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We study the generation of vorticity and velocity dispersion by orbit crossing using cosmological

numerical simulations, and calculate the backreaction of these effects on the evolution of large-scale

density and velocity divergence power spectra. We use Delaunay tessellations to define the velocity field,

showing that the power spectra of velocity divergence and vorticity measured in this way are unbiased and

have better noise properties than for standard interpolation methods that deal with mass-weighted

velocities. We show that high resolution simulations are required to recover the correct large-scale

vorticity power spectrum, while poor resolution can spuriously amplify its amplitude by more than 1 order

of magnitude. We measure the scalar and vector modes of the stress tensor induced by orbit crossing using

an adaptive technique, showing that its vector modes lead, when input into the vorticity evolution

equation, to the same vorticity power spectrum obtained from the Delaunay method. We incorporate orbit-

crossing corrections to the evolution of large-scale density and velocity fields in perturbation theory by

using the measured stress tensor modes. We find that at large scales (k ’ 0:1h Mpc�1) vector modes have

very little effect in the density power spectrum, while scalar modes (velocity dispersion) can induce

percent-level corrections at z ¼ 0, particularly in the velocity divergence power spectrum. In addition, we

show that the velocity power spectrum is smaller than predicted by linear theory until well into the

nonlinear regime, with little contribution from virial velocities.
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I. INTRODUCTION

The evolution of cosmological perturbations is deter-
mined, at scales larger than those where baryonic physics
becomes important, by the gravitational clustering of cold
dark matter, which can be taken as collisionless to a very
good approximation. Therefore, in this regime the Vlasov
equation, i.e. the collisionless limit of the Boltzmann equa-
tion, describes the dynamics of cosmological perturbations
[1].

At large scales, where orbit crossing may be neglected,
the Vlasov equation reduces to the dynamics of a pressur-
eless perfect fluid (hereafter PPF). The PPF approximation
has been used extensively in analytic approaches such as
standard perturbation theory (hereafter PT; see [2] for a
review) and the more recent renormalized perturbation
theory [3] (hereafter RPT) and related techniques [4–9].

At small scales, as the first nonlinear structures are
formed, orbit crossing generates a nontrivial stress tensor
(the second cumulant of the phase-space distribution func-
tion), which leads to velocity dispersion and vorticity in the
dark matter distribution. None of these effects would be
significantly present otherwise: vorticity corresponds to
vector modes which are not produced primordially (at least
in the simplest models of inflation) and even if they were
they decay due to the expansion of the universe, velocity
dispersion does get generated primordially e.g. during
thermal equilibrium of dark matter in the early universe
but for cold dark matter candidates typical values are
vanishingly small (� 10�6 km=s for WIMPs and at most

�10�10 km=s for axions [10]) compared to typical veloc-
ity flows generated during structure formation.
Although a number of works have attempted to go

beyond the PPF approximation [11–17], there has been
no quantitative estimate in the literature at what scale
corrections to the PPF become important. This is the
main goal of this paper. In order to achieve this, one has
to compare PPF solutions with solutions to the Vlasov
equation. N-body simulations of collisionless cold dark
matter attempt to solve the latter by discretizing the distri-
bution function using particles that follow the character-
istics of the Vlasov equation [18]. The N-body solution
will differ from the PPF in regions where particle orbits
cross, also known as ‘‘caustics’’ or ‘‘shell crossing’’ in the
context of the spherical collapse. This generates a non-
trivial stress tensor and higher-order cumulants of the
distribution function in the dark matter. We use the
N-body solution to measure the induced stress tensor gen-
erated by orbit crossing and calculate from it the correc-
tions to the PPF predictions for the density and velocity
divergence power spectra at large scales. Recent work on
orbit crossing has concentrated on enhancement of dark
matter annihilation in caustics [20–22]. We are instead
interested on the impact of orbit crossing on the large-scale
dynamics, outside dark matter halos.
Along the way we provide a number of results regarding

the nonlinear evolution of peculiar velocities, which com-
pared to the density field has not been studied in as much
depth. The generation of vorticity and velocity dispersion
impacts the reconstruction of primordial fluctuations from
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peculiar velocities [23,24] which assume a cold (single-
stream) potential flow, as do other reconstruction methods
based on galaxy positions [25–27]. The understanding of
the nonlinear evolution of the volume-weighted (as op-
posed to mass- or galaxy-weighted) velocity field is im-
portant, since the velocity difference PDF is one of the
building blocks that contributes to the redshift space galaxy
power spectrum, independent of galaxy bias and calculable
from first principles ([28]; see also [29] for recent discus-
sion). The study of the peculiar velocity field has been
recently highlighted as a means to constrain dark energy
and large-distance modifications of gravity [30–32].
Finally, as old and new techniques to measure the peculiar
velocity power spectrum improve, some of the issues we
study here should be important for making predictions that
model nonlinear effects accurately for future observations
[33–38].

This paper is organized as follows. In Sec. II, we present
results for the power spectrum of velocity divergence and
vorticity that follow from applying the Delaunay method to
our N-body simulations. We discuss how vorticity and
velocity dispersion get generated by orbit crossing in
Sec. III, where we also propose an estimator of the stress
tensor induced by orbit crossing based on an adaptive
method. In Sec. IV, we extend PT to include vorticity and
velocity dispersion. Finally, we present our conclusions in
Sec. V.

II. DIVERGENCE AND VORTICITY POWER
SPECTRA

A. Spatial distribution in N-body simulations

In Appendix A we discuss how to estimate the velocity
field from Delaunay tessellations, also comparing to more
standard interpolation methods that deal with mass-
weighted velocities. We refer the reader to the appendix
for technical details. Here we show the results of applying
the Delaunay method to estimate velocity statistics from
the cosmological simulations described in Table I. Note
that for all plots in this paper, we normalize the divergence
(� ¼ r � u) and the vorticity (w ¼ r� u) so that they
refer to the dimensionless quantities, i.e.

r � u=H f and r� u=H f; (1)

where H ¼ d lna=d� and f ¼ d lnDþ=d lna is the loga-
rithmic derivative of the linear growth factor Dþ with
respect to the scale factor a. This change of units is
convenient since in linear theory, the divergence normal-
ized in this way equals minus the dimensionless overden-
sity, i.e. � ¼ �H f�, with � ¼ ��= ��.
Figure 1 shows the average, over the 50 realizations of

run LR1280, of the divergence power spectrum at z ¼ 0
compared with the two-loop RPT prediction. The diver-
gence power spectrum behaves as expected theoretically,
with suppressed growth compared to linear theory,
although one can notice significant deviations from RPT,
which will be explored in detail elsewhere. Note that the
nonlinear effects in the power spectrum are observable on
scales with k * 0:01h�1 Mpc, unlike the case for the
density field. This is expected for two reasons: first, the
velocity divergence propagator decays faster than for the
density field, damping the linear spectrum faster with k
[40]; second, the mode coupling power generated at small
scales is smaller than for the density field, avoiding the
accidental cancellation of nonlinear effects present in the
density power spectrum [41]. This qualitative behavior is
also predicted by standard PT [9,28]. Clearly, as discussed
in [28], assuming that density and velocity divergence
power spectra are equal (as often done for redshift distor-

TABLE I. All our simulations have �m ¼ 0:27, �� ¼ 0:73,
�b ¼ 0:046, h ¼ 0:72 and �8ðz ¼ 0Þ ¼ 0:9. They were run
using the GADGET2 code [39]. Lbox is in units of h�1Mpc and
mpar is the particle mass in units of 1010h�1M�.

Name Lbox Npart mpar Nrealizations Softening

LR1280 1280 6403 59.94 50 0.07

LR512 512 2563 59.94 1 0.2

MR512 512 5123 7.49 1 0.04

MR320 320 6403 0.94 1 0.015

HR160 160 6403 0.12 1 0.006 25

SHR160 160 10243 0.029 1 0.006 25

FIG. 1 (color online). Velocity divergence power spectrum at
z ¼ 0 from 50 realizations of the LR1280 simulations. The
symbols with error bars denote the velocity divergence power
spectrum measured with the Delaunay method, normalized as in
Eq. (1). The (blue) solid line is the RPT prediction, and the
dashed line is the linear power spectrum.
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tions) is not a very good approximation, even at large
scales.

Figure 2 illustrates the spatial distribution of velocity
and density estimations from the HR160 run at z ¼ 0. The
panels show overdensity, divergence and vorticity on a
1h�1 Mpc-thick cross section of the simulation. Also, the
overdensity corresponding to halo particles (particles in-
side dark matter halos) is shown. Even though the over-
density field can take on values up to a few hundred, its
scale was chosen to go up to � ¼ 3 because the dark matter
halos are small compared to the scale of this figure and
increasing the upper scale limit would just hide the lower
density structures.

We can see that the divergence field is, not surprisingly,
remarkably similar to the density field. However, the struc-
tures in the velocity divergence have, in general, lower
amplitude and are more extended in space, as expected
from the power spectrum results discussed above. It is
interesting to note that, at the halo positions, the divergence
tends to be smaller than in the still collapsing regions, as it
should be. On the other hand, the vorticity field fluctuates
in sign on scales of the order of �1h�1 Mpc (roughly as
expected from theoretical arguments; see Fig. 8 in [42]),
and it is concentrated on collapsing regions, where shell
crossing is currently occurring. There are no large-scale
coherent fluctuations in vorticity, so we expect the vorticity
power spectrum to be much smaller than the divergence
power on large scales, as we now discuss.

B. Dependence on Mass Resolution

Figure 3 shows the power spectrum of divergence and
vorticity obtained from the Delaunay method from differ-
ent simulations (see Table I). The velocity field is domi-
nated, especially on large scales, by its irrotational
component, consistent with the spatial distribution seen
in Fig. 2. We see from Fig. 3 that the divergence power
spectra measured over a broad range of volume, number of
particles and mass resolution simulations match
consistently.
The estimate of the vorticity power spectrum, on the

other hand, appears not to be so robust: it shows a clear
monotonic dependence on the mass resolution. We verified
that this dependence was not an artifact of the Delaunay
method by comparing these results to the ones obtained
from the Cloud-in-Cell (CIC) mass-weighted scheme. We
observed that these two methods agree on the mass reso-
lution dependence of the vorticity power spectrum (not
shown in Fig. 3 for clarity). Thus we believe the depen-
dence on mass resolution of the measured vorticity is real
and may be due to insufficient sampling of collapsing
regions [43]. However, as the particle mass goes below
mpar � 109h�1M�, the vorticity power spectrum eventu-

ally converges.
Also, we check for aliasing effects, discussed in detail in

the appendix. Our estimates for the spurious aliased vor-
ticity based on Eq. (A13) are at least 2 orders of magnitude
lower than the measured vorticity from the simulations.
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FIG. 2 (color online). Illustration of overdensity, divergence and vorticity in a 1h�1 Mpc thick cross section of the simulation box at
z ¼ 0. The divergence and vorticity components panels correspond to the dimensionless quantities r � u=H f and r� u=H f. The
panel labeled ‘‘Halo particle overdensity’’ shows the overdensity of particles belonging to dark matter halos with mass m * 2:4�
1010h�1M�.
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Although this shows the spurious vorticity it is not a
sampling issue in the measurement of the power spectrum,
aliasing may be an issue in the low resolution simulations
[which have a coarser Particle Mesh (PM) grid] during
time evolution, since the spurious power is close to the
expected k2 behavior (see Appendix A 4 ) at all scales.
From here on, our results will be based only on the higher
mass resolution runs.

Regarding the dependence on resolution of the diver-
gence power spectrum, close inspection of Fig. 3 seems to
indicate that the higher mass resolution runs have a larger
power spectrum than lower mass resolution runs by about
5%–10%. However, one must keep in mind the higher mass
resolution runs have substantially smaller box sizes (see
Table I). For box sizes smaller than about �300h�1 Mpc,
RPT predicts that the propagator is seriously affected by
the finite volume of the simulation (see Fig. 6 in [40]). For
such boxes, the damping of the linear spectrum by the
propagator is much less severe, and while the mode cou-
pling power is somewhat larger, it cannot compete with the
nearly exponential scale dependence of the propagator.
Thus one expects to see higher divergence power in smaller
boxes. This is confirmed further by looking at simulations
of same box size (LR512 and MR512, on one hand, and
HR160 and SHR160 on the other). The ratio of the power
spectra in boxes of the same size but very different mass

resolutions does not show any significant (percent-level)
deviation from unity.
Finally, note that finite volume effects are not expected

to affect the vorticity power spectrum, as it is dominated by
small scale structures. That the vorticity is sensitive to
mass resolution rather than box size is clear from compar-
ing the LR512 and MR512 results, which differ by a factor
of 8 in mass resolution but have the same box size. Figure 3
shows that their vorticity power spectra differ by a factor of
about 4.
It is worth noting that the velocity power spectrum obeys

PvðkÞ ¼ k2½P�ðkÞ þ PwðkÞ�. Thus, the resolution depen-
dence of Pw seen in Fig. 3 means that when Pw is compa-
rable to P�, a similar dependence on resolution affects the
velocity power spectrum. Therefore, spurious vorticity can
lead to an overestimate of the velocity power spectrum at
nonlinear scales.

C. Time dependence

As will be shown later, in order to calculate how much
vorticity affects the evolution of the density power spec-
trum, it is necessary to determine the time dependence of
the vorticity power spectrum. In linear theory, the diver-
gence power spectrum evolves according to

P�ðk; zÞ ’ ½DþðzÞ�2P�0ðkÞ; (2)

where P�0ðkÞ is the initial (post-recombination) divergence
power spectrum and DþðzÞ is the linear growth factor
measured away from the initial conditions. For the vorticity
power spectrum, we propose that in the large-scale limit

Pwðk; zÞ / ½DþðzÞ�nw : (3)

From the vorticity power-spectra estimates at z ¼ 0, 1,
3, we find that the best fit for Eq. (3) is given by nw ¼
7� 0:3. Figure 4 shows the divergence power spectrum at
z ¼ 0, 1, 3 extrapolated to z ¼ 0 using Eq. (2), and the
vorticity power spectrum extrapolated using Eq. (3) with
nw ¼ 7. It can be seen that at large scales the extrapolated
outputs agree very well while in the nonlinear regime these
simple scalings break down, as expected, with the growth
slowing down compared to large scales. In the case of the
divergence power spectrum, this behavior can be under-
stood reasonably well from RPT; see Fig. 1. A detailed
discussion of velocity statistics and RPT will be presented
elsewhere.
For the vorticity, little is known from first principles. The

exception is the work in [42], were the rms vorticity is
calculated for CDM spectra during first orbit crossing
using the Zel’dovich approximation (see also [13] for a
calculation of rms vorticty for scale-free models). They
found their estimates were much smaller than found in
simulations, which given their mass resolution at the time
is not surprising (see Fig. 3). However, one can very
roughly estimate the vorticity power spectrum at large
scales generated by orbit crossing by postulating that orbit

FIG. 3 (color online). Dependence on mass resolution of the
velocity divergence and vorticity power spectra. Particle masses
are labeled in units of 1010h�1M�; see Table I for more details
on the simulations. While the divergence power spectrum does
not depend on mass resolution, the vorticity power spectrum
does show significant sensitivity. However, as mass resolution
increases it converges (when mpar is below �109h�1M�) to a

stable answer.
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mixing creates in such regions a velocity field that is
approximately the result of mass weighting the single-
stream velocities [see discussion related to Eq. (25) below].
Then we expect w ’ ð1þ �Þ�1fvr� ½ð1þ �Þv�, where
fv is only nonzero in regions where orbit crossing occurs,
and on average can be thought as the fraction of the volume
that undergoes orbit crossing, an increasing function of
time. Then the vorticity power spectrum reads [44]

Pwðk; zÞ � ½fvðzÞ�2
Z

d3q
ðk� qÞ2

q4

�
P�ðjk� qjÞP�ðqÞ

� q2

ðk� qÞ2 Pxðjk� qjÞPxðqÞ
�
; (4)

where Px is the cross spectrum between � and �. In the
low-k limit this reduces to

Pwðk; zÞ � ½fvðzÞ�2
Z

d3q
ðk� qÞ2

q4

� ½P�ðqÞP�ðqÞ � PxðqÞPxðqÞ�
/ k2½fvðzÞ�2½DþðzÞ�6; (5)

where in the last step we have assumed the velocities are
normalized as in Eq. (1) and used that the square brackets
vanish in linear theory, so the leading nonzero contribution
comes from one-loop PT (which induces a D4þ time de-
pendence in the power spectra beyond leading order).
Despite the crude approximations made in arriving to

Eq. (5), the scale and time dependence of the large-scale
vorticity power spectrum seen in Fig. 4 may be explained
qualitatively along these lines.

D. Impact of Virial Velocities

In Fig. 2, it can be observed that the velocity field is
rotational in high-density collapsing regions. Compare, for
instance, the lower panels against the top right panel for
which only particles belonging to halos are shown. On the
upper left corner of the simulation box, there is a large
filamentary structure. We can see that the vorticity occurs
mainly on the outskirts of virialized objects. This suggests
that the fraction of the vorticity power spectrum coming
from virialized regions themselves is not very big. To
check this, we took the HR160 simulation and replaced
the particle velocities belonging to halos by the center-of-
mass velocity of the corresponding halo, thus eliminating
the velocity dispersion of all halos. We measured diver-
gence and vorticity power spectra and compared them to
those of the unmodified HR160 simulation. The results are
shown in Fig. 5. It can be seen that at the scales we probe
the divergence power spectrum is essentially not affected
by the virial velocities, and the vorticity power spectrum is
reduced by less than 5%. It is important though to keep in
mind that our measurements on the HR160 simulations are
done in a grid of size 160, so the contribution from scales

FIG. 5 (color online). Comparison between divergence and
vorticity power spectra of the simulation to the power spectra
obtained by replacing velocities of particles inside halos by the
center-of-mass velocity of the parent halo, thus setting virial
velocities to zero. We can see that the divergence is mostly
unaffected, while the vorticity differences are less than 5%.

FIG. 4 (color online). Time dependence of the divergence and
vorticity power spectra. The divergence power spectrum at z ¼ 1
and z ¼ 3 are linearly extrapolated to z ¼ 0 for comparison. The
vorticity power spectrum was similarly scaled using Eq. (3) with
nw ¼ 7. In the nonlinear regime, both divergence and vorticity
grow slower than the large-scale extrapolation.

GENERATION OF VORTICITY AND VELOCITY . . . PHYSICAL REVIEW D 80, 043504 (2009)

043504-5



less than �1h�1 Mpc are not included; this roughly cor-
responds to ignoring halos of m & 1014h�1M�.

That the vorticity power spectrum is not very sensitive to
virial velocities may be understood by considering the
vorticity evolution equation ([2]; see also Eq. (37) below)

@w

@�
þHw�r� ½u� w� ¼ r�

�
1

�
r � ð� ~�Þ

�
; (6)

where ��ij is the stress tensor induced by orbit crossing. In

a virialized object, where the phase-space distribution
function is approximately Maxwellian with velocity dis-

persion related to halo mass through �2
vir �Gm=rvir (rvir /

m1=3), we expect the stress tensor to be reasonably well
approximated by an equation of state of the form ��ij �
�p�ij, where p is a density-dependent pressure; in fact,

for an isothermal sphere p / ��2
vir with �2

vir independent

of spatial position. In that case, the forcing term of Eq. (6)
can be written as

r�
�
1

�
r � ð� ~�Þ

�
¼ r�

�2
�rp � 0; (7)

where the last step follows from the density dependence of
the pressure. Therefore, although these approximations are
not totally realistic in practice, they may help explain small
vorticity sourcing from virialized dark matter halos at the
scales we probe.

III. GENERATION OF VORTICITYAND
VELOCITY DISPERSION

A. Beyond PPF

One of the main goals of this paper is to estimate the
corrections to the PPF predictions for power spectra of
density and velocity fields at large scales due to orbit
crossing at small scales. In order to do so, we have to
estimate the corrections to the equations of motion beyond
PPF that result from solving the Vlasov equation for the
phase-space distribution function (hereafter DF) fðx;p; �Þ,

@f

@�
þ p

a
� rf� ar� � @f

@p
¼ 0; (8)

where p is the momentum per unit mass and � the gravi-
tational potential. Equation (8) says that the DF is con-
served (df=d� ¼ 0) along its characteristics,

dx

d�
¼ p

a
;

dp

d�
¼ �ar�; (9)

which are the Hamilton equations of motion, that can be
combined to give the familiar result,

d2x

d�2
þH

dx

d�
¼ �r�: (10)

Cosmological N-body simulations solve the Vlasov
equation by discretizing the DF using particles that follow
the characteristics, Eqs. (9) or (10). To make connection

with the PPF equations of motion, one may take moments
(or, more precisely, cumulants) of the Vlasov equation. The
first few cumulants of the DF are the (comoving) density
field,

ð1þ �Þ ¼
Z

fðpÞd3p; (11)

where to simplify notation we avoid displaying the space
and time arguments everywhere; the velocity field u,

ð1þ �Þu ¼
Z

fðpÞp
a
d3p; (12)

and the stress tensor Tij 	 ð1þ �Þ�ij,

ð1þ �Þ�ij ¼
Z

fðpÞpipj

a2
d3p� ð1þ �Þuiuj; (13)

where the velocity dispersion tensor �ij describes isotropic

and anisotropic velocity dispersion. Before we derive equa-
tions of motions for these quantities, it is useful to intro-
duce the cumulant generating function, which generates all
these objects. As it is usual in statistics of large-scale
structure (see e.g. [2]), the cumulant generating function
C is given in terms of the moment generating function M
by

C ðlÞ ¼ lnMðlÞ; MðlÞ 	
Z

el�p=afðpÞd3p; (14)

where moments are obtained by successive derivatives of
M with respect to the external parameter l,

ðrli1
. . .rlin

MÞ0 ¼ ð1þ �ÞmðnÞ
i1...in

; (15)

where ð. . .Þ0 means evaluating quantities at l ¼ 0, and

mð0Þ ¼ 1, M0 ¼ ð1þ �Þ, mð1Þ
i ¼ ui, mð2Þ

ij ¼ uiuj þ �ij.

Cumulants are statistically independent objects at each
order and can be obtained similarly by differentiation of C,

ðrli1
. . .rlin

CÞ0 ¼ cðnÞi1...in
; (16)

with cð0Þ ¼ C0 ¼ lnð1þ �Þ, cð1Þi ¼ ui, c
ð2Þ
ij ¼ �ij.

From the Vlasov equation, Eqs. (8) and (14) it is
straightforward to derive equations of motion for the gen-
erating functions. For C we have

@C
@�

þH ðl � rlÞCþrC � rlCþ ðr � rlÞC ¼ �l � r�:

(17)

This is a nonlinear partial differential equation for
Cðx; �; lÞ; however, all we are interested in is what happens
in the neighborhood of l ¼ 0, i.e. the derivatives of C at
l ¼ 0; see Eq. (16).
The equations of motion beyond the PPF approximation

readily follow from Eq. (17). Setting l ¼ 0 we obtain the
continuity equation,

@�

@�
þr � ½ð1þ �Þu� ¼ 0; (18)

whereas taking the first derivative we obtain momentum
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conservation,

@ui
@�

þHui þ ðu � rÞui ¼ �r�� 1

�
rjð��ijÞ; (19)

where � 	 1þ �, while the evolution of the velocity
dispersion tensor is obtained from Eq. (17) by applying
second derivatives,

@�ij

@�
þ 2H�ij þ ðu � rÞ�ij þ �jkrkui þ �ikrkuj

¼ � 1

�
rkð��ijkÞ; (20)

where �ijk 	 cð3Þijk is the third cumulant of the DF; see

Eq. (16). By applying successive derivatives with respect
to l in Eq. (17) one thus generates an infinite hierarchy of
equations of motion for the cumulants of the DF (hereafter
cumulant hierarchy). The hierarchy is infinite because at
finite order is never closed, the cumulant of order n de-
pends on that of order nþ 1.

B. The cumulant hierarchy and orbit crossing

Such an infinite hierarchy is very difficult to solve. The
PPF approximation truncates the hierarchy assuming that
the second and higher-order cumulants of the DF are zero,
thus �ij ¼ 0, �ijk ¼ 0 in Eqs. (19) and (20) and so on.

This is equivalent to assuming the DF takes the form,

fðx;p; �Þ ¼ ½1þ �ðx; �Þ��D½p� auðx; �Þ�; (21)

for which CðlÞ ¼ lnð1þ �Þ þ l � u, and clearly all cumu-
lants of order larger than 1 vanish. Note that the PPF
approximation appears to be self-consistent, i.e. assuming
that �ij and higher-order cumulants vanish at a given time

is preserved by the hierarchy. This is so because there are
no linear or nonlinear terms in the equations of motion for
such cumulants that solely involve the density and/or ve-
locity fields as sources. This can be readily seen from the
structure of Eq. (17), after operating with two or more
derivatives rl. In other words, if C initially only contains
linear terms in l, Eq. (17) will not generate higher powers
in l.

This situation is, however, unstable under perturbations.
If somehow C develops a quadratic contribution in l, then
the nonlinear term in Eq. (17) generates a cubic term, and
this in turn generates higher orders, and so on. Therefore,
once velocity dispersion ‘‘turns on’’, all higher-order cu-
mulants do so as well. Thus a priori it is not a self-
consistent truncation to include a nonzero �ij and ignore

�ijk (which is sourced by terms solely dependent on �ij)

and higher-order cumulants. This truncation may, however,
become a good approximation in some situations, e.g. at
large scales.

Physically it is expected that even for perfectly ‘‘cold’’
initial conditions where the DF is given initially by
Eq. (21), orbit crossing during time evolution will generate

a nontrivial stress tensor and higher-order cumulants, while
as discussed above the cumulant hierarchy does not seem
to allow for this. Given that such a result from the cumulant
hierarchy is unstable to small perturbations away from cold
initial conditions, any subtlety in going from the Vlasov
equation to Eq. (17) may alter the conclusions. A more
careful look at orbit crossing in this context shows that this
suspicion is well founded.
To see how orbit crossing generates a nontrivial DF from

cold initial conditions, consider the formal solution of the
Vlasov equation expressing the conservation of the DF
along the characteristics

fðx;p; �Þ ¼ f0ðX0;P0Þ; (22)

where f0 is the initial DF, and

X 0 	 X0ðx;p; �Þ; P0 	 P0ðx;p; �Þ (23)

are the initial positions and momenta which when evolved
by the equations of motion until time � [Eqs. (9)] lead to x
and p. That is, time evolution maps ðX0;P0Þ to ðx;pÞ at
time �, and this mapping is invertible because in phase-
space trajectories never intersect for a Hamiltonian flow.
However, orbits clearly can (and do) cross in configura-

tion space, i.e. at time � and position x there may be more
than one orbit (with different p’s) that trace back to differ-
ent initial conditions ðX0;P0Þ. If we start from cold initial
conditions, f0 satisfies Eq. (21), and after time evolution
the DF reads, from Eq. (22)

fðx;p; �Þ ¼ ½1þ �0ðX0Þ��D½P0 � u0ðX0Þ�; (24)

where we have set a0 	 1 and �0 and u0 are the initial
density and velocity fields obtained, typically, from
Gaussian random field initial conditions. Nowwe are ready
to see the effect of orbit crossing on the cumulant generat-
ing function CðlÞ, Eq. (14). As long as orbits do not cross,
since f0 has zero width then at fixed ðx; �Þ there is a unique
p that contributes to the momentum integral (see top panel
in Fig. 6). Thus the argument of the delta function in
Eq. (24) can be linearly related to p, and C preserves its
linear dependence on l and no higher-order cumulants are
generated.
However, as soon as orbits cross, there are many p’s at

fixed ðx; �Þ and thus many roots of the argument of the
delta function in Eq. (24), each of them corresponding to
one ‘‘stream’’; see bottom panel in Fig. 6. As a result, the
cumulant generating function reads instead

C ðx; �; lÞ ¼ ln

� X
streams at x

ð1þ �sÞel�us

�
; (25)

where we have written schematically �s and us for the
density and velocity fields of each stream, which can be
obtained by projecting each piece of the DF separately; see
Fig. 6. Clearly, if the number of streams is larger than 1, C
is a fully nonlinear function of l and all cumulants have
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been generated simultaneously by orbit crossing. Note that
the number of streams at position x and time � is a random
field that depends on initial conditions and cosmological
parameters; see e.g. [45] for a calculation of the mean
number of streams from Gaussian initial conditions.

We now see there is an apparent contradiction between
the Vlasov formal solution and the time evolution of the
cumulant hierarchy. The root of this can be traced back to
the well-known fact that at orbit crossing the density field
becomes singular [46], therefore the cumulant hierarchy
must be supplemented with a regularization procedure in
order to follow time evolution after orbit crossing. This
must restore the agreement with the formal solution of the
Vlasov equation, which does not suffer from development
of singularities (which invalidate the hierarchy because
projection in momenta does not commute with time
evolution).

Does this matter in practice? After all CDM has a very
small but nonzero velocity dispersion, which will auto-
matically regularize the singularities in the cumulant hier-
archy that arise at orbit crossing. However, it seems
unlikely that the final answer for large-scale density and

velocity fields after orbit crossing should depend sensi-
tively on the velocity dispersion of the CDM particles (if
this were so CDM N-body simulations would be incor-
rect); although of course such effects are important for
warm dark matter candidates. Rather, it should be the
self-gravity of regions that undergo orbit crossing that
leads self-consistently to velocity dispersion and higher-
order cumulants that regularizes the singularities.
To carry out such self-consistent regularization, one can

proceed in at least two ways: (1) Introduce some nonzero
initial velocity dispersion �0 and use the hierarchy, which
does not develop singularities in this case, to evolve the
system forward in time. To make predictions for systems
with negligible initial velocity dispersion such as CDM one
must take into account that the �0 ! 0þ limit is nontrivial
and one should get finite corrections for infinitesimal �0.
(2) Since mass does not diverge in caustics, one can work
with coarse grained variables (smoothed over some small
scale). To find the equations of motion for smoothed quan-
tities one must take into account that coarse graining does
not commute with time evolution, and the coarse graining
scale must be picked so that physics at large scales is
invariant with respect to the degrees of freedom that are
integrated over at small scales. See [12] for some steps in
this direction.
In either case, the net result of regularization is that

higher-order cumulants of the DF will be sourced by
density and velocity fields, which leads to an effective
equation of state for dark matter. On the other hand, one
would still have to implement a consistent closure of the
hierarchy.
In this paper we proceed in a different fashion, by

measuring the stress tensor directly from numerical simu-
lations. We then close the hierarchy by using the measured
stress tensor in the momentum conservation equation,
Eq. (19). We start our measurements at z ¼ 3 and assume
that the dark matter has undergone sufficient shell crossing
before z ¼ 3 that future caustics are not singular, and thus
Eqs. (18) and (19) are valid. To extrapolate backwards in
time we use the time dependence found from z ¼ 3 to z ¼
0 and assume it is valid earlier down to the initial con-
ditions. Since we are interested in the large-scale statistics
of density and velocity fields, the deviations from the PPF
approximation are very small before z ¼ 3, thus this
should be a reasonable approach. Before we describe
how we implement such a procedure in detail, we must
explain how we estimate the stress tensor (Tij ¼ ��ij)

from the numerical simulations.

C. Estimating the stress tensor

In Appendix A, we discuss how the Delaunay method is
a reliable algorithm for recovering the velocity field from
numerical simulations. However, as wewill now argue, it is
not adequate for estimating the velocity dispersion tensor
�ij. The Delaunay method is optimized for interpolating

FIG. 6 (color online). Phase-space sketch of generation of
multiple streams due to orbit crossing. The top panel shows
the zero width DF after evolution from cold initial conditions
before orbit crossing. The bottom panel shows the DF after orbit
crossing (which occurs at the moment when ‘‘stream 2’’ is
infinitesimal and perpendicular to the x-axis, while the two
vertical lines coincide, as well as the filled circles). In between
the two vertical lines there are three ‘‘streams’’: that is the region
of space where multistreaming is present, and e.g. velocity
dispersion is generated. The intersections of the vertical lines
with the streams at the filled circles denote where the derivative
of the curve is infinite and thus at such positions the density field
(projection of the DF onto the x-axis) is singular.
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the velocity field on arbitrary points in the simulation. This
procedure recovers a continuous field that is to be inter-
preted as the mean velocity field. Then, if one tried to
estimate the dispersion in a volume �V with an estimator
of the form

�Del ¼ 1

�V

Z
d3xuDelðxÞ 
 uDelðxÞ � �uDel 
 �uDel; (26)

where uDelðxÞ is the Delaunay-interpolated velocity field
and �uDel is the average on the volume �V of uDelðxÞ, the
integral would be dominated by the Delaunay linear ap-
proximation to the mean velocity, contaminating the true
velocity dispersion coming from multistreaming.

Our strategy to estimate the velocity dispersion is based
on the fact that particles in numerical simulations are a
sample of the phase-space distribution function fðx;p; �Þ
[see Eq. (8)]. Consider, for instance, a small volume �V in
which the distribution function is nearly constant (rf �
0). Our ansatz is that the simulation particles in �V are
sampled from the probability distribution given �f�Vðp; �Þ
by

�f �Vðp; �Þ ¼ 1

��V

Z
�V

d3xfðx;p; �Þ; (27)

where � is the density in the small volume (which is
constant due to the ansatz). Therefore, the volume-
averaged velocity dispersion tensor ��ij in that small vol-

ume can be written as

�� ij ¼ 1

�V

Z
�V

d3x�ijðxÞ

¼
Z

d3p
pipj

a2

�
1

��V

Z
�V

d3xfðx;p; �Þ
�
� �ui �uj;

(28)

where �ui and �uj are the mean velocity field in the volume

�V (the velocity field is also constant on �V due to the
ansatz). The term in square brackets is the one defined in
Eq. (27). Since we assume the particles in �V are sampled
from that distribution, we can write

�� ij ¼ 1

N

XN
n¼1

uðnÞi uðnÞj � �ui �uj; (29)

where the sum is over the N particles in the small volume

�V and uðnÞ is the velocity of the n-th particle.
Equation (29) will serve us as an estimator for the

velocity dispersion on a small region of constant phase-
space distribution function. To obtain the volume-weighted
dispersion on a larger volume, we simply break that vol-
ume into regions where Eq. (29) is valid and then volume-
average the results. For a different approach to estimating
velocity dispersion from simulations see [48–50].

In practice, we want to compute the volume-averaged
velocity dispersion on a grid, similarly to Eq. (A6) for the

mean velocity. We use the following recursive algorithm to
find that average in a given cell:
(i) First, determine whether cell is homogeneous

enough. To do this compute density �i in each octant
of the current cell. Then compute density standard

deviation, s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
8

P
8
i¼1ð�i � ��Þ2

q
.

(ii) If s < sthreshold or N <Npartmin, we can use Eq. (29).

Then, compute �u ¼ 1
N

PN
n¼1 u

ðnÞ
i and �� ¼ 1

N �P
N
n¼1 u

ðnÞ 
 uðnÞ � �u 
 �u.
(iii) Else, the cell is not homogeneous. Following this

three-step algorithm, calculate recursively the veloc-

ity dispersion ��ðiÞ of each octant, then �� ¼ 1
8 �P8

i¼1 ��ðiÞ.
Here, sthreshold is the minimum standard deviation of the
octants density that defines the criterion for homogeneity
(we use typically values of 30%–50% of the octants mean
density). The purpose of Npartmin is to avoid breaking cells

with too few particles into octants (we use Npartmin ’ 5).

Note that this algorithm is adaptive: it resolves the inho-
mogeneous dense regions to find the subregions where
Eq. (29) holds. The method has two free parameters, which
varied on a reasonable range produce shifts in the observed
velocity dispersion tensor up to 40% (this will suffice for
our purposes, as we shall see below). This is understand-
able, since these parameters compensate for the finite
resolution (and sampling) of the phase-space distribution
function. Another drawback of the method is that it suffers
from Poisson noise in low density regions. However, on
large scales, since we are averaging over many cells, we
expect these errors to be rather small.
The stress tensor estimated in this way satisfies a non-

trivial sanity check, as we will show below. Its vector
modes source the growth of vorticity, which otherwise
would not grow. We will compare the growth of the vor-
ticity power spectrum from the vector modes of the mea-
sured stress tensor and see that it agrees with direct
measurements of the vorticity power spectrum using the
Delaunay method. Before we show this, we need to explain
how we incorporate the measured stress tensor into the
standard calculation of large-scale evolution of density and
velocity fields using perturbation theory.

IV. LARGE-SCALE CORRECTIONS TO PPF

A. Scalar-Vector decomposition

We are now ready to see the effects of orbit crossing in
the large-scale evolution of density and velocity fields. We
will use the equations of motion, Eqs. (18) and (19),
supplemented by the Poisson equation,

r2� ¼ 3

2
H 2�m�; (30)

and solve for the coupled system of � and u, and treat the
stress tensor as a forcing term, with known scale depen-
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dence and time evolution obtained from measurements in
the simulations.

A nonzero stress tensor leads to two new effects in the
evolution of large-scale structure. We can decompose the
velocity vector into scalar and vector modes, where the
scalar mode is the velocity divergence (corresponding to
the velocity parallel to the wave vector k) and the vector
modes correspond to the vorticity (or the two components
of u perpendicular to k). In the PPF approximation, the
divergence grows (since it couples to the gravitational
potential), while any primordial vorticity decays in linear
theory due to the expansion of the universe, since it does
not couple to the gravitational force because it is conser-
vative. Nonlinear terms can amplify vorticity but cannot
create vorticity if there is no primordial contribution (as we
assume in this paper).

However, orbit crossing induces a nontrivial stress ten-
sor and this will modify the evolution of the scalar and
vector modes. From Eq. (19) we see that the new source for
scalar and vector modes is the quantity

qiðx; �Þ 	 1

�
rjð��ijÞ: (31)

More precisely we can decompose this into scalar and
vector sources,

q� 	 r � q; qw 	 r� q; (32)

respectively. We will loosely call the correction from�ij to

the scalar modes (due to q�) ‘‘velocity dispersion.’’ Of
course the velocity dispersion tensor �ij affects the vector

modes as well. However, in the simplest case of a diagonal
�ij which depends only on density, only q� survives. Note

also that sometimes we refer to the stress tensor Tij ¼ ��ij

instead of the velocity dispersion tensor �ij for concise-

ness. Finally, for simplicity we will refer to the decom-
position of q into q� and qw as ‘‘decomposing the stress
tensor into scalar and vector modes.’’

Let us first write the linearized version of Eqs. (18) and
(19) taking into account Eqs. (31) and (32). As usual, it is
simplest to work with a different time variable,

� 	 lnDþð�Þ; (33)

whereDþ is the linear growth factor, and scale the velocity
and stress tensor so that

u ! �H fu; �ij ! ðH fÞ2�ij; (34)

and thus also q� ! ðH fÞ2q� and same for qw. Here f ¼
d lnDþ=d lna � �5=9 for �CDM models. Assuming that
f2 � �m, the linearized equations of motion can be writ-
ten after these transformations in the simple form,

@��� � ¼ 0; (35)

@��þ �

2
� 3�

2
¼ q�; (36)

@�wþ w

2
¼ qw: (37)

Figure 7 shows the power spectra corresponding to the two
forcing terms and their time dependence, measured from
the HR160 simulation using the method described in
Sec. III C. Similarly to Sec. II C, we fit for a time evolution
of the form

Pqðk; zÞ / ½DþðzÞ�nvd ; (38)

where Pq stands for both Pq� and Pqw . We found that the

best fit is nvd ¼ 6:5� 0:5, although the quality of the fit is
not as good as in the case of the vorticity (see Fig. 4). The
reason for this may be shot-noise error coming from poorly
sampled regions, where the error gets amplified by the
1=ð1þ �Þ factor in Eq. (31).
It is interesting to note that Eq. (37) provides us with a

nontrivial consistency check between the vorticity power
spectrum measured by the Delaunay method, and the
adaptive method described in Sec. III C from which we
measured the stress tensor and estimated the forcing term
for vector modes. The vorticity and vorticity-forcing terms
measured from the simulation should be consistent with
the time evolution given by Eq. (37). Since this equation is
decoupled from the other two equations (scalar and vector
modes do not couple in linear theory), it can be easily
solved. Ignoring the decaying mode, the linear theory
solution for the vorticity power spectrum reads

FIG. 7 (color online). Time dependence of the power spectra
of the scalar and vector forcing terms q� (top three lines) and qw

(bottom three lines); see Eq. (32). As in Fig. 4, each power
spectrum is linearly extrapolated to z ¼ 0. In this case, the time
evolution of both forcing terms is fitted by Pðk; zÞ ¼
½DþðzÞ=Dþð0Þ�nvdPðk; 0Þ, with nvd ¼ 6:5� 0:5.
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PwðkÞ ¼
�

2

nvd þ 1

�
2
PqwðkÞ: (39)

Figure 8 shows the results of this consistency check. In it,
we show the measured left- and right-hand sides of Eq. (39)
for redshifts z ¼ 0, 1, 3. The agreement in all cases is very
good, improving, as expected, for higher redshifts.

B. PTþ Velocity Dispersion

We are interested in estimating the large-scale correc-
tions to the PPF approximation due to the orbit-crossing
induced q� and qw. As we can see from the linearized
equations of motion, Eqs. (35)–(37), the scalar mode of the
stress tensor corrects the PPF approximation already at the
linear level, whereas the vector modes are decoupled in
linear theory and correct the PPF at higher order in PT. In
this section, we estimate the corrections due to the scalar
mode q� (roughly speaking, velocity dispersion), while in
the next section we tackle the corrections induced by qw at
leading order in nonlinear PT. Since these deviations are
small at large scales we can consider them separately.

The scalar mode correction can be included by writing
the modified linear theory of Eqs. (35) and (36) in a
compact form by using a two-component object c 1 ¼ �,
c 2 ¼ � that obeys the linear equations of motion,

@�c aðk; �Þ þ�abc bðk; �Þ ¼ Qaðk; �Þ; (40)

where �ab is the 2� 2 matrix,

�ab ¼ 0 �1
� 3

2
1
2

� �
; (41)

and Qðk; �Þ ¼ ð0; q�ðk; �ÞÞ. The formal solution to these
equations can be written as

c aðk;�Þ¼gabð�Þ�bðkÞþ
Z �0

0
d�0gabð���0ÞQbðk;�0Þ;

(42)

where � represents the initial conditions and gab is the
linear propagator [40],

gabð�Þ ¼ e�

5

3 2
3 2

� �
� e�3�=2

5

�2 2
3 �3

� �
: (43)

Then, the density field in linear theory is given by

�ðk; �Þ ¼ �ppfðk; �Þ þ q�ðk; �Þ
ðnvd=2� 1Þðnvd=2þ 3=2Þ ;

(44)

where, as in Eq. (38), we assumed that q� / D
nvd=2þ , and

�ppfðk; �Þ 	 gabð�Þ�bðkÞ is the usual linear theory

evolved density field in the PPF approximation. We can
then write the density power spectrum to leading order in
PPF corrections as

P��ðkÞ ¼ PppfðkÞ þ
2P�q�ðkÞ

ðnvd=2� 1Þðnvd=2þ 3=2Þ ; (45)

where PppfðkÞ is the linear density power spectrum in the

PPF approximation, and P�q�ðkÞ is the cross power spec-

trum given by

h�ðkÞq�ðqÞi ¼ �Dðkþ qÞP�q�ðkÞ; (46)

which we measure from the numerical simulations. From
Eq. (42) we can also obtain the velocity divergence in
linear theory,

�ðk; �Þ ¼ �ppfðk; �Þ þ q�ðk; �Þðnvd=2Þ
ðnvd=2� 1Þðnvd=2þ 3=2Þ ; (47)

and the corresponding power spectrum,

P��ðkÞ ¼ PppfðkÞ þ
nvdP�q�ðkÞ

ðnvd=2� 1Þðnvd=2þ 3=2Þ : (48)

Note that the correction in the case of the velocity diver-
gence power spectrum is a factor of (nvd=2 � 3) larger
than in the case of the density; one can understand this
from the fact that the divergence responds to the rate of
change of the density fluctuations, and the correction to

�ppf grows as D
nvd=2þ . It is also worth noticing that the

corrections are negative, i.e. velocity dispersion tends to
reduce the growth of structure; this is also expected for a
stress tensor ��ij � �p�ij with a positive pressure (due to

thermal motions) that is positively correlated with density
fluctuations. Figure 9 shows the absolute value of these

FIG. 8 (color online). Comparison between the Delaunay-
estimated vorticity power spectrum (solid lines) to the linear
theory prediction from solving Eq. (39) (dotted lines) for red-
shifts z ¼ 0, z ¼ 1 and z ¼ 3.
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corrections relative to the PPF approximation for both
density and velocity divergence at redshifts z ¼ 0, 0.5, 1.
We see that at z ¼ 0 the correction to the divergence power
spectrum reaches 1% at about k� 0:1h Mpc�1, while for
the density power spectrum this happens at about k�
0:2h Mpc�1. By z ¼ 1 these scales shift by about a factor
of 2. At higher redshifts they rapidly decline as the growth
factor changes rapidly before the onset of cosmic
acceleration.

These effects can be understood qualitatively, and to
some extent quantitatively, by considering the typical
size of the corrections to the velocities predicted by the
single-stream, PPF approximation, smoothed over scale R.
These corrections are, in average, of order

�rms
v ðRÞ 	 H f

�Z
d3kP�ðkÞW2

THðkRÞ
�
1=4

; (49)

where WTHðkRÞ is the Fourier transform of a top-hat filter
of radius R, P�ðkÞ is the power spectrum of the trace of the
velocity dispersion tensor (which is the dominant compo-
nent), and the factor H f restores the correct units to �ij

[see Eq. (34)]. Equivalently, these velocity corrections can
be interpreted as comoving position fluctuations, given by

�rmsðRÞ 	
�Z

d3kP�ðkÞW2
THðkRÞ

�
1=4

: (50)

These two quantities are shown in Fig. 10. In the top panel,
the ratio of the displacement corrections from Eq. (50) to
the scale R is plotted as a function of scale. An order of
magnitude estimate of the effect on the density power
spectrum can be obtained from the following argument.
The dispersion in comoving positions given by �rmsðRÞ
smooths out density perturbations. That suppression is
approximately given by

PsmoothðkÞ � PðkÞe�2ðk�rmsð2�=kÞÞ2 : (51)

At large scales, e.g. k� 0:1h Mpc�1, this gives a suppres-
sion consistent with the previously calculated density
power spectrum corrections seen in Fig. 9.
The bottom panel shows �rms

v as a function of R,
Eq. (49). We can see that the velocity dispersion on scales
of �100h�1 Mpc is of order 15 km/s. Comparing this
dispersion with the single-stream bulk velocities on the
same scale (dashed line), we conclude that the velocity
dispersion corrections on those scales are small but, never-
theless, larger in relative terms than for the density power
spectrum, in agreement with the detailed calculation pre-
sented in Fig. 9.
In [51], it was argued that percent-level corrections from

orbit crossing to the density power spectrum are expected
at k ’ 0:1h Mpc�1 based on a model of ‘‘sticky dark
matter.’’ The effect discussed in that work is not an esti-

FIG. 9 (color online). Correction to the PPF approximation for
the velocity divergence (three top lines) and density power
spectrum (three bottom lines) due to velocity dispersion at red-
shifts z ¼ 0 (solid lines), z ¼ 0:5 (dashed lines) and z ¼ 1
(dotted lines). Note that the actual correction is negative in all
cases, we plot their absolute values. These corrections are
computed in linear theory, Eqs. (45) and (48), thus extrapolation
well beyond k� 0:1h Mpc�1 is only illustrative.

FIG. 10 (color online). Top panel: root mean square position
fluctuations, Eq. (50), induced by velocity dispersion smoothed
at scale R divided by R. Bottom panel: rms velocity dispersion,
Eq. (49), in solid lines compared to rms bulk motions (dashed
lines) smoothed on scale R. Note that velocity dispersion is
smoothed on scales of order 1h�1 Mpc, thus the solid line is an
underestimate at small scales. All the quantities in this figure are
evaluated at z ¼ 0.
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mate of deviations from the PPF approximation; see
Appendix A in [41] for more details. Here we note that
the estimate in [51] for the density power spectrum is 2
times larger than found here, and opposite in sign.

C. PTþ Vorticity

As discussed above, the effects of the vector modes of
the stress tensor (qw) on the density and divergence power
spectrum only appear beyond linear theory, since in linear
theory scalar and vector modes are decoupled. Here we
estimate these corrections by calculating the one-loop
density power spectrum including the effects from the
vorticity, which is sourced by qw. The strategy is as fol-
lows. We rewrite the equations of motion for density
perturbations including now the nonlinear terms as fol-
lows:

@��ðkÞ � �ðkÞ ¼
Z

d3k1d
3k2�Dðk� k12Þ

�
�
k � k2

k22
�1�2 � k1 � k2

k22
� �1w2

�
;

(52)

@��ðkÞ þ �ðkÞ
2

� 3�ðkÞ
2

¼
Z

d3k1d
3k2�Dðk� k12Þ

�
�
k2ðk1 � k2Þ�1�2

2k21k
2
2

� ðk1 � k2Þðk1 � k2Þ � �1w2

k21k
2
2

�
;

(53)

where k12 	 k1 þ k2. To avoid cumbersome expressions,
we have not written the time dependence of the fields
explicitly. Also, on the right-hand side, the subscripts
‘‘1’’ and ‘‘2’’ mean the fields evaluated at k1 and k2,
respectively.

A couple of points are worth noting. We have decom-
posed the velocity field into a divergence and a vorticity,
and the latter will be taken as a known forcing term in the
equations, since w can be solved in linear theory as an
uncoupled field from the measured qw [Eq. (37)] or di-
rectly measured from the Delaunay method. In addition,
note that we have neglected the q� source in the equation of
motion for �, since this effect was included already in the
last section; here we are only interested in corrections due
to qw alone, which enter through the w forcing terms.

Following the compact notation introduced in the pre-
vious section, we can rewrite Eqs. (52) and (53) as

@�c aðk; �Þ þ�abc bðk; �Þ
¼
Z

d3k1d
3k2�Dðk� k12Þ

� ½	abcðk1;k2Þc bðk1; �Þc cðk2; �Þ
þ Aabðk1;k2; �Þc bðk1; �Þ�; (54)

where 	 characterizes the nonlinear mode coupling ampli-
tudes and A is the w-dependent forcing term. They can be
written as

	112 ¼ k12 � k2

k22
; 	222 ¼ k212ðk1 � k2Þ

2k21k
2
2

;

Aab ¼ �k1 � k2

k22
� wðk2; �Þ

1 0
0 k1�k2

k2
1

 !
:

(55)

Equation (54) can be formally solved by introducing
again the linear propagator gab, yielding

c aðk; �Þ ¼ gabð�Þ�bðkÞ þ
Z �

0
dsgabð�� sÞ

�
Z

d3k1d
3k2�Dðk� k12Þ

� ½	bcdðk1;k2Þc cðk1; sÞc dðk2; sÞ
þ Abcðk1;k2; sÞc cðk1; sÞ�: (56)

This is an implicit form of the solution—it is written in
terms of itself. However, it is suitable for a perturbative
method. We write the field c as a perturbative series:

c aðk; �Þ ¼ gabð�Þ�bðkÞ þ
X
n¼2

c ðnÞ
a ðk; �Þ; (57)

and combining Eqs. (56) and (57), we get a solution for the
n-th order fields in terms of the lower order fields:

c ðnÞ
a ðk; �Þ ¼

Z �

0
dsgabð�� sÞ

Z
d3k1d

3k2�Dðk� k12Þ

�
�
	bcdðk1;k2Þ

X
rþs¼n

c ðrÞ
c ðs;k1Þc ðsÞ

d ðs;k2Þ

þ Abcðk1;k2; sÞc ðn�1Þ
c ðk1; sÞ

�
: (58)

Thus, by knowing the linear solutions, we can calculate the
solutions to any order. The linear solutions for � and � are
just the PPF linear solutions. In order to solve for the
higher-order fields � and �, we need the vorticity field
and its time dependence, which we have measured from
dark matter N-body simulations.
As discussed above, the leading order correction due to

vorticity effects appears in the one-loop contribution to the
power spectrum. The density power spectrum, to that
order, can be written as

P�ðkÞ�Dðkþ qÞ ¼ h�ð1ÞðkÞ�ð1ÞðqÞi þ ½h�ð2ÞðkÞ�ð2ÞðqÞi
þ 2h�ð1ÞðkÞ�ð3ÞðqÞi�: (59)
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The first term is the usual tree-level (linear theory) power
spectrum, while the terms in square brackets correspond to
the one-loop correction, which are usually written as P22 þ
P13 due to their dependence on PT order. Let us start by
focusing on the first one-loop term, which leads to the P22

contribution. The second order density can be written as

�ð2ÞðkÞ¼
Z
d3q1d

3q2�Dðk�q12Þ
�½Fðq1;q2Þ�ð1Þðq1Þ�ð1Þðq2ÞþGðq1;q2Þ
�wðq1Þ�ð1Þðq2Þ�

¼
Z
d3q1d

3q2�Dðk�q12Þ½F12�1�2þG12 �w1�2�:
(60)

Note that in the second line we have just simplified the
notation. The P22 contribution to the power spectrum has
four terms:

P22ðkÞ�Dðkþ qÞ ¼
Z

d3q1 . . .d
3q4�Dðk� q12Þ

� �Dðq� q34Þ½F12F34h�1�2�3�4i
þ F12G34 � h�1�2w3�4i
þ G12F34 � hw1�2�3�4i
þG


12G
�
34hw


1�2w
�
3 �4i�: (61)

The first term is the usual PPF P22 one-loop contribution.
The second and third terms contain factors of the form
h�wi, which vanish due to symmetry. Then at large scales
where connected contributions can be neglected we have

hw

1�2w

�
3 �4i ¼ hw


1w
�
3 ih�2�4i

¼ �Dðq1 þ q3Þ�Dðq2 þ q4ÞP
�
wwðq1ÞP�ðq2Þ

(62)

from which we get the vorticity contribution to the P22

power spectrum:

�P22ðkÞ ¼
Z

d3qG�ð�q;q� kÞG
ðq;k� qÞ
� P
�

wwðqÞP�ðk� qÞ

¼
Z

d3q
jGð�q;q� kÞj2

2
PwðqÞP�ðjk� qjÞ;

(63)

where we have used the actual vector structure of Gðk;qÞ
and the fact that

P
�
wwðqÞ ¼ PwðqÞ

2

�
�
� � q
q�

q2

�
: (64)

Similarly, we can compute the P13 contribution to the
density power spectrum. The third order density field can
be written schematically as

�ð3ÞðkÞ ¼
Z

d3q1d
3q2d

3q3�Dðk� q123Þ
� ½Hðq1;q2;q3Þ�1�2�3 þ Rðq1;q2;q3Þ
� w1�2�3 þ S
�ðq1q2q3Þw


1w
�
2 �3�: (65)

Then, the vorticity contribution to the power spectrum
reads

�P13ðkÞ ¼ P�ðkÞ
Z

d3q1S

�ðq1;�q1;�qÞP
�

wwðq1Þ

¼ P�ðkÞ
Z

d3qS

ðq;�q;�kÞPwðqÞ; (66)

where in the last equality we have used Eq. (64). If one
assumes that the time dependence of the vorticity is given

by w / Dnw=2þ , as found in Sec. II, it is possible to write
explicit expressions for the �P22 and �P13 power spectra:

�P22ðkÞ¼
Z
d3qPwðqÞP�ðjk�qjÞ2k

2ð1�x2Þ
q2

�½ð3þnwÞk2þð1þnwÞq2�4ð1þnw=2Þk�q�2
n2wð5þnwÞ2jk�qj2 ;

(67)

�P13ðkÞ ¼ �P�ðkÞ
Z

d3qPwðqÞ

� 2ð1� x2Þ
q2jkþ qj2ð5þ nwÞð5þ 2nwÞ

� fk2½ð3þ nwÞð3þ 2nwÞk2
þ ð3þ 9nw þ 2n2wÞq2� þ 2ð1þ nwÞk
� q½q2 þ ð9þ 2nwÞk2� þ 4ð2þ 3nw=2Þðk � qÞ2g;

(68)

where x is the cosine of the angle between k and q.
The end result of these calculations is that the leading

large-scale contribution of vector modes of the stress ten-
sor to the density power spectrum is fully specified in terms
of the autocorrelation or power spectrum of the vorticity,
which we have measured from the simulations. Figure 11
shows the results of these calculations. We see that the total
correction is negative, as expected physically, and very
small at large scales. For example, at k� 0:1h Mpc�1,
where the scalar modes contributed percent-level correc-
tions, the modifications of the PPF approximation from
vector modes is about 10�4 of the linear spectrum, and thus
totally negligible. The reason for this is that by symmetry
the vorticity does not couple to the scalar modes, it is only
through vorticity squared that the effect is present. We
expect similar results for the velocity divergence power
spectrum within a factor of a few, still completely negli-
gible at large scales.
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V. CONCLUSIONS

We studied the impact of orbit crossing in the large-scale
power spectra of density and velocity divergence fields,
which are usually described in the PPF approximation. We
presented a method to extend PT beyond the PPF approxi-
mation, based on measuring the stress tensor induced by
orbit crossing in numerical simulations. The stress tensor,
when decomposed into scalar and vector modes leads to
corrections associated with velocity dispersion and the
effects of vorticity. We found the effects due to the scalar
modes to be small, but not negligible at large scales (k ’
0:1h Mpc�1), particularly for the velocity divergence
power spectrum (see Fig. 9). The impact of vorticity on
large scales is much smaller; see Fig. 11. These two effects
appear at different orders in PT and have been included
separately as we are interested in large scales where the
induced corrections are small. Both lead to suppressions of
the power spectra predicted by the PPF approximation, as
expected physically since velocity dispersion and vorticity
should inhibit collapse. In this regard we emphasize that
neglecting orbit crossing has opposite effects on Eulerian
compared to Lagrangian PT. For Lagrangian PT, neglect-
ing orbit crossing leads to (much more severe) underesti-
mates of the density power spectrum (see e.g. [8] for a
recent example), since neglecting self-gravity in caustics

leads to artificial thickening of such structures when tra-
jectories cross without interacting.
A novel aspect of our calculation is the estimation of the

stress tensor and the vorticity and divergence power spectra
from numerical simulations. To estimate velocity fields, we
applied the Delaunay tessellation method, which we have
shown to be a more reliable estimator than traditional mass
weighting schemes. While estimates of the velocity diver-
gence are robust, we found that measurements of the
vorticity power spectrum are significantly more difficult,
due to aliasing during the measurement process and most
importantly lack of resolution in the simulations. For the
latter we have found that low resolution simulations can
overestimate the vorticity power spectrum by an order of
magnitude. This maybe be due to insufficient spatial reso-
lution in multistreaming regions, with the overestimate
perhaps related to aliasing effects during the PM part of
the force calculation, which may generate a vector mode.
In any event, for high enough resolution we find that the
vorticity power spectrum converges to a stable answer. On
the other hand, care must be taken that these spurious
effects are not present when using numerical simulations
to study nonlinear velocities, since artificial vorticity can
amplify the velocity power spectrum at small scales.
A nontrivial check of our numerical calculation of the

stress tensor, which we have done using an adaptive
method independent of the Delaunay tesselation, is that
its vector modes source the growth of vorticity. Therefore,
using linear PT from this vector source one should recover
at large scales the vorticity power spectrum measured by
the Delaunay method, as we do (see Fig. 8). This does not
test the scalar mode of the stress tensor though, which ends
up inducing the largest correction to the PPF approxima-
tion. In this respect, it would be interesting to test how
robust the scalar part of the stress tensor is to details of the
numerical simulations, as spurious effects due to discrete-
ness may amplify velocity dispersion in simulations
[52,53] (see also [54]). As far as we know, our work is
the first to make a quantitative connection between the
growth of velocity dispersion and that of the density power
spectrum, which will be useful to probe more in order to
make sure that simulations can correctly reproduce the
matter power spectrum to percent level, as required for
the next generation of weak lensing surveys designed to
probe cosmic acceleration [55].
The deviations we found from the PPF approximation at

large scales are small but not negligible, in particular, for
the velocity divergence power spectrum, for which correc-
tions are a factor of about three larger than for the density
power spectrum. Our estimate, being based on numerical
simulations, corresponds to fixed cosmological parameters
(e.g. �8 ¼ 0:9, �m ¼ 0:27 and ns ¼ 1). Given the strong
dependence on the growth factor of the correction ( / D2:25þ
relative to PPF) we expect it to be smaller for lower
normalization amplitudes, as well for cosmological pa-

FIG. 11 (color online). Corrections to the density power spec-
trum at z ¼ 0 due to stress tensor vector modes (vorticity
effects); see Eqs. (67) and (68). Note that the �P13 contribution
(long dashed lines) is negative and larger in magnitude than the
�P22 contribution (short dashed lines). The total correction
(solid lines) is negative and reaches 1% of the linear spectrum
(top dotted lines) at k� 1h Mpc�1, where further nonlinear
effects not included here should become important.
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rameters that correspond to less power at small scales (i.e.
�m < 0:27 and ns < 1).

In Sec. III we sketched what must be done to include
these effects from first principles into analytic calculations
such as RPT that usually start from the PPF approximation,
instead of using the hybrid approach we develop here
partially based on numerical simulations. Including veloc-
ity dispersion in a self-consistent manner should cure
divergences that appear in PT for scale-free models with
initial power spectra PðkÞ � kn for n >�1, as well as
regulate the divergences that appear in the resummation
of the Lagrangian space propagator [56]. In addition, we
expect velocity dispersion and vorticity to be crucial to
describe the virial turnover in the density power spectrum.
Another interesting application of the ideas presented in
Sec. III is to use the cumulant hierarchy to describe non-
linear effects in a massive neutrino component, to improve
on recent calculations [57,58] that assume linearity. We
hope to report on some of this in the near future.
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APPENDIX: ESTIMATING THE VELOCITY FIELD

1. The Delaunay tessellation

One of the main obstacles in measuring the velocity field
from cosmological simulations is the fact that it is only
sampled on a discrete set of points. One encounters the
same difficulty when reconstructing the peculiar velocity
field from observations, where velocity is only sampled at
the locations of galaxies. One can identify two problems
associated with this fact. On one hand, since the velocity is
only known at points where the mass is located, almost all
procedures to reconstruct the velocity field from a discrete
sample give mass-weighted quantities, while most theo-
retical predictions concern volume-weighted quantities.
On the other hand, low density regions are very sparsely
sampled, and therefore subject to large Poisson errors.
Laying out a structured grid, as it is often done, leaves
grid points empty in such regions with the consequence
that the velocity field is set to zero (thus missing outflows
in voids), while in practice the velocity field is undeter-
mined due to the poor mass resolution. These issues have
been recognized for a long time in the theoretical large-
scale structure literature; see e.g. [59–61].

The work in [59] introduced two new velocity estima-
tion methods that attempt to overcome these problems.
These methods are based on the Voronoi and Delaunay
tessellations of the discrete set of points where the velocity
field is sampled. They showed that the Delaunay tessella-
tion method has fewer computation requirements than the
Voronoi tessellation method, while giving equally or more
reliable results. Thus, in our work wewill consider only the
Delaunay method, following [59] to a large extent. Our
implementation of the method is based on the public code
QHULL [62] to construct the Delaunay tessellation. Many

other applications of Delaunay tessellations have recently
appeared in the large-scale structure literature (see e.g.
[63,64]); see also [65] for an in-depth review and other
applications.
The formal definition of the Delaunay tessellationDðP Þ

of a set of points P (in three dimensions) is the set of
tetrahedrons defined by four points whose circumscribing
sphere is empty in the sense that no point of the generating
set P should be inside the circumsphere [66]. In Fig. 12 we
show an example of the tessellation of a set of random
points in two dimensions. It can be shown that the
Delaunay tessellation is unique. Moreover, the Delaunay
tetrahedrons are objects of minimal size and elongation.
These characteristics make the Delaunay method optimal
for a three dimensional interpolation.

2. Reconstructing the velocity field

Once the Delaunay tessellation from the set of sample
points is obtained, it is possible to estimate the velocity at
each point p in space by linearly interpolating the veloc-
ities at the vertices of the tetrahedron that contains the
point p. This procedure leads to a continuous velocity field
with constant gradient in each tetrahedron.
Mathematically, we can express the Delaunay method to

find the velocity u at a point p with coordinates x as
follows. Let xi, with i ¼ 0, 1, 2, 3, be the coordinates of
the vertices of the tetrahedron containing p. Since the
Delaunay tetrahedrons are nondegenerate (i.e. they do
not collapse into 2D objects), we can express x as a linear
combination of xi:

�x ¼ X3
i¼1


i�xi; (A1)

where �x 	 x� x0 and �xi 	 xi � x0. The linear inter-
polation of the velocity at point p is simply

�u ¼ X3
i¼1


i�ui; (A2)

where �u 	 u� u0, �ui 	 ui � u0, and 
i satisfy
Eq. (A1). Thus, the problem reduces to solve for the 
i,
which can be readily be written as
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1


2


3

0
@

1
A ¼ A�1 �

�x
�y
�z

0
@

1
A; (A3)

where �x, �y and �z are the components of x, and A
consists of the components of the �xi:

A 	
�x1 �x2 �x3
�y1 �y2 �y3
�z1 �z2 �z3

0
@

1
A: (A4)

These equations allow us to compute an estimation of
the velocity field for any point in the simulation volume. In
particular, we are interested in determining the volume-
averaged field at a given set of points, often a grid.
Typically, one wants to compute the average uRðriÞ of
the velocity field in spheres of radius R centered at the
points ri, usually on a grid. In order to obtain that, one can
carry out the following algorithm [59]:

(1) Construct the Delaunay tessellation from the loca-
tions of the simulation particles.

(2) For each point ri:
(a) Find the intersection of the Delaunay tetrahedrons

with a sphere of radius R centered at ri.
(b) For each intersecting tetrahedrons j, determine in-

tersection volume Vj and mean velocity uj in that

volume.
(c) Compute

P
jVjuj=ð4�R3=3Þ.

However, both constructing the tessellation for the large
number of particles (� 109) typical of state-of-the-art
simulations and finding the tetrahedrons intersecting a
given sphere are very time-consuming. For the sake of
efficiency, we modified the previous procedure. Instead
of calculating the velocity average on a sphere centered
at a grid point ri, we compute the average in the volume
given by all Delaunay tetrahedrons totally contained in the
grid cell corresponding to ri. Thus, our approximate algo-
rithm reads as follows:

(1) For each grid point ri,
(a) Construct the Delaunay tessellation of the points

contained in the corresponding grid cell.
(b) Compute the volume Vj and mean velocity uj for

every Delaunay tetrahedron.
(c) Compute

P
jVjuj=

P
jVj.

It is possible to write explicit expressions for the volume Vj

and mean velocities uj in a Delaunay tetrahedron. It fol-

lows from elementary geometry that

Vj ¼ j detðAÞj; uj ¼ 1

4

X3
i¼0

uðiÞ
j ; (A5)

where A is defined in Eq. (A4), and uðiÞ
j are the four

velocities at the vertices of the tetrahedron j.
Note that in the new algorithm, we only construct the

tessellation of the points inside the grid cell, a much
smaller number of particles than the total simulation.
Moreover, it is no longer necessary to find the tetrahedrons
or their intersection with a sphere. Nevertheless, with this
procedure, the average volume will in general vary from
grid point to grid point. We reduce this undesired effect by
only using relatively coarse grids, where we expect a more
uniform distribution of particles. We are thus obtaining a
smoothed field uRðxÞ given by

u RðxÞ ¼
Z

d3yWRðx� yÞuðyÞ; (A6)

where WRðxÞ is a spherical top-hat filter with R �
ð3Vcell=4�Þ1=3. To deconvolve Fourier space quantities,
we thus divide by the Fourier transform of WR. Note that
this correction is only correct on average, tests reveal that it
is accurate to about 1% at k ¼ 0:2h Mpc�1, more than
enough for our purposes in this paper, but not enough for
precision tests of velocity divergence power spectra in the
weakly nonlinear regime.

FIG. 12 (color online). Delaunay tessellation of a set of random points in two dimensions. The left panel shows the original set of
points. In the right panel, we show the regions corresponding to the tessellation. Note that in two dimensions the Delaunay tessellation
consists of triangles instead of tetrahedrons.
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3. Testing the Delaunay method

One of the difficulties of testing accuracy of the
Delaunay method is that it is expected to be more accurate
(in measuring volume-weighted quantities) than the tradi-
tional estimations from mass-weighted schemes. Thus, we
lack a more trustworthy method to use as reference. Out
strategy to overcome this difficulty is setting up a ‘‘con-
trolled numerical experiment’’: we generate a random
Gaussian velocity field with given divergence and vorticity
power spectra and then use the Delaunay method to recover
the velocity statistics. In this way, we can compare the
results of the method with the exact input power spectra
used to generate the velocity field.

For the sake of comparison, we also measure the veloc-
ity power spectra with the well-known CIC mass-weighted
method(). It consists of interpolating the particles mass and
velocity on a grid using the CIC kernel WCICðxÞ 	Q

iWCICðxiÞ defined by

WCICðxiÞ ¼
�
1� jxij for jxij< 1
0 for jxij � 1;

(A7)

where x is measured in units of grid separation. Note that
interpolating the particle velocities by using this method
gives the momentum field instead of the velocity field.
Thus, one needs to compute the ratio between this quantity
and the density field to obtain the velocity. As we men-
tioned above, in underdense regions if the grid is made too
fine there will be grid points for which no particle is

assigned, which means there is no information on the
velocity field, but typically one would set to zero (incor-
rectly) the velocity. In addition, dividing the interpolated
momentum by the interpolated density means that it is
difficult to correct for the interpolation kernel after the
velocity field is Fourier transformed, unlike the case of
the density field (see [67] for a recent discussion of inter-
polation corrections and comparison of CIC with other
mass assignment schemes for the density field).
We generate a Gaussian velocity field on a grid of 4003

cells with a divergence and vorticity power spectra based
roughly on expectations from previous measurements in
the literature [44] and then interpolate this velocity on the
positions of the 6403 dark matter particles obtained from
running an N-body simulation with GADGET2 [39] (see
Table I below for more details on the simulations). Then
we measure the divergence and vorticity power spectra
using the Delaunay method and the CIC method.
The results are shown in Fig. 13. We applied the

Delaunay method, as described in the previous subsection,
on a coarse grid of 763 cells and a finer grid of 1203 cells,
and measured the power spectra using fast Fourier trans-
forms. On scales close to the Nyquist frequency, the power
spectra were corrected by deconvolving the kernel defined
in Eq. (A6). The recovered divergence and vorticity agree
very well with the input power-spectra (left panel). In the
right panel, we show the results of the CIC method. We see
that in order to obtain results comparable to the Delaunay
method, one needs to use a much finer interpolation grid.

FIG. 13 (color online). Left panel: Delaunay-estimated divergence and vorticity power-spectra. The solid lines correspond to the
power-spectra used to generate the velocity field. The dashed lines are the spectra measured on a 1203 grid, and the dotted lines are
measured on a 763 grid. All spectra are corrected by deconvolving the smoothing kernel (Eq. (A6)). Right panel: Same as left panel,
but using the CIC method. Note that since these measured spectra are obtained as the ratio of two interpolated quantities, they cannot
be easily corrected for the window of the interpolation scheme.
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Even in that case, there are considerable differences on
large scales. On small scales, the power spectrum is under-
estimated. This is due to the CIC interpolation kernel.
However, it cannot be corrected as in the Delaunay case
because the velocity field was obtained as the ratio of two
CIC-interpolated quantities. In principle, one could decon-
volve the density and the momentum interpolated fields
before taking the ratio, but this procedure does not give
good results because it introduces noise in the deconvolved
fields [28]. In particular, we observed that the deconvolved
density field has a non-negligible number of negative
density grid points. Similar results on the better noise
properties of the Delaunay method were obtained for the
PDF of the velocity divergence in [59].

4. Sampling Effects: Aliasing

One of our goals in this paper is to estimate reliably the
vorticity field from cosmological simulations. Since at
large scales it is expected to be very small compared to
the divergence, it is important to analyze the sampling
effects. We will show that such effects make the sampled
vorticity field a mixture of the vorticity and divergence of
the original field.

Let us assume we know the velocity field uðxÞ inside a
box of volume L3, and will study the effects of sampling
that field on a grid of N3 cells. Let us decompose the
original (exact) field uðxÞ in Fourier series:

u ðxÞ ¼ X
k

�uðkÞeik�x; (A8)

where the vector k has components k
 ¼ 2�n
=L with
n
 2 Z, i.e. arbitrarily large frequencies appear in the
Fourier sum. We want to compare these exact Fourier
modes �uðkÞ to the discrete Fourier modes ûðqÞ on the
grid (q
 ¼ 2�m
=L, m
 2 Z, 0 � m
 < N). We can
write the discrete Fourier transform of the velocity field as

ûðqÞ ¼ 1

N3

X
x

uðxÞe�iq�x ¼ 1

N3

X
x

X
k

�uðkÞeiðk�qÞ�x;

(A9)

where q and x are on the grid. This can be further sim-
plified into

ûðqÞ ¼ X
k

�uðkÞ
N3

Y3

¼1

1� exp½iLðk
 � q
Þ�
1� exp½iLN ðk
 � q
Þ�

: (A10)

The product vanishes unless r 	 k� q ¼ 2�N
L m with m

an integer vector. Finally, we obtain

ûðqÞ ¼ X
r

�uðqþ rÞ; r ¼ 2�N

L
m: (A11)

This equation states explicitly that velocity Fourier modes
beyond the Nyquist wave number of the grid (kNy ¼
�N=L) affect the grid Fourier modes. This is known as
aliasing. To see how this effect appears in the vorticity

power spectrum, let us assume that the velocity field is
purely potential, that is, �uðkÞ ¼ ik�ðkÞ=k2. Evidently,
�wðkÞ 	 ik� �uðkÞ ¼ 0, but

ŵðqÞ 	 iq� ûðqÞ ¼ X
r

iq� r

jqþ rj2 �ðqþ rÞ (A12)

does not vanish. Moreover, the sampled vorticity power
spectrum can be written as

P̂ wðqÞ ¼
X
r

jq� rj2
jqþ rj4 P�ðjqþ rjÞ; (A13)

where r ¼ ð2�N=LÞm denotes multiples of the Nyquist
frequency. Note that P� is the power spectrum of the
original divergence field.
Equation (A13) tells us that the velocity divergence of

wave numbers larger than the Nyquist of the grid induces a
spurious vorticity in the sampled field. In the low-q limit

(q  2�N=L), it is easy to see that P̂wðqÞ / q2. Figure 14
shows the predictions of the large-scale limit of this for-
mula. We generated a zero-vorticity velocity field, which
was sampled without smoothing it on different grids. Then,
we compared the measured vorticity power spectrum to the
predictions of Eq. (A13). Note that the amplitude of the
correction was not fitted: the formula estimates correctly
both the low-k limit dependence of the vorticity power
spectrum and the amplitude of the spurious vorticity.
It is important to remark that we cannot directly extrapo-

late these results to the vorticity estimates of Fig. 13. In that

FIG. 14 (color online). Measured divergence and vorticity
power-spectra from a vorticity-free velocity field sampled on
three different grids of 203, 503 and 1003 grid points (top to
bottom). This shows that the measured vorticity is purely due to
aliasing. The dotted lines correspond to the predictions of Eq.
(A13).
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case, both the vorticity and divergence fields are smoothed
on a scale given by the grid separation. This procedure
greatly reduces the power spectrum on wave numbers

larger than the Nyquist frequency of the grid, making the
aliasing effect less important. However, this analysis is
useful to set an upper-bound estimate of aliasing effects.
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