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We propose a qualitatively new mechanism for generating cosmological fluctuations from inflation. The

nonequilibrium excitation of interacting scalar fields often evolves into infrared (IR) and ultraviolet

cascading, resulting in an intermediate scaling regime. We observe elements of this phenomenon in a

simple model with inflaton � and isoinflaton � fields interacting during inflation via the coupling g2ð��
�0Þ2�2. Isoinflaton particles are created during inflation when they become instantaneously massless at

� ¼ �0, with occupation numbers not exceeding unity. Previous studies have focused on the momentary

slowing down of the condensate �ðtÞ by back-reaction effects. Here, we point out that very quickly the

produced � particles become heavy and their multiple rescatterings off the homogeneous condensate �ðtÞ
generates Bremsstrahlung radiation of light inflaton IR fluctuations with high occupation numbers. The

subsequent evolution of these IR fluctuations is qualitatively similar to that of the usual inflationary

fluctuations, but their initial amplitude is different. The IR cascading generates a bump-shaped contri-

bution to the cosmological curvature fluctuations, which can even dominate over the usual fluctuations for

g2 > 0:06. The IR cascading curvature fluctuations are significantly non-Gaussian, and the strength and

location of the bump are model dependent, through g2 and �0. The effect from IR cascading fluctuations

is significantly larger than that from the momentary slowing down of �ðtÞ. With a sequence of such bursts

of particle production, the superposition of the bumps can lead to a new broadband non-Gaussian

component of cosmological fluctuations added to the usual fluctuations. Such a sequence of particle

creation events can, but need not, lead to trapped inflation.

DOI: 10.1103/PhysRevD.80.043501 PACS numbers: 98.80.Cq

I. INTRODUCTION

In addition to the standard mechanism for generating
cosmological perturbations during inflation from the vac-
uum fluctuations of the inflaton field [1], there are alter-
native mechanisms including modulated fluctuations
(inhomogeneous preheating) [2,3] and the curvaton [4],
both of which are based on the vacuum fluctuations of
isoinflaton fields during inflation. In this paper, we propose
a new and qualitatively different mechanism for generating
cosmological fluctuations during inflation.

Physical processes during inflation may leave their im-
print as features in the cosmological fluctuations. These
can, in principle, be observed if they fall in the range of the
wavelengths between 104 Mpc and 100 Kpc, which corre-
sponds to about ten e-folds during inflation. There may also
be signatures such as additional features at the horizon
scale or potential observables on much smaller scales.
Relevant dynamical models were studied in the early
days of the inflationary theory, for example, the model
with phase transitions during inflation yielding associated
features in the cosmological fluctuations [5–7] (see also
[8]). There the time-dependent dynamics of the inflaton
field � can trigger a phase transition in the isoinflaton �
field. The growth of � inhomogeneities induces curvature
fluctuations on scales leaving the horizon at the moment of
the phase transition.

Recently, several studies [5,9–12] considered features in
the cosmological fluctuations from the effect of particle

creation during inflation, which can be modeled by the
simple interaction

L int ¼ � g2

2
ð���0Þ2�2; (1)

with some value of the scalar field �0, which the rolling
�ðtÞ crosses during inflation that must be tuned to give a
signal in the observable range of e-folds. There are differ-
ent motivations for the model (1). The early study [13]
introduced the possibility of slowing down the fast rolling
inflaton using particle creation via the interaction (1).
Imagine there are a number of field points �0i, i ¼
1; 2; � � � ; n, where the isoinflaton field becomes massless
and � particles are created. The produced � particles are
diluted by the expansion of the Universe, however, the
back-reaction effect from multiple bursts of particle crea-
tion may slow down the motion of � sufficiently to allow
for slow-roll inflation. This is called trapped inflation. A
more concrete string theory realization of trapped inflation,
based on the sequence of D3 branes interactions, was
discussed in [10]. The work [12], which is complementary
to this study, provides a detailed realization of trapped
inflation in the context of the string theory model [14].
The instant of �-particle creation and the slow down of

the rolling inflaton shall generate a feature in the power
spectrum of scalar curvature fluctuations from inflation
P� ðkÞ. This was noticed in [9], where the features in the

power spectrum were estimated from the simple-minded
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formula P� ðkÞ � ðH2

_�
Þ2. The inflaton slow down was de-

scribed by the mean-field equation

€�þ 3H _�þ V;� þ g2ð���0Þh�2i ¼ 0: (2)

The vacuum expectation value h�2i can be calculated with
the analytic machinery of particle creation with the cou-
pling (1), which was developed in the theory of preheating
after inflation [15,16]. The quantum field theory (QFT) of
� particles interacting with the time-dependent condensate

�ðtÞ deals with the eigenmodes �kðtÞei ~k� ~x, where the time-
dependent mode function obeys an oscillatorlike equation
in an expanding Universe

€� k þ 3H _�k þ
� ~k2

a2
þ g2ð�ðtÞ ��0Þ2

�
�k ¼ 0; (3)

with time-dependent frequency !kðtÞ. When �ðtÞ crosses
the value �0, the �k mode becomes massless, and !kðtÞ
varies nonadiabatically. Around this point ð�ðtÞ ��0Þ �
_�0ðt� t0Þ, where t ¼ t0 is corresponding time instant.
With this very accurate [16] approximation, one can solve
Eq. (3) analytically to obtain the occupation number of
created � particles

nk ¼ exp

�
��k2

k2?

�
; k2? ¼ gj _�0j; (4)

presuming that k? > H. The latter condition requires cou-

pling constant g > H2=j _�0j � 10�4. It is useful to note
that, independent of the details of Vð�Þ and �ðtÞ, the scale
k? can be related to the naively estimated amplitude of

vacuum fluctuations as k?=H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ð2�P 1=2

� Þ
q

. Thus,

k?=H � 30 if P 1=2
� ¼ 5� 10�5 as suggested by the

CMB, and the coupling is g2 � 0:1.1

The vacuum expectation value h�2i, which controls the
back reaction on the homogeneous field �ðtÞ, can be

calculated from (4) and estimated as h�2i ¼ R
d3k
ð2�Þ3 j�kj2 �R

d3k
ð2�Þ3

nk
!k

� n�a
�3

gj���0j for�>�0. Substitution of this results

back into (2) gives expected velocity dip of �ðtÞ and,
correspondingly, a bump in the power spectrum P� ðkÞ. In
Fig. 1 we illustrate this velocity dip for the model (1) with
g2 ¼ 0:1.

The calculation of curvature fluctuations in the model
(1) was reconsidered in [11], where the linearized equa-
tions of motion for the quantum fluctuations �� coupled
with the metric fluctuations were treated again in the mean-
field approximation, using h�2i to quantify the back reac-
tion. This study shows that the bump in the curvature

power spectrum is the most prominent part of an otherwise
wiggling pattern. Similar to us, the work [12] further
refined the calculation of the curvature perturbation in
this model, going beyond the mean-field treatment of �.2

In a parallel development, scalar fields interactions of
the type (1) are the subject of studies in nonequilibrium
QFT and its application to the theory of preheating after
inflation, as we mentioned above. Although we study
particle production during inflation (as opposed to during
preheating, after inflation) there are many similarities. For
example, in the case of parametric resonant preheating due
to the oscillating inflaton background �ðtÞ, � particles are
created in successive bursts whenever �ðtÞ crosses zero
and the � particles become instantaneously massless. This
leads to huge occupation numbers of the created � fluctua-
tions. On the other hand, in the scenario described above
there is only a single burst of particle production, and the
resulting � occupation number (4) is always less than
unity.
The full dynamics of interacting scalars during preheat-

ing also includes not only bursts of particle production but
also rescattering effects where �� fluctuations (particles)
are created very quickly due to the interaction of created �
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FIG. 1 (color online). j _�j=ðMpmÞ plotted against mt for g2 ¼
0:1 (where m ¼ V;�� is the effective inflaton mass). Time t ¼ 0

corresponds to the moment when � ¼ �0 and � particles are
produced copiously. The solid red line is the lattice field theory
result taking into account the full dynamics of rescattering and
IR cascading, while the dashed blue line is the result of a mean-
field theory treatment, which ignores rescattering [11]. The
dotted-dashed black line is the inflationary trajectory in the
absence of particle creation.

1We are assuming that supersymmetry protects the inflaton
potential from radiative corrections at t ¼ t0. An explicit real-
ization of the type of coupling we are interested in, based on
global N ¼ 1 supersymmetry, has been provided in [17]. For
string theory models the reader is referred to [10,12,14].

2Below we use QFT methods to study correlators of inhomo-
geneous fluctuations �� induced by �2 inhomogeneities.
Reference [12] considers the effect induced by quantum me-
chanical fluctuations of the total particle number n�. Owing to
the relationship between �2 and n�, our calculations below
capture this effect.
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particles with the condensate�ðtÞ [16,18,19]. The diagram
for this process is illustrated in Fig. 2. The �� particles
produced by rescattering are far from equilibrium and
evolve toward an intermediate regime, which is well de-
scribed by the scaling ‘‘turbulent’’ solution. To understand
the dynamics, one needs to use lattice numerical simula-
tions of time evolution of the classical scalar fields based
on the LATTICEASY [20] or DEFROST [21] codes, designed
for this purpose. The turbulent regime of interacting scalars
was investigated in several recent works. The papers
[22,23] used numerical simulations to demonstrate the
scaling regime in the model of self-interacting classical
scalar ��4. The papers [24,25] show numerically the
scaling solution for the fully QFT treatment of the same
model, and advocate the new regime, the nonthermal fixed
point, which may be asymptotically long (before the sys-
tem evolves, if ever, to another fixed point: thermal
equilibrium).

In this paper, we will study in detail the back reaction of
� particles produced during inflation on the inflaton field,
resulting in Bremsstrahlung radiation and IR cascading of
�� fluctuations. Our results will also apply to the early
stages of rescattering in preheating after inflation (this is so
because the time scale for rescattering is short and hence
the results are insensitive to the expansion of the Universe).

II. NUMERICAL STUDY OF RESCATTERING

To study the creation of �� fluctuations by rescattering
of produced � particles off the condensate �ðtÞ in the
model (1) we have adapted the numerical DEFROST code
for the problem of a single burst of instantaneous particle
creation during inflation.3 To run the classical scalar field
simulation, we must first choose the appropriate initial
conditions. The field � on the lattice is modeled by the
random Gaussian field realized as the superposition of

planar waves �kðtÞei ~k ~x with random phases. The initial
conditions for the models �kðtÞ are chosen to emulate the
exact quantum mode functions corresponding to the physi-
cal occupation number (4) [see appendix A for more de-
tails] while ensuring that the source term for the ��
fluctuations turns on smoothly at t ¼ 0. The box size of
our 5123 simulations corresponds to a comoving scale,
which initially is 20

2� � 3 times the horizon size 1=H, while

k? ffi 60
ffiffiffi
g

p
H. We run our simulations for roughly three e-

folding from the initial moment t0 when � particles are
produced, although a single e-folding would have been
sufficient to capture the effect. We are interested in the
power spectrum of inflaton fluctuations P� ¼
k3j��j2=ð2�2Þ, and also the number density of inflaton

fluctuations n�ðkÞ ¼ �k

2 ðj� _�kj2
�2

k

þ j��kj2Þ (where we intro-

duce the notation �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V;�� þ k2

q
for the inflaton fre-

quency). For the sake of illustration we have chosen the
standard chaotic inflationary potential V ¼ m2�2=2 with
m2 ¼ 10�6Mp and �0 ¼ 3:2Mp, however, our qualitative

results will be independent of the choice of background

φ
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χ
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FIG. 2. Rescattering diagram.

FIG. 3 (color online). The power spectrum of inflaton modes
induced by rescattering (normalized to the usual vacuum fluc-
tuations) as a function of lnðk=k?Þ, plotted for three representa-
tive time steps in the evolution, showing the cascading of power
into the IR. For each time step we plot the analytical result (the
solid line) and the data points obtained using lattice field theory
simulations (diamonds). The time steps correspond to the fol-
lowing values of the scale factor: a ¼ 1:03, 1.04, 2.20 (where
a ¼ 1 at the moment when � ¼ �0). By this time the amplitude
of fluctuations is saturated due to the expansion of the Universe.
The vertical lines show the range of scales from our lattice
simulation.

3Since the production of long wavelength �� modes is so
energetically inexpensive, a major requirement for successfully
capturing this effect on the lattice is respecting energy conser-
vation to very high accuracy. In our modified version of DEFROST
energy conservation is respected with an accuracy of order 10�8,
compared to 10�3 � 10�5 obtained using previous codes. A
minimum accuracy of roughly 10�4 is required for this problem.
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inflation model4 and, in particular, are applicable to
trapped inflation. We have considered three different val-
ues of the coupling constant, g2 ¼ 0:01, 0.1, 1, although
we focus most of our attention on the case g2 ¼ 0:1.
Figure 3 shows time evolution of the rescattered inflaton
power spectrum P�ðkÞ for three different time steps, while

Fig. 4 shows the corresponding evolution of the particle
number density n�ðkÞ. In Fig. 5 we illustrate the depen-

dence of our results on the coupling constant g2.

In Fig. 3 we see clearly how multiple rescatterings lead
to a cascading of power into the IR. These rescattered
inflaton perturbations are complementary to the usual
long-wavelength inflaton modes produced by quantum
fluctuations. As long as g2 > 0:06 the rescattered power

FIG. 4 (color online). Physical occupation number nk as a
function of lnðk=k?Þ for g2 ¼ 0:1. The three curves correspond
to the same series of time steps used in Fig. 3, and demonstrate
the growing number of long-wavelength inflaton modes, which
are produced as a result of IR cascading. Because the same �
particle can undergo many rescatterings off the background
condensate �ðtÞ, the �� occupation number is larger than the
initial � particle number (for g2 ¼ 0:1 one can achieve n�ðkÞ �
30 even though initially n�ðkÞ � 1). When g2 ¼ 0:06 the IR ��

occupation number exceeds unity within a single e-folding. The
yellow envelope line shows the early onset of scaling behavior
associated with the scaling turbulent regime.

FIG. 5 (color online). The dependence of the power spectrum
P� on the coupling g2. The three curves correspond to P� for

g2 ¼ 0:01, 0.1, 1, evaluated at a fixed value of the scale factor,
a ¼ 2:20. We see that even for small values of g2 the inflaton
modes induced by rescattering constitute a significant fraction of
the usual vacuum fluctuations after only a single e-folding.
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FIG. 6. Probability density function of �� for g2 ¼ 1 at a
series of different values of the scale factor a. The dashed curve
shows a Gaussian fit at late time a ¼ 6:2.

4The choice of background inflationary potential will alter the
functional form of �ðtÞ, however, all the dynamics of rescatter-
ing occurs within a single e-folding of the moment when � ¼
�0. Hence, for any inflation model it will be a good approxi-
mation to expand �ðtÞ ¼ �0 þ vt, and our results should de-
pend only on the velocity v � _�ðt ¼ 0Þ [assuming this to be
nonzero], which is related to the Hubble scale and the observed
amplitude of the curvature perturbation. The claim of model
independence is borne out by explicit analytical calculations in
the next section. There we find that the dominant contribution to
P� from IR cascading depends sensitively only on the ratio k?=H
which, as we have shown, is determined entirely by the coupling
g2.
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spectrum outside the horizon comes to dominate over the
usual vacuum fluctuations within a single e-folding. At
much later times the IR portion of the power spectrum
remains frozen, while the UV portion is damped out by the
Hubble expansion. The effect of IR cascading on the power
spectrum is much more significant than features that are
produced by the momentary slowing down of the back-
ground �ðtÞ.5

Figure 1 illustrates the impact of rescattering on the
dynamics of the velocity of the background field. The

evolution of _�ðtÞ including rescattering is not changed
significantly (as compared to the mean-field theory result),
which show the energetic cheapness of IR cascading.

The long-wavelength inflaton fluctuations produced by
IR cascading are non-Gaussian. This is illustrated in Fig. 6
where we study the probability density function and com-
pare to a Gaussian fit.

III. ANALYTICAL THEORY OF RESCATTERING

We now develop an analytical theory of this effect. Here,
we provide only a cursory discussion, the reader is referred
to Appendices A and B for a detailed exposition and
technical details of the calculation. At leading order the
physics of rescattering (see Fig. 2) is described by the
equation

� €�þ 3H� _�� 1

a2
~r2
��þm2�� ffi �g2½�ðtÞ ��0	�2;

(5)

where we introduce the notation m2 ¼ V;�� for the effec-

tive inflaton mass (hence, we are not assuming a back-
ground potential of the form m2�2=2 in this section, only
that V;�� � 0 in the vicinity of the point � ¼ �0). The

solution of (5) consists of two components: the solution of
the homogeneous equation, which simply corresponds to
the usual vacuum fluctuations produced during inflation
and the particular solution, which is due to the source term.
We will focus our attention on this latter solution which,
physically, corresponds to rescattered inflaton perturba-
tions. Since the process of IR cascading takes less than a
single e-folding, we can safely neglect the expansion of the
Universe when studying analytically the particular solution
of (5). [In all of our lattice simulations the inflationary
expansion of the Universe is taken into account consis-
tently.] Solving for the particular solution ��k of (5) and
defining the rescattered power spectrum P� in terms of the

QFT correlation function in the usual manner we arrive at
an expression for P� in terms of the c-number mode

functions �k, which obey Eq. (3)6 The result is

P� ¼ g4 _�2
0

8�5

k3

�2
k

Z
dt0dt00t0t00 sin½�kðt� t0Þ	

� sin½�kðt� t00Þ	
Z

d3k0�k�k0 ðt0Þ�?
k�k0 ðt00Þ�k0 ðt0Þ

� �?
k0 ðt00Þ; (6)

where again we have �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
for the ��-particle

frequency.
To evaluate this power spectrum we need an expression

for the solutions of (3) in the regime of interest. Let us
choose the origin of time so that t ¼ 0 corresponds to the
moment when � ¼ �0. At the moment t ¼ 0 the parame-
ter j _!kj=!2

k is order unity or larger and !k varies non-

adiabatically. At this point �k modes are produced in the
momentum band k & k?. However, within a time�t� k�1

?

(which is tiny compared to the Hubble time H�1) the �
particles become extremely heavy and their frequency
again varies adiabatically. At times t * k�1

? we can safely

approximate !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k4?t

2
p ffi k2?t for the modes of

interest and �k takes the simple form

�kðtÞ ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk

p e�iðk?tÞ2=2

k?
ffiffiffiffiffi
2t

p � i
ffiffiffiffiffi
nk

p eþiðk?tÞ2=2

k?
ffiffiffiffiffi
2t

p ; (7)

where the occupation number was defined in (4). The
factors

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk

p
, �i

ffiffiffiffiffi
nk

p
are the Bogoliubov coefficients,

while the factors proportional to e
iðk?tÞ2=2 come from the
positive and negative frequency adiabatic mode solutions
[16]. As we see, very quickly after t ¼ 0 the � particles
become very massive and their multiple rescatterings off
the condensate �ðtÞ generates Bremsstrahlung radiation of
IR �� particles.
We have computed the full renormalized power spec-

trum analytically in closed form, and the result is presented
in Eq. (A17). This formula is used for all of our figures.
Since the exact analytical result is quite cumbersome, it is
useful to consider the following representative contribution
to (6):

P� ’ g2k3k3?

32
ffiffiffi
2

p
�5

�
1� cosð�ktÞ

�2
k

�
2
e��k2=ð2k2?Þ; (8)

which captures the properties of the full analytical solution.
In particular, the simple expression (8) nicely describes the
IR cascade. The spectrum has a peak, which initially (near
t� k�1

? ), is close to k?. As time evolves the peak moves to
smaller-and-smaller k as power builds up in the IR. From

5To avoid confusion: here we use ‘‘cascading’’ to refer to the
dynamical process of building up �� fluctuations in the IR. If
the Universe were not expanding, a scaling turbulent regime
would be established. Here, we see this scaling regime only in an
embryonic form, see the envelope in Fig. 4.

6We are only interested in connected contributions to the
correlation functions, which is equivalent to subtracting the
expectation value from the source term in (5): �2 !
�2 � h�2i. Thus, our rescattered inflaton modes are only sourced
by the variation of �2 from the mean h�2i.
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(8) we see that modes with�kt < 1 gain power as P�ðkÞ �
t4. For a given k mode the growth of the power spectrum
saturates when �kt� 1, however, the cascade still contin-
ues at some lower k. If we had m ¼ 0 then the cascade
would continue forever, otherwise formula (8) predicts that
the growth of the spectrum saturates at t�m�1 when the
peak has reached k�m. After this point the character of
the IR cascade is expected to change, however, our analytic
calculation is no longer reliable because m � H, and we
have neglected the expansion of the Universe. Notice from
Eq. (8) that the value of P�=H

2 at the peak (which is the

main observable signal) is fixed by the ratio k?=H, which
in turn depends only on the coupling g2 (there is some
dependence also on m2 ¼ V;��, however, this is subdomi-

nant since m2 � H2 for any inflation model). This obser-
vation confirms our previous claim that the dynamics of IR
cascading are largely insensitive to the choice of back-
ground inflation model.

IV. DISCUSSIONOF CURVATURE FLUCTUATIONS
FROM IR CASCADING

Any inflaton fluctuations ��, independently on their
origin, evolve qualitatively similarly during inflation.
When their physical wavelength is smaller than the
Hubble radius 1=H, �� is oscillating while their amplitude
is diluted as 1=a. As far as the wavelength exceeds the
Hubble radius, the amplitude of �� freezes out.
Fluctuations of �� induce the curvature metric fluctua-
tions. Inflationary expansion of the Universe further stretch
the wavelengths of the fluctuations frozen outside the
horizon, making them potentially of the cosmological
scales, depending on the wavelength. The inflaton fluctua-
tions produced by the IR cascading, therefore, are the
potential sources for observable curvature fluctuations.
To calculate curvature fluctuations generated by the IR
cascading, we have to solve a self-consistent system of
linearized Einstein equations for metric and the fields
fluctuations. For example, the (0, 0) linearized Einstein
equation for our model reads

�G0
0 ¼

8�

M2
p

ð�T0
0ð�Þ þ �T0

0ð�ÞÞ; (9)

where �G0
0 is the perturbed Einstein tensor and in the right-

hand side �T0
0ð�Þ corresponds to the fluctuations of the

inflaton energy density, containing familiar terms linear

with respect to ��, like _�� _�, etc. The second term
corresponds to the contribution from � particles

�T0
0ð�Þ ¼

1

2
_�2 þ 1

2
ðr�Þ2 þ 1

2
g2ð���0Þ2�2 � hT0

0ð�Þi:
(10)

Although this expression is bilinear with respect to �, it

turns out taking �T0
0ð�Þ into account is important. To begin

the investigation the Eq. (9), it is convenient to use its
Fourier transformation. While the Fourier components of
�T0

0ð�Þ contains linear terms of ��k, the Fourier transform

of �T0
0ð�Þ contains convolutions like �R

d3 ~k0 _�~k0 _�
�
~k� ~k0

,

etc. As a result, despite the fact that � particles amplitude
is peaked at k� k?, this type of convolution gives signifi-
cant contribution at small k, which are of interest for the
theory of generation of cosmological fluctuations.
Preliminary estimations based on the analytical formulas
for �k involved in the convolution, show that contribution
of �T0

0ð�Þ is at least the same order of magnitude as

�T0
0ð�Þ. Rigorous treatment of the curvature fluctuations

in our model is therefore rather complicated, and will be
leave it for separated project.
Since both terms in right-hand side in (9) are the same

order of magnitude, here for the crude estimations we will

use the simple-minded formula P� � ðH2

_�
Þ2. The curvature

fluctuations generated by the IR cascading, are illustrated
in the top panel of Fig. 7. The curvature fluctuations from
the instance of the IR cascading has the bumplike shape
within the interval of the wavelength, roughly correspond-
ing to one e-folding. They are significantly, by orders of
magnitude, dominated over the fluctuations generated by
the momentary slowing down of �ðtÞ. If we pick up the
background inflationary model to be chaotic inflation with
the standard quadratic potential, the ratio of the power
spectra from IR cascading and the standard fluctuations
estimates as PIR=Ps � 700� g4:5. Thus, depending on the
coupling g2, the IR bump can dominate (for g2 > 0:06)
over the standard fluctuations, or just contribute to them for
smaller g2.
Suppose that we have a sequence of the particles crea-

tion events at different moments t0i, i ¼ 1; 2; 3; . . . . Each
of those events generate, through IR cascading, corre-
sponding bumps in the spectrum, as illustrated in the lower
panel of Fig. 7. Depending on the density of t0i moments,
superposition of such IR bumps results in broadband con-
tribution to the curvature power spectrum.
We also estimated non-Gaussianity of �� fluctuations

from IR cascading. They are quite significant, we estimate
the non-Gaussianity parameter fNL � 2� 104g2:25. There-
fore, the non-Gaussian signal from individual bump can be
strongly non-Gaussian. In the model with multiple instan-
ces of particle creations, the broadband IR cascading fluc-
tuations dominated over the standard fluctuations,
apparently, are ruled because of the strong non-
Gaussianity. However, the broadband IR cascading fluctu-
ations can be considered as additional subdominant com-
ponent to the standard fluctuations. In this case the non-
Gaussianity of the net curvature fluctuations can be accept-
able but different from that of the standard fluctuations
alone. We leave a detailed discussion of the non-
Gaussianities produced during IR cascading (and their
observability) to future studies. Notice that this type of
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non-Gaussianity, which is localized over a narrow region
of scales, is similar to what was obtained in [26].

Another important parameter of the IR cascading fluc-
tuations is the wavelength of the bump, which depend on
the value of �0. there are interesting possibilities to con-
sider them at small CMB angular scales (small-scale non-
Gaussianity?), at scales of galaxies, at near the horizon
scales (CMB anomalies at large scales?). We leave all of
these possibilities for future discussion.

V. SUMMARYAND CONCLUSIONS

We find the following new results for interacting scalars
during inflation in the model (1).

(i) In the early stages of rescattering, when the back
reaction can be treated linearly, the spectrum of
inflaton fluctuations �� and the corresponding par-
ticle number density n�ðkÞ can be rigorously calcu-

lated with QFT with the diagram in Fig. 2. We
perform such QFT calculations and compare with
lattice simulations of the classical field dynamics.
The results are highly compatible with each other,
even well into the late time nonlinear regime. This
signals the dominance of Fig. 2 in the dynamics of
rescattering, while the analytic estimate gives a
handy fitting formula.

(ii) While the stationary scaling turbulent solution for
the scalar fields after preheating was established
previously, the way this regime appears dynamically
was not traced out in detail. For our example for the
first timewe show explicitly how this scaling regime

is seeded. In the absence of expansion of the
Universe, this embryonic scaling behavior will de-
velop into the full turbulent regime that has previ-
ously been observed, however, for our purposes
only the early stages are relevant because fluctua-
tions freeze outside of the horizon.

(iii) The most unexpected result, which is of interest
outside of the inflationary theory, is that even an
insignificant amount of out-of-equilibrium parti-
cles with n�ðkÞ � 1, being rescattered off the scalar

field condensate, can generate IR cascade of the
inhomogeneous condensate fluctuations with a
large occupation number n�ðkÞ in the IR region.

This is explained by the fact that multiple produc-
tion of the IR modes is energetically cheap.

(iv) IR fluctuations of the light fields have special sig-
nificance in the context of inflationary theory.
These fluctuations evolve in time similar to the
evolution of the usual inflationary fluctuations.
Their amplitude is oscillating, while their wave-
lengths are inside the Hubble radius and are frozen
out once their wavelengths exceed the Hubble ra-
dius H�1. However, the amplitude of IR cascading
fluctuations is different from that of the usual quan-
tum fluctuations. Frozen fluctuations ��, regard-
less of their origin, will induce cosmological
curvature fluctuations. Thus, we get a new mecha-
nism for generating frozen long-wavelength ��
fluctuations from IR cascading. Therefore, IR cas-
cading will lead to observable features in the CMB
power spectrum. For generic choices of parameters,
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FIG. 7 (color online). The top panel shows a comparison of curvature fluctuations from different effects. We see the dominance of
fluctuations produced by IR cascading over the wiggles induced by the momentary slowing down of the inflaton. For illustration we
have taken g2 ¼ 0:1, but the dominance is generic for all values of the coupling. The red solid line is the IR cascading curvature power
spectrum, while the blue dashed line is the result of a mean-field treatment. (The vertical lines show aH at the beginning of particle
production and after �3 e-foldings.) The bottom panel shows the curvature power spectrum resulting from multiple bursts of particle
production and IR cascading. Superposing a large number of these bumps produces a broadband spectrum.
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these rescattered fluctuations are much more sig-
nificant than the features induced by the momentary
slowing down of the background�ðtÞ, see the upper
panel of Fig. 7.

(v) Since the solution �� of (5) depends nonlinearly on
the Gaussian field �, the curvature fluctuations in-
duced by IR cascading will be non-Gaussian. This
non-Gaussianity is illustrated in Fig. 6. We estimate
this non-Gaussianity to be significant. However, this
non-Gaussian signal is related to the IR cascading
bump of the spectrum and peaks on the range of
scales corresponding to roughly one e-folding after
t ¼ t0. This type of non-Gaussianity, which is large
only over a small range of scales, is not well con-
strained by observation.

(vi) The strength and location of our effect is model
dependent (through g2 and �0), however, the very
fact that subtle QFT effects of interaction during
inflation may lead to an observable effect is
intriguing.

(vii) In our analysis we have focused on a single burst
of instantaneous particle production during infla-
tion. This scenario is interesting in its own right,
however, our results could also be extended in a
straightforward manner to study trapped inflation
models where there are numerous bursts of particle
production; see [12] for more detailed discussion.

(viii) Suppose we have a sequence of points �0i (i ¼
1; � � � ; N) where particles �i become massless. In
this case the curvature fluctuation profiles gener-
ated from individual bursts of IR cascading can
superpose to form a smooth spectrum of cosmo-
logical fluctuations, see the lower panel of Fig. 7.
This provides us with a new mechanism for gen-
erating long-wavelength curvature fluctuations
during inflation from IR cascading. The amplitude
and non-Gaussianity of these curvature fluctua-
tions will depend on the coupling, g2. These fluc-
tuations are interesting on their own, although
they may generate too much non-Gaussianity.
They also can be considered as an extra compo-
nent of the standard vacuum fluctuations, intro-
ducing an interesting non-Gaussian signal to the
net fluctuations.

(ix) The transfer of energy into fluctuations via succes-
sive bursts of particle production can lead to
trapped inflation. Our new mechanism of generat-
ing cosmological fluctuations from IR cascading
can, but need not, be associated with trapped
inflation.

(x) Varying the location, strength and non-Gaussianity
of the IR cascading bump, it will be interesting to
consider other potential implication to the cosmo-
logical fluctuations, e.g. their impact on the horizon
scale fluctuations or on small-scale fluctuations

where they might effect primordial black hole for-
mation or the generation of gravitational waves.

Finally, let us return to the old story of how cosmologi-
cal fluctuations are affected by phase transition during
inflation, which we discussed at the beginning of this
paper. We project that our results concerning rescattering
and IR cascading will radically change the conventional
picture.

ACKNOWLEDGMENTS

We thank J. Berges, D. Bond, A. Frolov, A. Linde, A. E.
Romano, M. Sasaki, D. Seery, and E. Silverstein for useful
discussions. N. B., L. K. and D. P. were supported by
NSERC; L.K. was also supported by CIFAR. D. P. thanks
CITA for hospitality under the CITA Senior Visitors
Program.

APPENDIX A: ANALYTICAL THEORY OF
RESCATTERING

In this appendix we develop an analytical theory of
rescattering, which is in good agreement with the result
of fully nonlinear lattice field theory simulations. As usual
we split the inflaton field into a classical homogeneous
component and quantum inhomogeneities as �ðt;xÞ ¼
�ðtÞ þ ��ðt;xÞ such that h�ðt;xÞi ¼ �ðtÞ, and we further
suppose that h�ðt;xÞi ¼ 0. Since IR cascading occurs
within a single e-folding we can safely neglect the expan-
sion of the Universe. However, there is no obstruction to
consistently including this effect [27].
At leading order the physics of rescattering is described

by Eq. (5), which corresponds to the diagram in Fig. 2.
There is a correction to (5) corresponding to a diagram
where two �� particles interact with two � particles,
however, this effect is subleading [16]. It is understood
that one must subtract from (5) the expectation value of the
right-hand side in order to consistently define the quantum
operators �� such that h��i ¼ h�i ¼ 0. Subtracting
off this expectation value is equivalent to only considering
connected diagrams when we compute correlation
functions.

1. Production of � particles

To solve Eq. (5) we first require explicit expressions for
the background field�ðtÞ and the wavefunction �ðt;xÞ. Let
us choose the origin of time so that � ¼ �0 at t ¼ 0. Near

the moment of particle production we can expand �ðtÞ �
�0 ffi _�0t. The interaction term in (1) induces induces a
mass for the � field

m2
� ¼ g2½�ðtÞ ��0	2 ffi g2 _�2t2 � k4?t

2; (A1)

which vanishes at t ¼ 0. At this moment particles will be
copiously produced by quantum effects.
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The mode functions �kðtÞ obey the following equation:

€� kðtÞ þ!2
kðtÞ�kðtÞ ¼ 0; (A2)

where the time-dependent frequency is

!kðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2?ðk?tÞ2

q
: (A3)

The theory of Eq. (A2) is well studied in the literature
[10,16]. As long as the frequency (A3) varies adiabatically
j _!kj=!2

k � 1 the modes of � will not be excited and are

well described by the adiabatic solution �kðtÞ ¼ fkðtÞ,
where we have defined

fkðtÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2!kðtÞ

p exp

�
�i

Z t
dt0!kðt0Þ

�
: (A4)

However, very close to t ¼ 0, roughly within the interval
�k�1

? < t <þk�1
? , the parameter j _!kj=!2

k can become

order unity or larger for low momenta k & k?, and �k

modes within this band will be produced. The general
solution of (A2) can be written in terms of the adiabatic
modes (A4) and the time-dependent Bogoliubov coeffi-
cients as

�kðtÞ ¼ �kðtÞfkðtÞ þ �kðtÞfkðtÞ?; (A5)

where the Bogoliubov coefficients obey a set of coupled
ordinary differential equations with initial conditions
j�kð0�Þj ¼ 1, �kð0�Þ ¼ 0. Near t ¼ 0 the adiabaticity
condition is violated, and �k grows rapidly away from
zero as a steplike function. Very shortly after this burst of
particle production the frequency again varies adiabatically
and �k, �k become constant, taking the following values
[16]:

�kðt > 0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk

p
; (A6)

�kðt > 0Þ ¼ ffiffiffiffiffi
nk

p
ei�k ; (A7)

where the physical occupation number is defined by (4).
The phase �k has been computed analytically in [15] and
depends nontrivially on k. However, since most of the
particle production occurs for momenta k & k? it is an
excellent approximation to use the simple result ei�k ffi �i.
(We have verified that changing the relative phase will at
most alter factors order unity in the final results.)

We are now in a position to write out the solution for the
�k modes in the outgoing adiabatic regime t * k�1

? . Since
most of our interest is in IR modes with k & k?, it is a good
approximation to expand the frequency (A3) as !kðtÞ ffi
k?ðk?tÞ. Using the Eqs. (A6) and (A7) we can write the
solution (A5) in the region of interest as

�kðtÞ ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk

p e�iðk?tÞ2=2

k?
ffiffiffiffiffi
2t

p � i
ffiffiffiffiffi
nk

p eþiðk?tÞ2=2

k?
ffiffiffiffiffi
2t

p : (A8)

2. Equations for rescattering

Having reviewed the solutions for�ðtÞ and�kðtÞwe now
turn our attention to solving (5). Let us first briefly discuss
our conventions for Fourier transforms and mode func-
tions. We write the q-number valued Fourier transform of
� as

�ðt;xÞ ¼
Z d3k0

ð2�Þ3=2 e
ik�x	�

kðtÞ: (A9)

Because � is Gaussian we can expand 	�
k into c-number

mode functions �k (discussed above) and annihilation/

creation operators ak, a
y
k as

	�
kðtÞ ¼ ak�kðtÞ þ ay�k�

?
k ðtÞ: (A10)

In the theory of preheating/moduli trapping without rescat-
tering the distinction between q-number Fourier transform
and c-number mode functions is not important because
both obey the same equation of motion [Eq. (A2) in the
case at hand]. However, once rescattering is taken into
account this distinction is crucial. To see why, note that
the solution �� of Eq. (5) will not be Gaussian and hence
will not admit an expansion of the form (A10).
Finally, we return to the equation for rescattering,

Eq. (5). We can solve for the q-number Fourier transform
of �� [defined analogously to (A9)] using the retarded
Green function

	�
k ðtÞ ¼

g2 _�

ð2�Þ3=2
1

�k

Z t

0
dt0t0 sin½�kðt� t0Þ	

�
Z

d3k0	�
k�k0 ðt0Þ	�

k0 ðt0Þ; (A11)

where we have introduced the notations �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
for the ��-particle frequency and m2 ¼ V;�� for the ef-

fective �� mass. Carefully carrying out the Wick contrac-
tions yields

h	�
k1
ðtÞ	�

k2
ðtÞi ¼ 2g4 _�2

ð2�Þ3
1

�2
k1

�ð3Þðk1 þ k2Þ
Z

dt0dt00t0t00

� sin½�k1ðt� t0Þ	 sin½�k1ðt� t00Þ	
�

Z
d3k0�k1�k0 ðt0Þ�?

k1�k0 ðt00Þ�k0 ðt0Þ�?
k0 ðt00Þ;
(A12)

where the �-particle mode functions �k are defined by
(A10). Defining the power spectrum in terms of the two-
point function in the usual manner

h0j	�
k ðtÞ	�

k0 ðtÞj0i � �ð3Þðkþ k0Þ 2�
2

k3
P�; (A13)

we can extract the power in rescattered � modes.
Alternatively, one could compute the power spectrum of

rescattered inflaton modes using the Schwinger’s ‘‘in-in’’
formalism [28], which was implemented to compute cos-
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mological perturbations by Weinberg in [29]. We have
verified that the tree level contribution to P� obtained

using this formalism reproduces our result (A12). Our
approach is analogous to computing the cosmological
perturbation from the field equations using the Seery
et al. approach [30]. The consistency of this method with
the in-in approach at tree level is in accordance with the
general theorem of [31].

3. Renormalization

To compute the spectrum of rescattered �� particles we
simply need to insert the solution (A8) into (A12) and
evaluate the integrals. However, there is one subtlety. The
resulting power spectrum is formally infinite; moreover, it
contains the effect of both particle production as well as
vacuum fluctuations of the � field. We are only interested
in the rescattered ��, which are due to particle production;
thus, we need to subtract off the contribution due to non-
linear �� production by � vacuum fluctuations.

To properly define the two-point function of ��we need
to renormalize the four-point function of the Gaussian field
�. As a warmup, let us first consider how to renormalize
the two-point function of the Gaussian field �. We use the

following scheme:

h	�
k1
ðt1Þ	�

k2
ðt2Þiren ¼ h	�

k1
ðt1Þ	�

k2
ðt2Þi � h	�

k1
ðt1Þ	�

k2
ðt2Þiin;
(A14)

where h	�
k1
ðt1Þ	�

k2
ðt2Þiin is the contribution in the absence of

particle production, computed by simply taking the solu-
tion (A5) with �k ¼ 1, �k ¼ 0. More explicitly, for the
case at hand, we have

h�2ðt;xÞiren ¼
Z d3k

ð2�Þ3
�
j�2

kðtÞj �
1

2!kðtÞ
�

� h�2ðt;xÞi � �M; (A15)

where �M is the contribution from the Coleman-Weinberg
potential. This proves that our prescription reproduces the
one used in [10].
Having established a scheme for remormalizing the two-

point function of the Gaussian field � it is straightforward
to consider higher order correlation functions. We simply
rewrite the four-point function as a product of two-point
functions using Wick’s theorem. Then each Wick contrac-
tion is renormalized as above. Applying this prescription to
(A12) amounts to

h	�
k1
ðtÞ	�

k2
ðtÞiren ¼ 2g4 _�2

ð2�Þ3
1

�2
k1

�ð3Þðk1 þ k2Þ
Z

dt0dt00t0t00 sin½�k1ðt� t0Þ	 sin½�k1ðt� t00Þ	

�
Z

d3k0½�k1�k0 ðt0Þ�?
k1�k0 ðt00Þ � fk1�k0 ðt0Þf?k1�k0 ðt00Þ	½�k0 ðt0Þ�?

k0 ðt00Þ � fk0 ðt0Þf?k0 ðt00Þ	; (A16)

where fkðtÞ are the adiabatic modes defined in (A4).

4. Spectrum of rescattered modes

Let us now proceed to compute analytically the renormalized spectrum P� of rescattered inflaton modes by inserting the

solutions (A4) and (A8) into (A16) and carrying out the integrations. The computation is tedious but straightforward since
the time and phase space integrals factorize. We have relegated the technical details to Appendix B and here we simply
state the final result:

P� ¼ g2

16�5

k3k?
k2 þm2

�
e��k2=ð2k2?Þ

2
ffiffiffi
2

p
�
�

4
jFj2 þ k2?

�2
k

½1� cosð�ktÞ	2
�
þ

�
e��k2=ð4k2?Þ þ 1

2
ffiffiffi
2

p e�3�k2=ð8k2?Þ
�

�
�
��

4
Re½e2i�kt�i�2

k
=ð2k2?Þ�i�=2F	 þ k2?

�2
k

½1� cosð�ktÞ	2
�
þ

�
4

ffiffiffi
2

p

3
ffiffiffi
3

p e��k2=ð3k2?Þ þ 2
ffiffiffi
2

p

5
ffiffiffi
5

p e�3�k2=ð5k2?Þ
� ffiffiffiffi

�
p

k?
�k

� ½1� cosð�ktÞ	Im½ei�kt�i�2
k
=ð4k2?Þ�i�=4F	

�
: (A17)

Equation (A17) is the main result of this appendix. The ‘‘form factor’’ Fðk; tÞ is given explicitly in Appendix B.

APPENDIX B: DETAILED COMPUTATION OF P�

In this appendix we discuss in some detail the technical details associated with the computation of P�. Inserting the

solutions (A4) and (A8) into (A16), we find the result
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P� ¼ g2

8�5

k3

k2 þm2

�Z
d3k0nk�k0nk0

Z
dt0dt00 sin½�kðt� t0Þ	 sin½�kðt� t00Þ	cos2

�ðk?t0Þ2
2

� ðk?t00Þ2
2

�

þ
Z

d3k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk�k0nk0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk�k0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk0

p Z
dt0dt00 sin½�kðt� t0Þ	 sin½�kðt� t00Þ	sin2

�ðk?t0Þ2
2

þ ðk?t00Þ2
2

�

þ
Z

d3k0½nk�k0
ffiffiffiffiffiffi
nk0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk0

p þ nk0
ffiffiffiffiffiffiffiffiffiffiffi
nk�k0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk�k0

p 	
Z

dt0dt00 sin½�kðt� t0Þ	 sin½�kðt� t00Þ	

� sin

�ðk?t0Þ2
2

þ ðk?t00Þ2
2

�
cos

�ðk?t0Þ2
2

� ðk?t00Þ2
2

��
: (B1)

We consider the time and phase space integrations
separately.

1. Time integrals

All the time integrals appearing in (B1) can be written in
terms of two functions, which we call I1, I2. These involves
are defined as

I1ðk; tÞ ¼
Z t

0
dt0 sin½�kðt� t0Þ	eiðk?t0Þ2 ; (B2)

I2ðk; tÞ ¼
Z t

0
dt0 sin½�kðt� t0Þ	: (B3)

First consider I1. It is useful to factorize the answer into the
product of the stationary phase result (valid for k?t 

�k=ð2k?Þ 
 1) and a ‘‘form factor’’ Fðk; tÞ as follows:

I1ðk; tÞ ¼
ffiffiffiffi
�

p
2k?

ei�kt�i�2
k
=ð4k2?Þ�i�=4Fðk; tÞ; (B4)

Fðk; tÞ ¼ 1

2

�
ð1þ e�2i�ktÞerf

�
e�i�=4

2

�k

k?

�

� erf

�
e�i�=4

2

�
�k

k?
� 2k?t

��

� e�2i�kterf

�
e�i�=4

2

�
�k

k?
þ 2k?t

���
: (B5)

The form factor Fðk; tÞ has a complicated structure. We
have illustrated the qualitative behavior of this function in
Fig. 8 taking �k=k? ¼ 5 for illustration.

Next, consider the characteristic integral I2, Eq. (B6).
This integration is trivial:

I2ðk; tÞ ¼ 1

�k

½1� cosð�ktÞ	: (B6)

Nowwewill show that all the time integrals appearing in
(B1) can be reduced to combinations of the characteristic
functions I1 and I2. First, consider the first line of (B1)
where the following integral appears:

Z
dt0dt00 sin½�kðt� t0Þ	 sin½�kðt� t00Þ	

� cos2
�ðk?t0Þ2

2
� ðk?t00Þ2

2

�
¼ jI1ðk; tÞj2

2
þ I2ðk; tÞ2

2

¼ �

8k2?
jFðk; tÞj2 þ 1

2�2
k

½1� cosð�ktÞ	2: (B7)

Next, consider the time integration on the second line of
(B1)

Z
dt0dt00 sin½�kðt� t0Þ	 sin½�kðt� t00Þ	

� sin2
�ðk?t0Þ2

2
þ ðk?t00Þ2

2

�
¼ �Re½I1ðk; tÞ2	

2
þ I2ðk; tÞ2

2

¼ � �

8k2?
Re½e2i�kt�i�2

k
=ð2k2?Þ�i�=2Fðk; tÞ2	

þ 1

2�2
k

½1� cosð�ktÞ	2: (B8)

FIG. 8 (color online). The behavior of the function Fðk; tÞ as a
function of t. For illustration we have set �k ¼ 5k?.
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Finally, we consider the time integration on the third line
of (B1)

Z
dt0dt00 sin½�kðt� t0Þ	 sin½�kðt� t00Þ	

� sin

�ðk?t0Þ2
2

þ ðk?t00Þ2
2

�
cos

�ðk?t0Þ2
2

� ðk?t00Þ2
2

�

¼ Im½I1ðk; tÞI2ðk; tÞ	 ¼
ffiffiffiffi
�

p
2k?�k

½1� cosð�ktÞ	

� Im½ei�kt�i�2
k
=ð4k2?Þ�i�=4Fðk; tÞ	: (B9)

2. Phase space integrals

Throughout the calculation integrals of the following
form appears frequently:

Z
d3k0nak�k0n

b
k0 ¼

Z
d3k0 exp½�a�jk� k0j2=k2?	

� exp½�b�jk0j2=k2?	

¼ k3?

ðaþ bÞ3=2 exp

�
� ab

aþ b

�k2

k2?

�
:

(B10)

This formula is valid when a, b are positive real numbers.
Notice that this expression is symmetric under interchange
of a and b.

The phase space integral in the first line of (B1) is
computed by a trivial application of the identity (B10)

Z
d3k0nk�k0nk0 ¼ k3?

2
ffiffiffi
2

p e��k2=ð2k2?Þ: (B11)

The remaining integrals cannot be obtained exactly in
closed form because they contain terms like

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk0

p
where the Gaussian factors appear under the square root.
However, because nk � 1 it turns out to be a very good
approximation to replace

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk0

p ffi 1þ nk0=2. (We have
checked numerically that the error induced is less than a
few percent.) Let us now proceed in this manner. The phase
space integral on the second line of (B1) is

Z
d3k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk�k0nk0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk�k0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk0

p

ffi
Z

d3k0
�
n1=2
k�k0n

1=2
k0 þ 1

2
n3=2
k�k0n

1=2
k0 þ 1

2
n1=2
k�k0n

3=2
k0

�

¼ k3?

�
exp

�
��k2

4k2?

�
þ 1

2
ffiffiffi
2

p exp

�
� 3�k2

8k2?

��
: (B12)

Finally, consider the phase space integral on the third
line of (B1)

Z
d3k0½nk�k0

ffiffiffiffiffiffi
nk0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nk0

p þnk0
ffiffiffiffiffiffiffiffiffiffiffi
nk�k0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þnk�k0

p 	

ffi
Z

d3k0½nk�k0n
1=2
k0 þnk0n

1=2
k�k0 þ

1

2
nk�k0n

3=2
k0 þ 1

2
nk0n

3=2
k�k0

�

¼ k3?

�
4

ffiffiffi
2

p

3
ffiffiffi
3

p exp

�
��k2

3k2?

�
þ 2

ffiffiffi
2

p

5
ffiffiffi
5

p exp

�
�3�k2

5k2?

��
: (B13)

Assembling the various results presented in this appen-
dix one arrives straightforwardly at the result (A17).

[1] V. F. Mukhanov and G.V. Chibisov, Pis’ma Zh. Eksp.
Teor. Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)];
S.W. Hawking, Phys. Lett. 115B, 295 (1982); A. A.
Starobinsky, Phys. Lett. 117B, 175 (1982); A.H. Guth
and S.Y. Pi, Phys. Rev. Lett. 49, 1110 (1982); J.M.
Bardeen, P. J. Steinhardt, and M. S. Turner, Phys. Rev. D
28, 679 (1983).

[2] L. Kofman, arXiv:astro-ph/0303614; F. Bernardeau, L.
Kofman, and J. P. Uzan, Phys. Rev. D 70, 083004 (2004).

[3] G. Dvali, A. Gruzinov, and M. Zaldarriaga, Phys. Rev. D
69, 023505 (2004); 69, 083505 (2004).

[4] D. H. Lyth and D. Wands, Phys. Lett. B 524, 5 (2002).
[5] L. A. Kofman and A.D. Linde, Nucl. Phys. B282, 555

(1987).
[6] L. A. Kofman and D.Y. Pogosian, Phys. Lett. B 214, 508

(1988).
[7] D. S. Salopek, J. R. Bond, and J.M. Bardeen, Phys. Rev. D

40, 1753 (1989).
[8] N. Barnaby and J.M. Cline, Phys. Rev. D 73, 106012

(2006); 75, 086004 (2007).

[9] D. J. H. Chung, E.W. Kolb, A. Riotto, and I. I. Tkachev,
Phys. Rev. D 62, 043508 (2000).

[10] L. Kofman, A. Linde, X. Liu, A. Maloney, L. McAllister,
and E. Silverstein, J. High Energy Phys. 05 (2004) 030.

[11] A. E. Romano and M. Sasaki, Phys. Rev. D 78, 103522
(2008).

[12] D. Green, B. Horn, L. Senatore, and E. Silverstein,
arXiv:0902.1006.

[13] L. A. Kofman and A.D. Linde, Trapped Inflation (unpub-
lished).

[14] E. Silverstein and A. Westphal, Phys. Rev. D 78, 106003
(2008).

[15] L. Kofman, A. D. Linde, and A.A. Starobinsky, Phys. Rev.
Lett. 73, 3195 (1994).

[16] L. Kofman, A. D. Linde, and A.A. Starobinsky, Phys. Rev.
D 56, 3258 (1997).

[17] A. Berera and T.W. Kephart, Phys. Lett. B 456, 135
(1999).

[18] S. Khlebnikov and I. I. Tkachev, Phys. Rev. Lett. 77, 219
(1996); 79, 1607 (1997); Phys. Rev. D 56, 653 (1997).

BARNABY, HUANG, KOFMAN, AND POGOSYAN PHYSICAL REVIEW D 80, 043501 (2009)

043501-12



[19] G. N. Felder and L. Kofman, Phys. Rev. D 63, 103503
(2001).

[20] G. N. Felder and I. Tkachev, Comput. Phys. Commun.
178, 929 (2008).

[21] A. V. Frolov, J. Cosmol. Astropart. Phys. 11 (2008) 009.
[22] R. Micha and I. I. Tkachev, Phys. Rev. Lett. 90, 121301

(2003).
[23] R. Micha and I. I. Tkachev, Phys. Rev. D 70, 043538

(2004).
[24] J. Berges, A. Rothkopf, and J. Schmidt, Phys. Rev. Lett.

101, 041603 (2008).

[25] J. Berges and G. Hoffmeister, Nucl. Phys. B813, 383
(2009).

[26] J. R. Bond, A.V. Frolov, Z. Huang, and L. Kofman,
arXiv:0903.3407.

[27] N. Barnaby (unpublished).
[28] J. Schwinger, Proc. Natl. Acad. Sci. U.S.A. 46, 1401

(1960).
[29] S. Weinberg, Phys. Rev. D 72, 043514 (2005).
[30] D. Seery, K. A. Malik, and D.H. Lyth, J. Cosmol.

Astropart. Phys. 03 (2008) 014.
[31] S. Weinberg, Phys. Rev. D 78, 063534 (2008).

COSMOLOGICAL FLUCTUATIONS FROM INFRARED . . . PHYSICAL REVIEW D 80, 043501 (2009)

043501-13


