here, we illustrate the transformation with contour plots for
the warm inflation shape function. Note the nontrivial behavior in the corner region where the function diverges and the sign changes.
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�� 1=
ffiffiffiffi
m

p
in the RmðxÞ modes (for n ¼ 0), although it

converges rapidly for the higher PnðyÞ (n > 1). It is imme-
diately apparent that the 46% correlation between local and
equilateral shapes discussed earlier arises primarily from
the dominant constant term c00c

0
00 in the expansion (65).

Removing the constant mean from the local shape, then
yields a small �15% anticorrelation between the models,
thus suggesting possible strategies for distinguishing them.

In the discussion that follows we shall illustrate the
eigenvalues graphically as shown in Fig. 3 for the warm
inflation shape. Like the local model, the warm shape is
corner-weighted, however, the dominant presence of the
RmðxÞP1ðyÞ modes (see also Fig. 2), which are orthogonal
to the RmðxÞ modes in the local case, implies that the two
shapes exhibit little correlation (only 30%) and can be
regarded as independent. Figure 4 provides a summary of
the largest eigenvalues for all the shapes we discuss in the
next sections.

D. Equilateral triangles— center-weighted models

We begin this brief survey with the shape functions
which are most easily characterized, those bispectra domi-
nated by contributions from nearly equilateral triangle
configurations, k1 � k2 � k3. While these might be well-
behaved shapes, they are not necessarily the best-motivated
physically. Equilateral non-Gaussianity requires the ampli-

fication of nonlinear effects around the time modes exit the
horizon, which is not possible in a slow-roll context for
vanilla single-field inflation. Instead, the kinetic terms in
the effective action must be modified as in the DBI model
[19] or by explicitly adding higher derivative terms, such as
in K inflation (see, for example, Ref. [20]). The resulting
corrections modify the sound speed cs, acting to slow the
scalar field motion and, when the field theory is coupled to
gravity, inflation is able to take place in steep potentials.
For DBI inflation, this leads to non-Gaussianity being
produced with a shape function of the form [19,21]

SDBIðk1; k2; k3Þ / 1

K111K
2
ðK5 þ 2K14 � 3K23

þ 2K113 � 8K122Þ; (68)

where we have used the compact notation of Eq. (37).
Another example of a model with nonstandard kinetic
terms is ghost inflation [22]. Here, a derivatively coupled
ghost scalar field 	 is responsible for driving inflation.
When 	< 0 the potential can be thought of as flat, but
_	 � 0 and so the field continuously evolves towards 	 ¼
0, where inflation ends. In this model the dominant effect
for the perturbations comes from the trilinear term in the
Lagrangian which naturally leads to a nonzero bispectrum.
The shape function for this model is of the form,

FIG. 3 (color online). Eigenvalues for the two-dimensional
eigenmode expansion of the warm inflation shape function.
Here, we denote the conventions with m (for RmðxÞ incrementing
in the horizontal x direction and the n (for �PnðyÞ) in the vertical y
direction. Note the dominance of RmðxÞP1ðyÞ modes. The color
coding (used also in Fig. 4) is such that only blue and red colors
(dark gray) can contribute at above the 10% level to the auto-
correlator CkðS; S0Þ, with yellow and pale green (light gray)
below 1%.

FIG. 4 (color online). Eigenmodes for different shape func-
tions using the conventions and color scale defined in Fig. 3.
Strong similarities are apparent between the equilateral family of
models which are all highly correlated and would prove very
difficult to distinguish observationally. The independence of the
local and warm models is also apparent from the orthogonality of
the dominant eigenmodes.
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Sghostðk1; k2; k3Þ / 2
1

K111

Re

�Z 0

�1
d�

�
F	ð�ÞF	

�
k2
k1

�

�

� F0	
�
k3
k1

�

�
k3 ~k32

�
; (69)

plus two permutations, where

Fð�Þ ¼
ffiffiffiffi
�

8

r
ð��Þ3=2Hð1Þ

3=4

�
�2

2

�
: (70)

General non-Gaussian shapes arising from modifica-
tions to single-field inflation have been extensively re-
viewed in Ref. [20]. Using a Lagrangian that was an
arbitrary function of the field and its first derivative, they
were able to identify six distinct shapes describing the
possible non-Gaussian contributions. Half of these had
negligible amplitude being of the order of slow-roll pa-
rameters (two already given in (41)). Of the remaining
three shapes [20] (see also [23]), one was believed to be
subdominant, the second recovered the DBI shape (68),

leaving a third distinct single-field shape of the form,

Ssingleðk1; k2; k3Þ / K111

K3
: (71)

The subdominant term is a complex combination of special
functions (somewhat like ghost inflation (69)) with inde-
terminate parameter values; we will neglect it in the sub-
sequent discussion. Finally, we recall the original
equilateral shape (36), noting that it was introduced not
because of a fundamental physical motivation, but as a
separable approximation to the DBI shape (68) [11].
Using the shape correlator (52) and the shape decom-

position (64) introduced above, we can make a preliminary
comparison of the four equilateral shapes—DBI, ghost,
single, and equilateral—which are illustrated on a k ¼
const slice in Fig. 5. The results of the shape correlators
are given in Table I. Despite the apparent visual differences
between these shapes, particularly near the edges of the
triangular domain, there is at least a 96% or greater corre-
lation of each to the equilateral shape (36). These particular
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FIG. 5 (color online). The shape function of models in the equilateral class. Clockwise from top left we have the equilateral, DBI,
single, and ghost models. All four of these models have the majority of their signal concentrated in the equilateral limit corresponding
to the center of the triangle. Despite significant variations in the flattened limit, particularly around the edges of the triangle, all are
strongly correlated by 96% or greater to the equilateral model.
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center-weighted shapes must then be regarded as a single
class which would be extremely difficult to distinguish
observationally (see later for the CMB bispectrum
discussion).

The underlying similarity of the shapes is evident from
the magnitudes of the eigenvalues illustrated in Fig. 4.
Each shape has a dominant constant term c00 and can be
very well approximated by a linear polynomial Sðx; yÞ �
c00 þ c10R1ðxÞ þ c01P1ðyÞ on the relevant subdomain
(within a 96% correlation as previously (67) for the equi-
lateral shape). The greatest difference occurs between the
single and ghost shapes, with the former completely domi-
nated by the c00 and the latter having significant c01 and c11
eigenvalues. Independent equilateral shapes are possible,
in principle, but they must go further than the ghost shape
in suppressing the constant term c00 in favor of eigenmodes
with greater internal structure (n, m 
 1).

E. Squeezed triangles—corner-weighted models

The local shape covers a wide range of models where the
non-Gaussianity is produced by local interactions. These
models have their peak signal in ‘‘squeezed’’ states where
one ki is much smaller than the other two, this is because
non-Gaussianity is typically produced on superhorizon
scales. The simplest case is that of single-field slow-roll
inflation (41) [24], which as we have seen is dominated by
the local shape. The nonlinearities produced are tiny and
flocalNL is constrained to be of order slow-roll parameters

[16,24–26]. The production of non-Gaussianity during
multiple field inflation [27–32] shows much greater prom-
ise (see, for example, recent work in Refs. [33,34] and
references therein). Here non-Gaussianity is created by the
inflaton when it follows a curved trajectory in phase space,
during which isocurvature perturbations are converted into
adiabatic perturbations [35,36]. The magnitude of the non-
Gaussianity generated is normally around flocalNL � Oð1Þ,
which is at the limit for Planck detection. Significant flocalNL

can be produced in curvaton models [37–39] where the
adiabatic density perturbation is generated after inflation
by an initially isocurvature perturbation in a light scalar
field, different from the inflaton. The non-Gaussianity
generated in this scenario can be as large as flocalNL �
Oð100Þ. Large flocalNL can be generated at the end of inflation

from massless preheating or other reheating mechanisms
[40–44]. After slow-roll inflation ends, the inflaton oscil-
lates about its minimum and decays. Preheating occurs
when a light field oscillates in resonance with it, taking
energy from the inflaton, so its amplitude grows. The
amplitude of the resonant field eventually becomes so large
that its dynamics become nonlinear and this nonlinearity is
transferred to the density perturbations. It is claimed this
process can generate enormous non-Gaussianity, flocalNL �
Oð1000Þ, which is already tightly constrained by
observation.

The local shape is strongly motivated because it appears
in models that use standard kinetic terms in the action,
smooth potentials without exotic couplings and which
assume the standard Bunch-Davies vacuum. We note,
however, that it also occurs in other contexts. Significant
local non-Gaussianity can appear in models based on non-
local field theory, such as p-adic inflation [17]. In these
models slow-roll inflation is again able to occur in very
steep potentials. Like single-field slow-roll inflation, the
predicted nonlocal shape function is a combination of local
(35) and equilateral-like (36) shape functions (see also
Refs. [45–47] for its origin). However, the combination is
even more heavily weighted than (41) towards the local
shape (with the relative ratio given roughly by the number
of e-foldings). Consequently, the nonlocal shape is (para-
doxically) completely indistinguishable from the local
shape (and is subsumed in this class henceforth). A com-
parison of the two shapes can be seen in Fig. 6. The
ekpyrotic model can also generate significant flocalNL [48–
52]. Here the density perturbations are generated by a
scalar field rolling in a negative exponential potential, so
nonlinear interactions are important, and large local non-
Gaussianity can be produced, flocalNL � Oð100Þ.
Finally, we note that warm inflation scenarios, i.e. mod-

els in which dissipative effects play a dynamical role, are
also predicted to produce significant non-Gaussianity [53–
55]. Contributions are again dominated by squeezed con-
figurations but with a different more complex shape,

Swarmðk1; k2; k3Þ / 1

K333

ðK45 � K27 þ 2K225Þ: (72)

As we can see from Fig. 2, the squeezed limit contains an
orthogonal sign change as the squeezed limit is approached
k3 ! 0.
It is immediately apparent that we need to introduce a

cutoff in order to normalize the squeezed shape functions
for the correlator (52). This logarithmic divergence does
not afflict the CMB bispectrum Bl1l2l3 because we do not

consider contributions below the quadrupole l ¼ 2. Given
the cutoff at large wave numbers where kmax is related
through a flat sky approximation to the largest multipole
lmax, we can similarly define kmin � ð2=lmaxÞkmax. There is
only a weak dependence on the precise value of kmin. We
note that a more serious concern is the apparent breakdown
of the approximations used to calculate the warm inflation
shape near the corners. In the absence of a specific pre-
scription for this asymptotic regime, we have to explore the
dependence of an edge cutoff and/or smoothing. We re-
move the divergence in the squeezed limit, k1 ! 0, by
truncating the shape function when k1=ðk2 þ k3Þ< 0:015.
We smooth the resulting discontinuity by applying a
Gaussian window function on the cross sectional slices
with a FWHM of 0:03=ðk1 þ k2 þ k3Þ. The result of apply-
ing this process to the shape function can be seen in Fig. 7,
with the model denoted warmS.
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We note that the local and warm shape functions are
only correlated at the 33% level, despite the primary con-
tribution coming from squeezed states in both cases. As
discussed previously, this is because their dominant eigen-
values cm0 (local) and cm1 (warm) correspond to orthogo-
nal eigenmodes.

The local shape is modestly correlated at the 40%–55%
level with the equilateral shapes (qualitatively in agree-
ment with [11], though not quantitatively presumably be-
cause of the different weighting). In contrast, however, the
local contribution from the constant term c00 � 0:55 is
relatively small. Thus removing the c00 term from the local
estimator eliminates most of the equilateral correlations
while leaving 70% of the local signal (i.e. in the autocor-
relator �CSk

ðS; SÞ). Thus, we propose subtraction of the

constant term as a significant test of the local model.

F. Flattened triangles—edge-weighted models

It is possible to consider inflationary vacuum states
which are more general than the Bunch-Davies vacuum,
such as an excited Gaussian (and Hadamard) state [56].
Observations of non-Gaussianity in this case might provide
insight into trans-Planckian physics. The bispectrum con-
tribution from early times is strongest for flattened tri-
angles with, for example, k3 � k1 þ k2. In the small
sound speed limit cs � 1, the primordial bispectrum could
be significant with a shape given by [20]

Sflatðk1; k2; k3Þ / 1

K111

ðK12 � K3Þ þ 4
K2

~k21 ~k
2
2
~k23
: (73)

Unfortunately, as this analytic approximation diverges on
the entire boundary of the allowed region, any integrals
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FIG. 6 (color online). The shape function of models in the local class. On the left is the usual local model, while on the right is the
nonlocal model, which is virtually identical. These two models are very highly correlated and so fall into the same class.
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FIG. 7 (color online). The shape function of warm inflation before (left) and after smoothing (right). Note the pathological behavior

of the squeezed states in the corners for the unsmoothed model. The derivation for this shape breaks down when k1
k2 <

ffiffiffi
H
�

q
as k1 ! 0,

where � is the friction coefficient due to dissipative effects. The smoothed model presents a more reasonable profile, but results are
cutoff dependent.
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over the bispectrum are unbounded. In principle, however,
this divergence should be cut off near the edges, though the
nature of the asymptotic behavior which replaces it is
poorly understood. In order to obtain even a qualitative
picture for the flat shape function we must truncate it in
some way. We follow the same procedure as for the warm

model, removing the section ~ki=K < 0:03, then applying
the same Gaussian filter to remove the discontinuity. We
refer to this shape as SflatS. Plots of the flattened model
before and after smoothing can be seen in Fig. 8.

Reflecting its distinctive properties, the flat shape is
poorly correlated with most of the other shapes, with a
particularly striking absence of any correlation with the
orthogonal warm shape. Having a dual divergence ðxyÞ�1

means that the eigenvalues are spread more thinly and

widely than the corner-weighted models with a smaller
constant term. Nevertheless, the flat shape would be most
susceptible to confusion with the local shape with which it
has a 62% correlation.

G. Features—scale-dependent models

Finally, there are models in which the inflation potential
has a feature, providing a break from scale invariance and
introducing large-scale power where it is deemed to be
indicated by observation. This can take the form of a either
a step [57] or a small oscillation superimposed onto the
potential [58]. Analytic forms for both these three point
functions have been produced in [59]. However, these
approximations are both somewhat simplistic and so are
unsuitable for a detailed analysis, other than as a prelimi-
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FIG. 8 (color online). The shape function of the flattened model before (left) and after smoothing (right). The approximation
diverges in the flattened limit, whereas it should oscillate and decay to zero. Here, we set the boundary to zero then apply a Gaussian
smoothing to obtain a more reasonable profile.
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FIG. 9 (color online). The scaling of the shape functions of models with features in the potentials. These are plots of the scaling of
the central value Sðk; k; kÞ for a model with a single feature on the left, and a potential with an oscillatory component on the right. The
blue dashed line is the correct numerical result, the red solid line is the simple approximation quoted earlier (these plots approximate
those in [59]).
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nary check of their correlation to other models. The two
approximations are of the form

Sfeatðk1; k2; k3Þ / sin

�
K

k	
þ P

�
; (74)

Sosciðk1; k2; k3Þ / sinðC lnðKÞ þ PÞ; (75)

where k	 is the associated scale of the feature in question,
C is a constant, andP is a phase factor. The correspondence
of these analytic approximations to the full shape function
can be seen in Fig. 9.

Results for the shape correlator for a particular feature
model (with k	 � l	=�0 and l	 ¼ 50), are given in Table I.
It can be seen to be essentially independent of all the other
shapes. Obviously this is because all variations in the
feature model occur in the K direction which is orthogonal
to the ð�;�Þ slice—it only shares the constant term in
common.

We conclude, from this brief survey of the literature, that
we can identify the feature model in a fifth distinct cate-
gory beyond the equilateral, local, warm, and flat shapes.
We shall now turn to the much more formidable task of
calculating the CMB correlators directly in order to deter-
mine the accuracy of our shape correlator analysis.

IV. CMB BISPECTRUM CALCULATION
METHODOLOGY

A. Numerical approach

It is not feasible to directly evaluate the bispectrum for a
completely general model. However, provided the shape
function obeys a mild separability ansatz then the reduced
bispectrum integral can be rewritten in a tractable form.
The method is based on the splitting of the shape function
(34) into scale and scale-free parts (57), Sðk1; k2; k3Þ ¼
fðkÞ �Sð�;�Þ, as discussed in the previous section, that is,
an ansatz which applies to all the models under discussion.
By using this decomposition with the reparametrization

into rescaled wave numbers k̂1, k̂2, k̂3 from (55), we can
rewrite the integral for the reduced bispectrum (43) in a
simple form

bl1l2l3 ¼ fNL

�
2

�

�
3 Z

V k

dkdSkk
2fðkÞ �Sðk̂1; k̂2; k̂3Þ

��l1ðkk̂1Þ�l2ðkk̂2Þ�l3ðkk̂3ÞIGl1l2l3ðkk̂1; kk̂2; kk̂3Þ

¼ fNL

�
2

�

�
3 Z

Sk

dSk
�Sð�;�ÞITl1l2l3ð�;�ÞIGl1l2l3ð�;�Þ;

(76)

where Sk is the cross section spanned by� and� from (56)
and dSk ¼ d�d�. Here we have made the definitions

ITl1l2l3ðk̂1; k̂2; k̂3Þ ¼
Z 1

0
dx

fðxÞ
x

�l1ðxk̂1Þ�l2ðxk̂2Þ�l3ðxk̂3Þ;
(77)

IGl1l2l3ðk̂1; k̂2; k̂3Þ ¼
Z 1

0
dxx2jl1ðxk̂1Þjl2ðxk̂2Þjl3ðxk̂3Þ: (78)

We refer to Eq. (77) as the transfer integral and Eq.. (78) as
the geometric integral. With this decomposition we have
reduced the number of dimensions in the integral from four
to three and we have also trapped all the highly oscillatory
behavior into the two one-dimensional integrals, IT and IG.
Having achieved this, the remaining two-dimensional in-
tegral over Sk has very mild oscillatory behavior and only
requires a similar number of points as the one-dimensional
integrals to evaluate accurately.
We will now detail the numerical methods used to

evaluate both the one-dimensional transfer and geometric
integrals and the two-dimensional integral over the trian-
gular domain Sk. We use a modified form of the CMB
bispectrum code already presented in [1], so here we will
focus on substantial recent improvements.
To evaluate the bispectrum using this formalism we

must first be able to compute the two 1D integrals, (77) and

(78), for every combination of the three k̂i possible in the
triangular domain Sk. The transfer integral converges
quickly, as 1=k4, so while it is highly oscillatory it does
not pose an enormous challenge. Also the transfer func-
tions truncate at large values of k due to photon diffusion
and so the integral naturally terminates. The geometric
integral only converges slowly, as 1=k, and so constitutes
the majority of time in calculating the integrand for each
point in the triangular domain Sk.
To evaluate these two one-dimensional integrals we first

need to obtain the transfer functions and Bessel functions
that make up their integrands. We cannot simply output
them from the currently available CMB temperature an-
isotropy codes, like CAMB and CMBFast, as their ranges
are insufficient for our purposes. This is due to the rescal-

ing of the functions by the three k̂i, which range between

[0, 1]. Although, due to the constraint k̂1 þ k̂2 þ k̂3 ¼ 2,
only one can be small at a time. This has the effect of
stretching the functions relative to each other. Both the
transfer functions and Bessel functions have a similar
form. They begin with a long section which is approxi-
mately zero before beginning oscillations which decay as
k�1. This means that they can pick out sections of the other
functions that would have been unimportant for the calcu-
lation of the power spectrum. This effect can be clearly
seen when we plot, in Fig. 10, the three individual func-

tions jlðxk̂Þ and the integrand of the geometric integral IG

for a point in the triangular domain Sk generated for the
reduced bispectrum point b204050. It is clear that it is the tail
of the second and third Bessel functions which is important
for calculation, rather than the initial region where their
individual signals are largest. Thus, to accurately calculate
the two 1D integrals we need both the transfer functions,
and Bessel functions, to cover a much larger range of k,
with a much better resolution, than is required to evaluate
the power spectrum.
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Our approach is to output the source function as calcu-
lated by one of the CMB anisotropy codes, having first
increased the range and resolution of k and the resolution
of �. We then calculate the transfer functions ourselves.
The Bessel functions are calculated using a similar method
to that in CMBFast. Both are then stored in tables for later
use. This fixes us to a particular cosmological model unless
we wish to keep regenerating the tables. As we are primar-
ily concerned with selecting primordial models, and the
bispectrum is too small to usefully constrain cosmological
parameters, this is a minor concern at this stage.

At the beginning of a calculation, we read in the tables
selecting the rows that correspond to the relevant l’s and
interpolate them into a cubic spline. For each point in the

triangular domain Sk we then take the three k̂i and calcu-
late the three function values corresponding to the rescaled

points, k̂ix. The three rescaled functions can then be multi-
plied together to form the integrand and we then use a
cubic spline to evaluate the integral. The use of splines
significantly reduces the resolution needed for accurate
evaluation as compared to using simple linear interpolation
(used previously [1]), usually by an order of magnitude.
Developing faster integration methods, like the search for
an analytic solution to the geometric integral, remains an
interesting avenue for future work with a scope for signifi-
cant efficiency gains. With this method there are only two
main parameters that control convergence, the resolution
and the range. These have undergone extensive experimen-
tation and minimal values for sub 1% accuracy have been

found. The calculation for the 2D integral was completed
using the same adaptive method used in [1].
This approach allows us to accurately calculate the

bispectrum for a broad range of primordial non-Gaussian
models. If we wish to determine the bispectrum at the
resolution of Planck, lmax � 2000, then the possible al-
lowed l configurations require over 600� 106 integrations.
Fortunately, there are several techniques we can use to
make this problem tractable. These calculations naturally
coarse-grain the computational work either through the
sampling of 1D integrals on the 2D triangular grid or, at
a higher level, simply by evaluating the bispectrum at
different multipole values. Second, the problem is well
suited to parallelization on a large supercomputer or cluster
and this has been achieved with the present code using a
message passing interface (MPI) implementation which
significantly reduces calculation time scales. However,
there are two further methods we use to dramatically speed
up calculation which are detailed in the following
subsections.

B. Flat sky approximation

If we calculate the reduced bispectrum when all three li
are large then we are considering very small angles in the
sky. If the angles are small then the curvature of the surface
of last scattering is small and so the sky can be approxi-
mated as flat. This allows us to greatly simplify the integral
for the reduced bispectrum. We use the flat sky methodol-
ogy which first appeared in [11] beginning by expanding
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FIG. 10 (color online). A plot of the three spherical Bessel functions and the resulting integrand IG. The top three plots are of jlðaxÞ
for different values of l and a, with (20, 0.05) (top), (40, 1.0) (second), and (50, 0.95) (third). In the bottom diagram, the resulting
integrand for IG is plotted. From this we can see that the peak sections of the two middle plots are ignored and it is their tails that are
picked out in the integrand. Thus, for accurate evaluation we must calculate the transfer functions and Bessel functions over a much
larger range than is required to evaluate the power spectrum.
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the temperature perturbation into plane waves,

�ðx;nÞ ¼
Z d2l

ð2�Þ2 aðlÞe
�il�n ) aðlÞ

¼
Z

d2n�ðx;nÞeil�n; (79)

and so

aðlÞ ¼
Z d3k

2�
�ðkÞ

Z �0

0
d�Sðk; �Þe�ikzð�0��Þ

� �2ðkkð�0 � �Þ � lÞ; (80)

where we have split k into the part parallel to the tangent

plane, kk, and the part perpendicular, kz. We now form the
three point correlator for the flat sky aðlÞ’s,

haðlÞaðlÞaðlÞi ¼
Z

d�1d�2d�3d
3k1d

3k2d
3k3�

�X
kzi

�

� �2

�X
kk
i

�
B�ðk1; k2; k3ÞSðk1; �1Þ

� Sðk2; �2ÞSðk3; �3Þe�ikz
1
ð�0��1Þe�ikz

2
ð�0��2Þ

� e�ikz
3
ð�0��3Þ�2ðkk

1ð�0 � �1Þ � lÞ
� �2ðkk

2ð�0 � �2Þ � lÞ
� �2ðkk

3ð�0 � �3Þ � lÞ:321321 (81)

To integrate out the three delta functions for kk we must

assume that the variation in B�ðk1; k2; k3Þ is small in the kk
direction across the width of last scattering. This allows us

to use an average value for kk of kk ¼ l=ð�0 � �RÞ. After
substitution this gives

haðlÞaðlÞaðlÞi¼ð�0��RÞ2�2

�X
l

�Z
d�1d�2d�3dk

z
1dk

z
2dk

z
3

��

�X
kzi

�
B�ðk01;k02;k03ÞSðk01;�1ÞSðk02;�2Þ

�Sðk03;�3Þe�ikz
1
ð�0��1Þe�ikz

2
ð�0��2Þ

�e�ikz
3
ð�0��3Þ;i321 (82)

where k0 is k evaluated withkk ¼ l=ð�0 � �RÞ. If we define
a new transfer function,

�ðl; kzÞ ¼
Z d�

ð�0 � �Þ2 Sð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkzÞ2 þ l2=ð�0 � �Þ2

q
; �Þeikz�;

(83)

and use, haðlÞaðlÞaðlÞi � ð2�Þ2�2ðP lÞbflatl1l2l3
i321, then we

find that, in the flat sky limit, the expression for the reduced
bispectrum is

bflatl1l2l3
¼ ð�0 � �RÞ2

ð2�Þ2
Z 1

�1
dkz1dk

z
2dk

z
3�

�X
kzi

�
B�ðk01; k02; k03Þ

� �ðl1; kz1Þ�ðl2; kz2Þ�ðl3; kz3Þ: (84)

For small angles bflatl1l2l3
� bl1l2l3 and so we can use (84)

to calculate the bispectrum. We evaluate the two integrals
using cubic splines.
We have calculated the reduced bispectrum using the

full method detailed in the previous section, and again in
the flat sky case, comparing them in Fig. 11. We find that
the flat sky approximation becomes valid when all three
li 
 150, producing less than 1% error. Also, as the two
methods are completely independent of each other, this
provides a powerful cross check of the accuracy. The flat
sky approximation allows us to calculate the bispectrum,
when all three li 
 150, more than 300 times faster. This is
a dramatic improvement only leaving small subregions
near the corners and edges which require the full calcula-
tion. Nevertheless, even with this much faster method, the
reduced bispectrum at Planck resolution represents a for-
midable challenge, unless we significantly reduce the num-
ber of points at which it needs to be evaluated.

C. Cubic interpolation

From the plots comparing the full calculation with the
flat sky approximation in Fig. 11, we note that
G�1ðl1; l2; l3Þbl1l2l3 is actually very smooth. This is ex-

pected as for models with smooth shape functions all the
structure present in the reduced bispectrum must be due to
the acoustic peaks in the transfer functions. As a result the
reduced bispectrum will only contain features that oscillate
with periods of l � 200. This indicates that we only need
calculate the reduced bispectrum on a sparse grid and the
remaining points could be generated via interpolation. One
major problem is in selecting the grid to interpolate over.
With the triangle condition on the three li limiting us to a
tetrahedron we cannot use the usual schemes as when they
straddle the boundary they give incorrect results. The
geometric integral returns zero for l combinations that
violate the triangle inequality creating a discontinuity
which leads to poor convergence. We can circumvent this
problem by rotating and stretching the allowed region so it
forms a rectangular grid via the transform,

l01 ¼ 1
2ðl2 þ l3 � l1Þ; l02 ¼ 1

2ðl3 þ l1 � l2Þ;
l03 ¼ 1

2ðl1 þ l2 � l3Þ:
We can then use cubic interpolation to calculate the re-
maining points before transforming back to obtain the
bispectrum for all combinations of li. There are some
minor issues with this approach. For example, not all
points fall onto the grid when we rotate. If we are using a
grid with steps in l of 10 we would find that the first cell
would be constructed from: b222, 3 permutations of b21010,
3 permutations of b101020, and b202020. This leaves b101010

J. R. FERGUSSON AND E. P. S. SHELLARD PHYSICAL REVIEW D 80, 043510 (2009)

043510-16



2 10 100 1,000 2,000
−10

−5

0

5

10

15

20

25

l

G
−

1 (l 1,l 2,l 3) 
b l 1 l 2 l 3

Flat
Full

FIG. 11 (color online). A comparison of the full calculation of the reduced bispectrum with the flat sky approximation. The top is a
comparison of blll and we find excellent agreement when l 
 150. The bottom two plots show a cross section through l1 þ l2 þ l3 ¼
1000 with the full case on the left and the flat sky approximation on the right. Again we see that the two methods agree except in the
corners when one of the li < 150. The close agreement between the two independent methods establishes the accuracy of the two
codes.

FIG. 12 (color online). Transformation to map the tetrahedron to a cube for interpolation. On the left we have the tetrahedron and on
the right the tetrahedron after the mapping is applied. The blue lines (solid) define the cubic cell over which we interpolate. The red
point (square) is the value that falls inside the cube after the transformation and is not used for interpolation. Pink points and lines
(dashed) are the parts of the tetrahedron outside the cell being interpolated.
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sitting in the center of the cell and it is ignored in the
subsequent interpolation, see Fig. 12. As a result we must
calculate the reduced bispectrum on twice the density of
points that we require, but they are not entirely redundant
as we use them dynamically as a cross-check of the accu-
racy of the interpolation. We encounter a similar issue
when transforming back with the inverse mapping, l1 ¼
l02 þ l03, l2 ¼ l03 þ l01, l3 ¼ l01 þ l02.

Interpolation reduces the number of points required to
calculate the reduced bispectrum by several orders of
magnitude and so together with the flat sky approximation
and the parallelization of the code, the problem becomes
tractable for all the models reviewed in Sec. III.

V. CMB BISPECTRUM MODEL COMPARISON

We have discussed the smooth nature of the CMB bis-
pectrum and its general properties in a previous publication
[1], so our purpose here is to investigate the distinguishing
signatures of the models we outlined in Sec. III. With the
method developed in the previous sections we can evaluate
the entire reduced bispectrum for any primordial model,
calculating up to l ¼ 2000 in approximately 100 processor
hours; this has been achieved to at least 1% accuracy for all
the models investigated. In Fig. 13, we plot the central
value blll for all five primordial classes of shapes—equi-
lateral (36), local (35), warm (72), flat (73), and feature
(74). The first four of these models are scale invariant, so
the blll all take broadly the same profile but with different
normalizations. We note that this figure demonstrates the
oscillatory properties of the transfer functions which, as for
the CMB power spectrum, create a series of acoustic peaks
around l ¼ 200; 500; 800; . . . . There is a stark contrast,
however, with the feature model which has a nontrvial
scaling. Initially, it is anticorrelated with the other shapes,
so that the primary peak has opposite sign, however, for
increasing l the phase of the oscillations becomes posi-

tively correlated by the second and third peaks (this, of
course, reflects the particular choice of k	 in (74)).
Of course, to observe the key differences between the

models we must study the bispectrum in the plane orthogo-
nal to the ðl; l; lÞ direction, that is, the directions reflecting
changes in the primordial shape functions. To this end, in
Figs. 14 and 15 we plot cross sectional slices through the
reduced bispectrum; we choose triangles satisfying l1 þ
l2 þ l3 ¼ 1000 just beyond the primary peak so as to
reduce the effect of the transfer functions relative to the
primordial shape. For these slices and in the subsequent
Figs. 16–18 for the full three-dimensional bispectrum, we
divide blll byDðl1; l2; l3Þ, the large-angle CMB bispectrum
solution (26) for a primordial shape which is constant. This
is analogous to multiplying the power spectrum Cl’s by
lðlþ 1Þ, because it serves to flatten the bispectrum except
for the effect of the nonconstant primordial shape (and the
oscillating transfer functions). (We note that in our pre-
vious paper [1], for plotting purposes we divided all the
CMB bispectra by the large-angle local solution
Gðl1; l2; l3Þ given in (20), but this is not as useful for
comparison purposes.)
The bispectrum slices for the different models shown in

Fig. 14 directly mimic the primordial shapes from which
they originated. The equilateral model has the majority of
its signal under a prominent central peak (i.e. equilateral
triangles), whereas the local model has a nearly flat interior
with most signal at sharp peaks in the corners (i.e. for
squeezed triangles). As expected, the (smoothed) flat
model is strongly peaked along the edges for flattened
triangle configurations. The last model illustrated in
Fig. 14 is the feature model whose primordial shape func-
tion is constant across k ¼ const slices. On l ¼ const
slices, therefore, the feature model should behave like the
constant model, showing only the effect of the transfer
functions in its structure. Finally, there is a slice through
the warm model shown in Fig. 15 in both original and

2 10 100 1,000 2,000
−80

−60

−40

−20

0

20

40

60

80

100

l

D
−

1 (l 1,l 2,l 3) 
b l 1 l 2 l 3

Equi
WarmS
Warm
Local
FlatS
Feature

FIG. 13 (color online). The equal l bispectrum for all classes of models. They are, from top to bottom at l ¼ 220: equilateral,
smoothed warm, warm, local, smoothed flat, and feature. As all the models scale as k�6 they all produce similar blll, with the exception
of the feature model whose oscillations can be clearly seen.
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smoothed versions. These have signal when the li are in
several configurations, squeezed, flattened, and equilateral.

Note the strong effect that smoothing has on suppressing
the dominant contribution from squeezed states. A better
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FIG. 14 (color online). The reduced bispectrum for different classes of models plotted on slices where l1 þ l2 þ l3 ¼ 1000.
Clockwise from top left, Local, Equilateral, FlatS, and Feature. The effect of the primordial shape function can be clearly seen in
the resulting bispectra.
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FIG. 15 (color online). The reduced bispectrum for warm (left) and warmS (right) models plotted on slices where l1 þ l2 þ l3 ¼
1000.
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understanding of the asymptotic behavior in squeezed and
flattened limits is clearly necessary if we are to make
robust quantitative predictions for both the warm and flat
models.

To understand the differences between the four models
in the same equilateral class, it is easiest to look at the 3D
plots of the reduced bispectrum shown in Fig. 16. For all
models we see the same peak structure with the maximums
at positions where all the three li correspond to peaks in the
power spectrum. The largest peak is then when all three
li ¼ 220, corresponding to the large blue region near the
origin. The four models are most strongly differentiated by
their behavior in the flattened limit, as can be seen in
Fig. 16. As a result they can be separated by their behavior
around the peak positioned where l1 ¼ l2 ¼ 250, l3 ¼ 500
(the magenta part just above the li ¼ 220 peak). In the
equilateral case it is a modest feature but in DBI and single

it is larger, connecting up to create a forked range of
structures near the faces of the tetrahedron. For ghost
inflation, which becomes negative as we approach the
flattened limit, the peak is almost nonexistent.
Despite the visual differences between equilateral mod-

els, we note that the CMB correlator (42) accurately con-
firms the strong correlations forecast by our simple shape
correlator (52), see Table II. As predicted, all three
shapes—DBI, ghost, and single—correlate closely with
the phenomenological equilateral shape to within 96%
(this agrees with [13] for the DBI model, the only direct
calculation elsewhere of a nonseparable case). Again the
largest difference is between the ghost and single models
with an 89% correlation, which was slightly underesti-
mated by the shape correlator at 85%, presumably because
of subtle changes in weighting arising from the transfer
functions, as well as smoothing effects. We confirm that

FIG. 16 (color online). 3D plots of the reduced bispectrum for models in the equilateral class. Here, and in the following, we have
plotted surfaces of equal bispectra after division by the constant analytic solution. Clockwise from top left we have equilateral, DBI,
Ghost, and Single.
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these four equilateral shapes will be very difficult to differ-
entiate without a bispectrum detection of high significance.

The local model is shown in Fig. 17, demonstrating a
marked contrast with the 3D equilateral bispectrum. The
dominance of signal in the squeezed limit creates strong
parallel ridges which connect up and emanate along the
corner edges of the tetrahedron. The 51% CMB correlation
between the local and equilateral models is reasonably well

predicted by the shape correlator at 41%, though again
underestimated. The full results for all the CMB cross
correlators can be seen in Table II. (We note that the
estimated 2D cosines between the local model and the
DBI and ghost models are in qualitative agreement with
Ref. [11], see also [13].)
It remains to briefly discuss the bispectrum and correla-

tions of the last three models. The two 3D plots for warm

FIG. 17 (color online). 3D plots of the reduced bispectrum for the local model (left) and the flattened model after smoothing (right).

TABLE II. Comparison of bispectrum and shape correlators.

Model1—Model2 �CðS; S0Þ CðB;B0Þ Model1—Model2 �CðS; S0Þ CðB;B0Þ
DBI—Equi 0.99 0.99 Warm—DBI 0.38 0.39

DBI—Flat S 0.39 0.48 Warm—Equi 0.44 0.42

DBI—Ghost 0.94 0.95 Warm—Flat S 0.01 0.21

DBI—Local 0.50 0.56 Warm—Ghost 0.50 0.43

DBI—Single 0.98 0.99 Warm—Local 0.30 0.52

DBI—Warm S 0.55 0.69 Warm—Single 0.29 0.35

Equi—Flat S 0.30 0.39 Warm—Warm S 0.80 0.48

Equi—Ghost 0.98 0.98

Equi—Local 0.46 0.51 Feature—DBI �0:41 �0:44
Equi—Single 0.95 0.96 Feature—Equi �0:36 �0:43
Equi—Warm S 0.63 0.76 Feature—Flat S �0:44 �0:32
Flat S—Ghost 0.15 0.24 Feature—Ghost �0:26 �0:42
Flat S—Local 0.62 0.79 Feature—Local �0:41 �0:39
Flat S—Single 0.49 0.60 Feature—Single �0:46 �0:44
Flat S—Warm S �0:03 �0:04 Feature—Warm �0:05 �0:27
Ghost—Local 0.37 0.42 Feature—Warm S �0:08 �0:20
Ghost—Single 0.86 0.89

Ghost—Warm S 0.71 0.82

Local—Single 0.55 0.62

Local—Warm S 0.27 0.14

Single—Warm S 0.44 0.58
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inflation, see Fig. 18, seem superficially similar but the
effect of smoothing is to move signal from the squeezed
states into the center. This apparently minor shift is enough
to reduce the fisher correlation between the warm and
warmS to 48%, providing the most significant outlier for
the shape correlator with an 80% correlation. It demon-
strates the sensitivity of the analysis to the exact cutoff
used for the primordial bispectrum in the squeezed limit,
but it may also be accentuated by an increased weight
around the edges implicit in the CMB estimator (see earlier
discussion in Sec. III). The smoothed flat model bispec-
trum shown in Fig. 17 has become visually more similar to
the local bispectrum than might be expected from the
primordial shapes, with the CMB correlator reflecting
this change at 79%. The flat and local shapes could be
difficult to disentangle, though we note that this result
depends on the imposition of an arbitrary cutoff to regu-
larize the flat shape.

Finally, the feature model clearly represents an entirely
distinct type of bispectrum, which is evident from its very
different behavior in the ðl; l; lÞ direction. The anticorrela-
tion of the primary peak, relative to the other peaks, is clear
in Fig. 19 from the nodal plane which cuts across the
bispectrum. The poor correlation predicted with all the
other shapes is confirmed by the CMB cross correlations
which are all below 45%. (Here, the interplay with the
nodal points introduced by the transfer functions makes
these results strongly dependent on lmax). Preliminary
analysis based on the approximate analytic shapes for an
oscillatory model indicates a further independent shape
which could be distinguished from the other classes given
a reasonably significant bispectrum detection.

In Fig. 20, we have plotted the full CMB bispectrum
correlator (42) against the simple shape correlator (52) for
all the models investigated, demonstrating their remark-
able concordance; highly correlated shapes agree accu-
rately, while the shape correlator understimates the
correlation of independent shapes (usually by about 5%–
15%). Such a simple predictor of model correlations is
important given the computational effort required to com-

FIG. 19 (color online). 3D plot of the reduced bispectrum for
the feature model.

FIG. 18 (color online). 3D plots of the reduced bispectrum for warm inflation before smoothing, on the left, and after smoothing, on
the right.

J. R. FERGUSSON AND E. P. S. SHELLARD PHYSICAL REVIEW D 80, 043510 (2009)

043510-22



pare the CMB bispectra directly. This analysis confirms
that there are indeed five distinct classes of models among
the cases reviewed: The equilateral class, the local class
(which includes the nonlocal model), the warm model, the
flat class, and the feature model.

Here we note the importance of the weight, Eq. (51), in
the shape correlator. For the feature model it is vital to
achieve the correct correlation with any other choice pro-
ducing extremely poor results. For the scale-invariant mod-
els it is not as important to have the correct weight, as long
as it weights each point on a slice equally. However, while
tolerable results can still be achieved for the scale-invariant
models with weights ! ¼ 1 and ! ¼ 1=ðk1 þ k2 þ k3Þ2,
we still see much better agreement between the two corre-
lators when we use the correct weight, ! ¼ 1=ðk1 þ k2 þ
k3Þ, due to the effect of the shape of the region of integra-
tion as discussed earlier.

VI. CMB BISPECTRUM NORMALIZATION

The question now is how best to compare and contrast
observational limits for such a wide variety of possible
models. We need a framework for deciding a sensible
definition of fNL for each class of models, normalized so
that comparisons can be made. There have been many
attempts at extending flocalNL to other models in the literature
and the one most extensively used is to normalize the shape
functions against a single point. This is done for the equi-
lateral model and for the warm model (although for the
warm model, as they work with the curvature perturbation
� , rather than�, there is an additional factor of 3=5 in their
definition). Creating a new non-Gaussianity parameter for

each model, fequiNL and fwarmNL , the models are normalized
such that

Slocalðk; k; kÞ ¼ Sequiðk; k; kÞ ¼ 3
5S

warmðk; k; kÞ: (85)

As all three shapes have the same scaling, this ratio is
independent of k, and the method has the benefit of sim-
plicity. However, in the equilateral model we are normal-
izing the maximum of one shape to the minimum of the
other (local), so we find that a similar level of non-

Gaussianity produces an f
equi
NL that is over 3 times larger.

For the warm case, we have an fwarmNL that is almost 4 times

larger, than flocalNL . Consequently bounds on f
equi
NL and fwarmNL

seem far weaker than those for flocalNL which is entirely
misleading, see Eqs. (1)–(3). The approach makes even
less sense when the shapes have a running, in which case an
arbitrary value for k must be used for the normalization,
and there is no obvious extension to models with features
or oscillatory behavior.
One approach to normalization would be to define fNL

such that a given model with fNL ¼ 1 produces the same
level of bispectrum signal as the local case, also with
flocalNL ¼ 1, i.e.

N ðBÞ ¼ N ðBlocalÞ; (86)

where N is defined by Eq. (28) which we repeat here for
convenience,

N ðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
li

B2
l1l2l3

Cl1Cl2Cl3

vuuut : (87)

We could regard N as the total integrated bispectrum
signal of a particular model. Note that here we calculate
N for an ideal experiment without noise or beam effects
covering the full l range of the non-Gaussian signal; this
would then give error bars which are approximately the
same for all models. As it is defined at late times, this
would also have the advantage that it could be used for the
bispectrum from cosmic strings, or other general phe-

nomena, e.g. allowing an effective f
string
NL to be defined

and related to G�, the string tension.
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FIG. 20 (color online). Comparison of the bispectrum correla-
tor and primordial shape correlator. The blue line represents
perfect agreement between the two, with the red data points
(circles) showing correlations between: DBI, Equi, FlatS, Ghost,
Local, Single, and WarmS. The correlators are in good agree-
ment in these cases. The green data points (triangles) are
correlations between these 7 models and the unsmoothed
warm shape, while the purple data points (squares) are the
correlations between the previous 8 models and the feature
model. For the unsmoothed warm model, there is one significant
outlier when the pathological behavior in the squeezed limit for
the warm case is being picked up in the shape correlator but not
in the bispectrum (it has been smoothed by projection). Warm
and WarmS models are poorly correlated indicating that the
squeezed limit must be understood fully before we can consider
any constraints to be robust. The feature model is anticorrelated
will all other models at about the 40% level or below.
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When we calculate the estimator from Eq. (27) for a
particular experiment, including its particular noise and
beam profiles, we will find any loss of sensitivity to the
bispectrum for a particular model being reflected by an
increase in the error bars. Thus the errors on models are
now directly related to the sensitivity of the experiment to
that model, rather than to an arbitrary choice for the
definition of fmodel

NL .
To avoid calculating the full bispectrum for each model

it remains more straightforward to define the normalization
relative to the level of primordial signal instead. Given the
success of the correlator based on the shape function (52),
we can use a normalization based on the integrated non-
Gaussianity in k space. As Sðk1; k2; k3Þ represents the
primordial signal that we project forward to obtain the
CMB bispectrum today, then using the same scaling as in
the shape correlator should represent a more consistent
measure of the actual non-Gaussianity measured in the
CMB, that is,

�N 2ðSÞ �
Z
V k

S2ðk1; k2; k3Þwðk1; k2; k3ÞdV k; (88)

where V k is the allowed region in k space with the ki <
kmax (see Fig. 1) and we take the weight function
wðk1; k2; k3Þ ¼ ðk1 þ k2 þ k3Þ�1, as before replicating
the l dependence of the CMB estimator (50). (A similar
suggestion, but with a different weight, was made in
Ref. [12].) We then propose to normalize the fNL’s in
each class of models relative to the local model, that is,
such that

�N ðSÞ ¼ �N ðSlocalÞ: (89)

We find then that the 2� limits quoted above become

� 4< �flocalNL < 80; (90)

� 34< �f
equi
NL < 57; (91)

� 107< �fwarmNL < 11; (92)

where the standard deviation is now 21, 23, and 29, re-
spectively, and we use �fNL to denote that is it defined using
the new approach to normalization. We can see that the
local and equilateral models are constrained at the same
level with the warm constraint being weaker as the esti-
mator used in [3] is not optimal in the presence of inho-
mogeneous noise. This normalization is applicable to all
models regardless of their form, it is simple to calculate,
and the �fNL for each class of models then represents a
similar level of the measurable non-Gaussian signal.

Equally, we can use this standardized normalization,
together with the correlator results in Table II, to naively
forecast fNL and its errors for alternative models which are
not yet constrained. Supposing our universe actually pos-
sessed significant local non-Gaussianity, then on the basis
of local estimator observations with �fNL ¼ 38� 21 as in

(90), the equilateral model should yield �fequilNL � 17� 21

(consistent with the observed result), while for the flat
model �fflatNL � 24� 21. Conversely, if our universe pos-
sessed flat non-Gaussianity, then given the local result
(90) we might obtain a marginally significant result �fflat �
61� 21. We conclude that discovery potential remains,
even with the present CMB data, for the independent
shapes which have not yet been fully investigated, such
as feature models.1

To reiterate the value of a standardized normalization
(88), we note an obvious failing of the previous method.
This comes from extending an observational result for one
model to all the highly correlated models in the same class,
such as equilateral to DBI, ghost, and single. If we nor-
malize the models using the center point Sðk; k; kÞ, as is
done currently in the literature, then with the differentNðSÞ
in each case the original equilateral limit f

equi
NL ¼ 51� 101

transfers to the following inconsistent limits:

fDBINL ¼ 47� 93; (93)

fsingNL ¼ 40� 78; (94)

f
ghost
NL ¼ 59� 116: (95)

In contrast, if we normalize using NðSÞ in (88), then the
equilateral limit (91) on �fNL transfers across nearly iden-
tically in all these cases, because of their 95% cross
correlation.

VII. CONCLUSIONS

In this paper we have presented a comprehensive set of
formalisms for comparing, evolving, and constraining pri-
mordial non-Gaussian models through the CMB
bispectrum.
The primary goal was to directly calculate CMB bispec-

tra from a general primordial model, enhancing methods
previously outlined in Ref. [1]. This was achieved by
exploiting common features of primordial bispectra to
reduce the dimensionality of the transfer functions required
to evaluate the CMB bispectra. The new innovations re-
ported here include the use of the flat sky approximation
when all li 
 150, greatly reducing computational times
for most of the allowed region, and a cubic reparametriza-
tion, significantly reducing the number of points required
for accurate interpolation of the bispectrum. (We note that
this CMB bispectrum code is being prepared for public
distribution.) These methods make feasible the repetitive

1We note that the warm inflation results do not seem to match
expectations from the shape correlator, suggesting an anticorre-
lation with the local model, rather than the 30% correlation of
Table II. However, we caution that the warm result has not been
independently verified and it also depends sensitively on arbi-
trary cutoffs imposed on the shape function. We note that we
have removed the factor of 3=5 from the definition of fwarmNL in
(90).
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calculation of highly accurate CMB bispectra at Planck
resolution without specific assumptions about the separa-
bility of the underlying primordial bispectrum.

Further, we have calculated the CMB bispectra for all
the distinct primordial bispectrum shapes Sðk1; k2; k3Þ cur-
rently presented in the literature, motivated by a range of
inflationary and other cosmological scenarios. We have
presented these, plotted relative to the large-angle CMB
bispectrum for the constant primordial model (Sconst ¼ 1)
for which we presented an analytic solution (25). The CMB
bispectra from the different primordial models exhibit a
close correspondence to their original shape modulated, of
course, by the oscillatory transfer functions.

We were able to quantitatively determine the observa-
tional independence of the CMB bispectra by measuring
their cross correlations using the estimator (27). These
results revealed five independent classes of shapes which
should be possible to distinguish from one another with a
significant detection of non-Gaussianity in future experi-
ments such as Planck. These were the equilateral (36),
local (35), warm (72), and flat (73) shapes, all described
in Sec. III, together with the feature model (74) which is
basically the constant shape (21) plus broken scale invari-
ance. Different models belonging within the same class
will be difficult to distinguish, a fact best demonstrated by
the 95% correlation of the equilateral shape with DBI (68),
ghost (69), and single (71) shapes.

We have also presented a shape correlator (52) which
provides a fast and simple method for determining the
independence of different shapes. In particular, for highly
correlated models, it yielded results accurately reflecting
those of the full CMB correlator (42), thus avoiding un-
necessary calculation. The shape correlator also reliably
identified poorly correlated models, that is, new shapes for
which a full CMB bispectrum analysis was warranted. We
also proposed a straightforward two-dimensional eigen-
mode analysis of shape functions, valid for nearly scale-
invariant models. This allowed us to identify the shape

correlations with products of eigenvalues of the nonorthog-
onal eigenmodes, immediately revealing, for example,
why warm and local models are independent. In principle,
the analysis can guide the theoretical search for primordial
models with distinctive non-Gaussian signatures. It also
revealed the constant eigenmode (or shape (21)) as the
primary cause of the cross correlation between many mod-
els, suggesting strategies for distinguishing, for example,
between local and equilateral models.
Finally, we proposed an alternative approach (88) to the

normalization of the non-Gaussianity parameter fNL using
the shape autocorrelator. This new normalization allows us
to employ fNL to systematically compare the true level of
non-Gaussianity in different models. In contrast, with cur-
rent methods, the constraints for competing models can
vary by a factor of 4 or more, with bounds varying sig-
nificantly for models even in the same class of highly
correlated shapes.
A detection of non-Gaussianity would have profound

consequences for our understanding of the early universe,
uprooting the present simplest inflationary paradigm. The
present work indicates that the next generation of CMB
experiments (notably Planck) may be able to distinguish
between different classes of shapes for primordial non-
Gaussianity. Delineating the bispectrum shape would pro-
vide important clues about viable alternative theories for
the origin of large-scale structure in the universe.
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