
Phase space of generalized Gauss-Bonnet dark energy

M. Alimohammadi* and A. Ghalee†

Department of Physics, University of Tehran, North Karegar Avenue, Tehran, Iran
(Received 20 June 2009; published 25 August 2009)

The generalized Gauss-Bonnet theory, introduced by Lagrangian FðR;GÞ, has been considered as a

general modified gravity for explanation of the dark energy. G is the Gauss-Bonnet invariant. For this

model, we seek the situations under which the late-time behavior of the theory is the de Sitter space-time.

This is done by studying the two-dimensional phase space of this theory, i.e. the R-H plane. By obtaining

the conditions under which the de Sitter space-time is the stable attractor of this theory, several aspects of

this problem have been investigated. It has been shown that there exist at least two classes of stable

attractors: the singularities of the FðR;GÞ, and the cases in which the model has a critical curve, instead of

critical points. This curve is R ¼ 12H2 in R-H plane. Several examples, including their numerical

calculations, have been discussed.
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I. INTRODUCTION

Based on various observations, it is believed that our
Universe is now in an accelerating phase [1]. Although the
origin of this accelerated expansion is not yet known,
almost all data indicate that nearly 70% of the present
Universe is composed of dark energy, the physical object
that induces the negative pressure.

There are two main classes of models that have been
introduced as candidates of dark energy. The first class is
based on the Einstein cosmology but with extra physical
object as the source of dark energy. The scalar field (one-
component or multicomponents) models [2], the scalar-
tensor theories [3] and the k-essence models [4] are ex-
amples in this context.

The second class of the models is based on the assump-
tion that the gravity is being (nowadays) modified. The
simplest one is obtained by adding a cosmological constant
term to Einstein action. This model suffers two important
problems known as cosmological constant and coincidence
problems [5]. Also, the cosmological constant model is a
static model of dark energy and has not any dynamical
behavior. The other modified gravity models are those that
are based on the new actions.

The first family of these modified gravity theories are
those known as fðRÞ gravity, with the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
fðRÞ þLm

�
: (1)

In @ ¼ c ¼ G ¼ 1 units, �2 ¼ 8�, R is the Ricci scalar
andLm is the Lagrangian density of dust-like matter. Many
features of fðRÞ gravity models, such as local gravity tests,
have been studied [6].

Another well motivated curvature invariant, beyond the
Ricci scalar, is the Gauss-Bonnet (GB) term

G ¼ R2 � 4R��R
�� þ R����R

����; (2)

which is inspired by string theory [7] and is a topological
invariant in four dimensions. The second family of modi-
fied gravity theories is known as fðGÞ gravity and is
defined through

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
Rþ fðGÞ þLm

�
: (3)

This model has gained special interest in cosmology [8],
and its coupling to scalar fields, as it naturally appears in
low-energy string effective actions [7], can introduce extra
dynamics to this model. Other aspects of modified GB
gravity, such as the possibility of describing the inflation-
ary era, transition from the deceleration phase to the ac-
celeration phase, crossing the phantom divide line, and
passing the solar system test have been discussed in [9].
The natural generalization of action (3) is the general-

ized Gauss-Bonnet dark energy, which have been intro-
duced in [7,10]:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½FðR;GÞ þLm�: (4)

Clearly the fðRÞ gravity and fðGÞ gravity are special
examples of modified FðR;GÞ gravity. The hierarchy prob-
lem of particle physics and the late-time cosmology have
been studied in FðR;GÞ models [11]. Recently, the behav-
ior of these models in phantom-divide-line crossing and
deceleration to acceleration transition, including the con-
tribution of quantum effects to those phenomena, have
been studied in [12]. It has been shown that the quantum
effects can induce these transitions, when they are classi-
cally forbidden.
One of the important characteristics of all dynamical

systems, including the dynamical models of dark energy, is
their late-time behaviors, studied in a framework known as
the attractor solution of dynamical systems, which has
been deeply investigated in mathematics. For dark energy
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models, the attractor solutions of scalar theories and some
of the modified gravity theories have been studied in [13–
15].

The main step in studying the attractor solution of a
dynamical system is considering a set of suitable dynami-
cal variables x1ðtÞ; . . . ; xnðtÞ, such that their first time de-
rivatives dxi=dt do not depend explicitly on time:

dx1
dt

¼ F1ðx1; . . . ; xnÞ;

..

.

dxn
dt

¼ Fnðx1; . . . ; xnÞ:

(5)

The space constructed by variables x1; . . . ; xn is called the
phase space of the system and the system of equations (5)
is said to be autonomous. The functions x1ðtÞ; . . . ; xnðtÞ
define a path in the phase space, and there is a unique
path that passes any specific initial values x1ðt0Þ ¼
x1;0; . . . ; xnðt0Þ ¼ xn;0, i.e. the paths do not intersect one

another. The only exception to this statement occur at
points (x1;c; . . . ; xn;c), where

F1ðx1;c; . . . ; xn;cÞ ¼ 0; . . . ; Fnðx1;c; . . . ; xn;cÞ ¼ 0: (6)

These points are called critical points, and any paths near
these points, under specific conditions, will lead them at
t ! 1. In these cases, the critical points are called the
stable attractors.

The present paper is devoted to the study of the phase
space and attractor solutions of generalized Gauss-Bonnet
dark energy models. We will consider the R-H space (R is
the Ricci scalar and H is the Hubble parameter) as the

phase space of these models and show that in the special
case of FðR;GÞ ¼ fðRÞ, the results of [16], in which some
features of phase space of fðRÞ have been studied, are
reproduced. The choice of this phase space, which is the
only possible choice in the general FðR;GÞ model, has an
important property. Since the attractor solutions are those
that asymptotically lead to _R ¼ 0 and _H ¼ 0, or R ¼ Rc

and H ¼ Hc (Rc and Hc are some constant values), our
phase-space study is in fact the study of possible de Sitter
solutions of modified generalized GB gravity. The scheme
of the paper is as follows:
In Sec. II, the set of autonomous equations of FðR;GÞ

models is obtained, and the condition of the existence of
stable attractors is discussed. Some specific examples of
FðR;GÞ models that admit the stable attractors are inves-
tigated in Sec. III, and it is shown that the numerical studies
confirm our results. Section IV is devoted to the cases
where the standard linear approximation method, used in
obtaining the stability behavior of solutions, does not work.
In Sec. V, it is shown that the singular points of the
Lagrangian are always the stable attractors, and finally in
Sec. VI, the interesting cases where the critical points
replaced by critical curves are studied. It is shown that
all these critical curves always behave as stable attractor
curves. We end the paper with a conclusion in Sec. VII.

II. CRITICAL POINTS OF FðR;GÞ GRAVITY

Consider the generalized GB dark energy model with
action (4). Variation of this action with respect to the
metric g�� results in [11]

1
2g

��FðR;GÞ � 2FGðR;GÞRR�� þ 4FGðR;GÞR�
�R

�� � 2FGðR;GÞR����R�
��� � 4FGðR;GÞR����R��

þ 2ðr�r�FGðR;GÞÞR� 2g��ðr2FGðR;GÞÞR� 4ðr�r�FGðR;GÞÞR�� � 4ðr�r�FGðR;GÞÞR��

þ 4ðr2FGðR;GÞÞR�� þ 4g��ðr�r�FGðR;GÞÞR�� � 4ðr�r�FGðR;GÞÞR���� � FRðR;GÞR�� þr�r�FRðR;GÞ
� g��r2FRðR;GÞ ¼ 0: (7)

Here, for simplicity, we do not consider the background
matter field, i.e.Lm ¼ 0. In Eq. (7), FR and FG are defined
as follows:

FRðR;GÞ ¼ @FðR;GÞ
@R

; FGðR;GÞ ¼ @FðR;GÞ
@G

: (8)

For the background metric, we consider, as usual, the
spatially flat Friedmann-Robertson-Walker metric in co-
moving coordinates ðt; x; y; zÞ as follows:

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; (9)

in which aðtÞ is the scale factor. The ðt; tÞ-component of the
evolution equation (7) then becomes

� 6H2FRðR;GÞ ¼ FðR;GÞ � RFRðR;GÞ þ 6H _FRðR;GÞ
þ 24H3 _FGðR;GÞ �GFGðR;GÞ:

(10)

H ¼ _aðtÞ=aðtÞ is the Hubble parameter. For this metric, the
Ricci scalar R and the Gauss-Bonnet invariant G are

R ¼ 6ð _H þ 2H2Þ; (11)

and

G ¼ 24H2ð _H þH2Þ; (12)

respectively. The Eqs. (10)–(12) are the Friedmann equa-
tions of FðR;GÞ gravity. The sum of ði; iÞ components of
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Eq. (7) is obtained by using the time derivative of Eq. (10)
and Eqs. (11) and (12).

From Eq. (11), one has

_H ¼ R

6
� 2H2; (13)

which can be used to express G from Eq. (12) as follows:

G ¼ 4H2ðR� 6H2Þ; (14)

from which

_G ¼ 4

3
HR2 þ 192H5 � 32RH3 þ 4H2 _R: (15)

Using

d

dt
fðR;GÞ ¼ fR _Rþ fG _G; (16)

and Eq. (15), _R can be extracted from Eq. (10) as follows:

_R ¼ ðR� 6H2ÞFR þGFG � F� 288H2ðR=6� 2H2Þ2ðFRG þ 4H2FGGÞ
6HðFRR þ 8H2FRG þ 16H4FGGÞ

; (17)

_H ¼ R

6
� 2H2; (18)

where the second equation is the same as Eq. (13). The set
of the above equations are the autonomous equations of
FðR;GÞ gravity. The phase space of this problem is the
two-dimensional (R-H) space. In the right-hand side of
Eq. (17), the expression (14) must be used for the Gauss-
Bonnet invariant G. Therefore, the above equations are in
the form

_H ¼ f1ðR;HÞ; _R ¼ f2ðR;HÞ: (19)

The critical points are found by setting Eqs. (17) and (18)
equal to zero. The result is

1
2RFR þGFG � F ¼ 0; (20)

R ¼ 12H2: (21)

Equation (14) also results in

G ¼ 24H4 ¼ R2

6
(22)

at critical points. In obtaining Eq. (20), it is assumed that
the denominator of Eq. (17) has finite value at critical
points. We will return to this assumption in Sec. V. Note
that in Eq. (20) Gmust be replaced by Eq. (22). In the case
of fðRÞ gravity, i.e. FðR;GÞ ¼ fðRÞ=2�2, Eqs. (17)–(21)
are reduced to the corresponding relations in Ref. [15].

Since the effective equation of state parameter is defined
through

!eff ¼ p

�
¼ �1� 2

3

_H

H2
; (23)

at critical points where _H ¼ 0, one has

!eff ! !c ¼ �1; (24)

which is a characteristic of de Sitter space-time.
To study the stability of each critical point, one must

evaluate the eigenvalues of matrix

M ¼ @f1=@H @f1=@R
@f2=@H @f2=@R

� �
R¼Rc;H¼Hc

: (25)

Rc and Hc denote the values of R and H at the considered
critical point. The critical point is a stable attractor only
when the real parts of all the eigenvalues of matrix M are
negative. For negative real eigenvalues, the stable critical
point is called a node, and for complex eigenvalues with
negative real parts, the stable attractor is called a spiral.
For autonomous Eqs. (17) and (18), the matrix M be-

comes

M ¼ �4H 1=6
�2FR=A H

� �
R¼Rc;H¼Hc

; (26)

where

A ¼ FRR þ 8H2FRG þ 16H4FGG: (27)

Therefore, the eigenvalues are

	1;2 ¼ 1

2

�
�3H �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3HÞ2 � 4

�
FR

3A
� 4H2

�s �
R¼Rc;H¼Hc

:

(28)

It is clear that the real part of eigenvalues 	1 and 	2 are
negative, if and only if


 ¼ FR

3A
� 4H2jR¼Rc;H¼Hc

> 0: (29)

This is the condition of stability of the attractors of FðR;GÞ
gravity. The attractors are node if ð3HcÞ2 > 4
 and are
spiral if ð3HcÞ2 < 4
.
An interesting observation is that for R-independent

Lagrangian

FðR;GÞ ¼ FðGÞ; (30)


 ¼ �4H2
c < 0 and therefore 	1 > 0. So all the critical

points of these models are unstable.
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III. SOME EXAMPLES OF STABLE ATTRACTORS

In this section we will discuss two classes of FðR;GÞ
models that lead to stable attractors.

A. FðR;GÞ ¼ FðRGÞ models

For these models, Eq. (20) results in

3
2 xF

0ðxÞ � FðxÞ ¼ 0; (31)

where x ¼ RG and F0ðxÞ ¼ d
dx FðxÞ. This relation deter-

mines the critical values x ¼ xc. The stability condition
(29) leads to

F0ðxÞ
9xF00ðxÞ þ 4F0ðxÞ � 1> 0 (32)

at x ¼ xc. For FðxÞ ¼ xn cases, it can be shown that
Eq. (31) does not have a nontrivial solution, except for a
very special case, which wewill discuss it later. For FðxÞ ¼
xn � c, where c is a positive constant, Eqs. (31) and (32)
result in

xc ¼
�

c

1� 3n=2

�
1=n

; (33)

and

10
18 < n< 12

18; (34)

respectively. As an explicit example, we consider n ¼
11=18 and c ¼ 1:

FðRGÞ ¼ ðRGÞ11=18 � 1: (35)

Equation (33) then results in

xc ¼ RcGc ¼ R3
c

6
¼ ð12Þ18=11: (36)

So

ðRc;HcÞ ¼ ð7:047; 0:766Þ: (37)

Numerical calculation of Eqs. (10)–(12) results in Figs. 1–
4 for phase space, RðtÞ, HðtÞ, and !ðtÞ behaviors, respec-
tively. These figures show that point (37) is a stable attrac-
tor of spiral type.

B. FðR;GÞ ¼ RþGfðRÞ models

For this functional form of FðR;GÞ, the critical point
equation (20), using Eq. (22), results in

R2f0ðRÞ ¼ 6: (38)

0.70 0.75 0.80 0.85
H

6.6

6.8

7.0

7.2

7.4

R

FIG. 1 (color online). The spiral paths in R-H plane of the
FðR;GÞ ¼ ðRGÞ11=18 � 1 model.

2 4 6 8 10
t

0.764

0.766

0.768

0.770
H

FIG. 2 (color online). The plot of HðtÞ of the FðR;GÞ ¼
ðRGÞ11=18 � 1 model.
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7.10

7.15

7.20
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FIG. 3 (color online). The plot of RðtÞ of the FðR;GÞ ¼
ðRGÞ11=18 � 1 model.
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This equation specifies Rc. The stability condition (29)
reduces to

1

R3f00ðRÞ=12þ 2
> 1; (39)

which must be calculated at R ¼ Rc. For example, for
fðRÞ ¼ mRn functions, wherem and n are some constants,
Eqs. (38) and (39) result in

Rc ¼
�
6

mn

�
1=ðnþ1Þ

; (40)

and

� 3< n<�1; (41)

respectively. Since n is a negative number, m must be
chosen negative so that Rc in (40) becomes a real positive
number. As a specific example, we consider m ¼ �1 and
n ¼ �2, or

FðR;GÞ ¼ R�G=R2: (42)

Rc and Hc then become

ðRc;HcÞ ¼ ð13; 16Þ: (43)

Numerical results for Lagrangian (42) are given by Figs. 5
and 6, which are the paths in the R-H plane and !ðtÞ,
respectively. Figure 5 verifies that the critical point (43) is a
stable attractor.

IV. CRITICAL POINTS WITH ZERO EIGENVALUE

As was mentioned previously, an attractor is stable if,
and only if, the real parts of all eigenvalues are negative.
Now we want to consider the situations in which one or
more of the eigenvalues are zero. The appearance of zero
eigenvalues may be rooted in the nonindependency of the
chosen dynamical variables. For instance, if we consider
the phase space of FðR;GÞ models by three-dimensional
ðR;H;GÞ space, one can show that besides the two eigen-
values 	1 and 	2 of Eq. (28), we have a third eigenvalue
	3 ¼ 0. This indicates that we can reduce the dimension-
ality of our phase space.
For the cases where the dimension of the phase space

can not be reduced, the appearance of zero eigenvalue
means that the linear approximation, which leads to the
matrix (25), is not adequate, and we must consider the

5 10 15 20 25 30
t

1.00

0.98

0.96

0.94

0.92

0.90

w

FIG. 6 (color online). The plot of !ðtÞ for the FðR;GÞ ¼ R�
G=R2 model.

2 4 6 8 10 t

1.002

1.000

0.998

w

FIG. 4 (color online). The plot of !ðtÞ of the FðR;GÞ ¼
ðRGÞ11=18 � 1 model.
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0.5

R

FIG. 5 (color online). The spiral paths of the FðR;GÞ ¼ R�
G=R2 model in the R-H plane.
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higher order approximations to determine the behavior of
the critical points. See for example [17].

In our FðR;GÞ models, for the cases where


 ¼ FR

3A
� 4H2jR¼Rc;H¼Hc

¼ 0; (44)

one has

	1 ¼ 0; 	2 ¼ �3H; (45)

and the higher order approximations must be used to
determine whether the considered critical point is stable
or not. This is done by a standard method, which has been
discussed, for example, in [17].

At first, the eigenvectors of matrixM for the eigenvalues
	1 ¼ 0 and 	2 ¼ �3H must be calculated, which result in

c 1 ¼ 1
24Hc

� �
; c 2 ¼ 1

6Hc

� �
; (46)

respectively. Using the transformation matrix T ¼
ðc 1; c 2Þ, the new phase-space basis ðU;VÞ, i.e. the normal
basis, can be found from ðR;HÞ as follows:

U
V

� �
¼ T�1 R

H

� �
; (47)

which results in

U ¼ 1

18Hc

ðR� 6HcHÞ; V ¼ 1

18Hc

ð24HcH� RÞ:
(48)

To translate the critical point from ðRc;HcÞ to the origin of
the phase space, we introduce R ¼ R� Rc and H ¼
H �Hc.

_R and _H , up to second order, then become

_R ¼ HcR� 24H2
cH þDR2 þ BH 2 þ CRH ;

_H ¼ 1
6R� 4HcH � 2H 2: (49)

In above equations, the Eqs. (17) and (18) have been used,
and the coefficients D, B and C are defined by

D ¼ 1

2

�
@2f2ðR;HÞ

@R2

�
; B ¼ 1

2

�
@2f2ðR;HÞ

@H2

�
;

C ¼
�
@2f2ðR;HÞ
@R@H

�
:

(50)

f2ðR;GÞ is one introduced in Eq. (19), and all derivatives
are calculated at critical point ðRc;HcÞ. Note that the linear
terms in the right-hand side of Eq. (49), result in the matrix
elements of M in Eq. (26) for the case where 
 ¼ 0, or
�2FR=A ¼ �24H2.

For the new phase space, introducingU ¼ U�Uc and
V ¼ V � Vc, the Eqs. (48) and (49) then result in

_U ¼
�
2

3
þ B

18Hc

�
ðUþV Þ2 þ 2DHcð4UþV Þ2

þ C

3
ðUþV Þð4UþV Þ; (51)

_V ¼ �
�
8

3
þ B

18Hc

�
ðUþV Þ2 � 2DHcð4UþV Þ2

� C

3
ðUþV Þð4UþV Þ: (52)

Now, taking V ¼ hðUÞ ¼ aU2 þ bU3 þ � � � , the coef-
ficients a and b can be found by using the chain rule

_V ¼ h0ðUÞ _U: (53)

By this way, the problem effectively becomes one dimen-
sional. Using Eqs. (51) and (52), the coefficients of U2

terms of Eq. (53) result in the parameter a as follows:

a ¼ � 1

3Hc

�
8

3
þ 32HcDþ B

18Hc

þ 4

3
C

�
: (54)

The coefficient b can be also found by theU3 terms. Using
the expansion V ¼ aU2 þ . . . , Eq. (51) leads to

_U ¼
�
2

3
þ 32HcDþ B

18Hc

þ 4

3
C

�
U2

þ
�
4

3
þ 16HcDþ B

9Hc

þ 5

3
C

�
aU3 þ � � �

¼ �U2 þ �U3 þ � � � : (55)

So for the cases with zero eigenvalues, the higher order
terms, through Eq. (55), must be considered in studying the
stability behavior of attractors. Note that the absence of the
linear terms in Eq. (55) reflects the fact that 	1 is zero, and
we must focus on the next-leading terms. The attractor is
then stable if �< 0. For the cases where � ¼ 0, we must
look at the sign �. �< 0 leads to stable attractors. If again
� becomes zero, we must go to higher orders.
As an explicit example, we consider

FðR;GÞ ¼ Rþ 1
3R

3 � 1
3: (56)

The critical points are obtained by solving Eqs. (20) and
(21), which result in

ðRc;HcÞ ¼
�
1;

1ffiffiffiffiffiffi
12

p
�
: (57)

Note that we have not considered the unphysical solution
Rc ¼ �2. It can be easily seen that 
 ¼ 0 [using (29)],
therefore 	1 ¼ 0 and 	2 ¼ �3H. Despite a negative ei-
genvalue, the numerical calculations show that the critical
point (57) is not a stable attractor (see Fig. 7)
This can be justified by calculating the parameter � and

� of Eq. (55), which leads to
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_U ¼ 4

3
U2 � 100

9
ffiffiffi
3

p U3 þ . . . : (58)

Since �> 0, the critical point is not stable, in accordance
with Fig. 7.

V. SINGULAR POINTS OF FðR;GÞ
As pointed out after Eq. (22), in deriving the critical

point equation (20), it has been assumed that the denomi-
nator of Eq. (17) is finite at the critical values, so _R ¼ 0
leads us to set the numerator of Eq. (17) equal to zero. But,
as we will show, for the cases where the Lagrangian
FðR;GÞ has some singularities, this assumption, i.e. the
finiteness of the denominator of Eq. (17), is not right, and
we must carefully reinvestigate our results.
Take the function FðR;GÞ as follows:

FðR;GÞ ¼ PðR;GÞ
QðR;GÞ ; (59)

where QðR;GÞ has a root of order n at R ¼ �, i.e.

QðR;GÞ ¼ ðR� �ÞngðR;GÞ: (60)

It can be easily seen that in this case, the denominator of
Eq. (17) diverges at R ! �, with the power greater than
numerator. Substituting Eq. (59) into Eq. (17), results in

_R ¼ ð6H2 � RÞPQQR þ 8H2ðR� 12H2Þ2ð2PQRQG � PQQRG �QPGQRÞ þ � � �
6Hð2Q2

R �QQRRÞPþ � � � ; (61)

where the dots denote the higher order terms of R� �.
Power counting of Eq. (61) shows that

_R ¼ OððR� �Þ2n�1Þ
OððR� �Þ2n�2Þ ; (62)

which results an extra solution for _R ¼ 0 as follows:

ðRc;HcÞ ¼
�
�;

ffiffiffiffiffiffi
�

12

r �
: (63)

Hc is found from Eq. (21).
To study the stability of this critical point, we need to

calculate the eigenvalues of the matrix M [in Eq. (25)]. A
lengthy calculation shows that

 _R ¼ �H

�
Q2

R þQQRR

2Q2
R �QQRR

�QQRð3QRQRR �QQRRRÞ
ð2Q2

R �QQRRÞ2

þ � � �
�
R; (64)

where using the expression (60) for QðR;GÞ, leads to

 _R ¼ � Hc

nþ 1
Rþ . . . ; (65)

at R ¼ �. So the matrix M becomes

M ¼ �4Hc �1=6
0 �Hc=ðnþ 1Þ

� �
; (66)

with eigenvalues

	1 ¼ �4Hc; 	2 ¼ � Hc

nþ 1
; (67)

where both of them are real negative numbers. So we lead
to an important general consequence: Any singularity of
the function FðR;GÞ is a stable attractor solution.
The same is true for the cases where QðR;GÞ has a root

of order n at G ¼ �:

QðR;GÞ ¼ ðG� �ÞngðR;GÞ: (68)

The same procedure results in a critical point atGc ¼ �, or

ðRc;HcÞ ¼
� ffiffiffiffiffiffiffi

6�
p

;

�
�

24

�
1=4

�
; (69)

in which Eq. (22) has been used. The matrix M becomes
the same as Eq. (66), which proves that this critical point is
a stable attractor.
So generally for

QðR;GÞ ¼ ðR� �ÞnðG� �ÞmgðR;GÞ; (70)

the model has the stable attractor points (63) and (69).
As an example, we consider the model discussed in

Sec. III B, that is FðR;GÞ ¼ RþGfðRÞ. The regular criti-
cal points (nonsingular type) can be found by solving the
relation (38), and the stability condition is Eq. (39). Now
consider the explicit example

10 20 30 40 50
t

1.15

1.20

1.25

1.30

1.35

1.40

1.45

R

FIG. 7 (color online). The plot of RðtÞ of FðR;GÞ ¼
Rþ 1=3R3 � 1=3. The initial values are ðR0; H0Þ ¼ ð1:1; 0:3Þ.
It is clear that system does not approach Rc ¼ 1.
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FðR;GÞ ¼ Rþ mG

R2 � 1
; (71)

where m is a constant. Equation (38) leads to

3ðR2 � 1Þ2 þmR3 ¼ 0 ) Rc ¼ RcðmÞ; (72)

and the inequality (39) results in

2ðR2
c � 1Þ

R2
c � 5

> 1: (73)

For R2
c � 5> 0, Eq. (73) leads to R2

c >�3, which is al-
ways true, and forR2

c � 5< 0, it results in R2
c <�3, which

is never true. So the condition (73) holds if

R2
c > 5: (74)

Now if we choose m ¼ �10, Eq. (72) gives two following
real solutions:

R1c ¼ 0:534; R2c ¼ 3:837: (75)

It is clear that R1c does not satisfy (74), while R2c does.
Explicit calculation of 
 [in Eq. (29)] shows that

jR¼R1c

< 0 and 
jR¼R2c
> 0. So we expect that the stable

critical point of

FðR;GÞ ¼ R� 10G

R2 � 1
; (76)

is

ðRc;HcÞ ¼ ð3:837; 0:565Þ: (77)

Numerical calculation verifies this. See Fig. 8.
Until now, we find the regular attractor of (76). But it is

clear that the FðR;GÞ in Eq. (76) is singular at R ¼ 1. So
we expect another stable attractor at the point

ðRc;HcÞ ¼
�
1;

ffiffiffiffiffiffi
1

12

s �
: (78)

This new attractor is also verified by the numerical method.
See Fig. 9.

VI. THE CRITICAL CURVES

There are other interesting cases in which the critical
points are replaced by critical curves. In this case, each of
the infinite points on this critical curve are in fact a critical
point, and besides, as we will show, they are stable attrac-
tors. This situation occurs when the criticality condition
(20) holds for any R and H values.
Before introducing some special examples, we first

prove a general statement:
If a FðR;GÞ function satisfies (20) and R and G satisfy

Eqs. (21) and (22), respectively, then 
 ¼ FR=ð3AÞ � 4H2

is equal to zero. Proof: Since condition (20) holds for any R
and H, it can be differentiated with the result

ð12RFRR � 1
2FR þGFRGÞdRþ ð12RFRG þGFGGÞdG ¼ 0:

(79)

But from Eq. (14) we have

dG ¼ 8HðR� 12H2ÞdHþ 4H2dR; (80)

so

½12RFRR � 1
2FR þGFRG þ 4H2ð12RFRG þGFGGÞ�dR

þ 8ð12RFRG þGFGGÞHðR� 12H2ÞdH ¼ 0: (81)

Using Eq. (21), the coefficient of dH becomes zero. The
coefficient of dR, which now must be set to zero, specifies
FR as follows:

0.50 0.55 0.60 0.65
H

3.2

3.4

3.6

3.8

4.0

4.2

4.4

R

FIG. 8 (color online). The spiral paths leading to attractor (77)
of the Lagrangian FðR;GÞ ¼ R� 10G=ðR2 � 1Þ.

0.20 0.25 0.30 0.35
H

0.70

0.75

0.80

0.85

0.95

1.00

R

FIG. 9 (color online). The paths of FðR;GÞ ¼ R�
10G=ðR2 � 1Þ leading to the attractor ðRc;HcÞ ¼ ð1; ffiffiffiffiffiffiffiffiffiffiffi

1=12
p Þ
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FR ¼ RðFRR þ 8H2FRG þ 16H4FGGÞ ¼ RA; (82)

in which the function A, introduced in (27), has been used.
Therefore, 
 becomes


 ¼ FR

3A
� 4H2 ¼ 1

3
R� 4H2 ¼ 0; (83)

where R ¼ 12H2 has been used. This completes our proof.
Now we note that if FðR;GÞ satisfies (20), this equation

does not impose any extra constraint on FðR;GÞ and there-
fore does not specify any critical values for R andH. So the
only remaining relation in the R-H phase-space plane is the
second equation, i.e. Eq. (21), which defines a critical
curve. The eigenvalues of this critical curve, as a result
of the above statement, which leads to Eq. (83), are

	1 ¼ 0; 	2 ¼ �3H: (84)

But it can be shown that in the case of the emergence of the
critical curve, the stability of any particular point on this
curve can be determined by the nonzero eigenvalues [15].
Since in our case, 	2 ¼ �3H < 0, therefore any points on
the critical curve R ¼ 12H2 of FðR;GÞ models is a stable
attractor. This is a general result.

Now let us consider some explicit examples.
Example 1: Let us first consider the class of models

introduced in Sec. III A. For FðR;GÞ ¼ FðRGÞ, it is ob-
tained that Eq. (20) results in

3
2 xF

0ðxÞ � FðxÞ ¼ 0; (85)

where x ¼ RG. If we demand that the Eq. (85) satisfies for
all x, then it can be viewed as a differential equation with

solution FðxÞ ¼ x2=3. So the FðR;GÞ model

FðR;GÞ ¼ ðRGÞ2=3 (86)

has a critical curve R ¼ 12H2. All the points on this curve
are stable attractors. Figures 10 and 11 show that both
H1c ¼ 0:977 and H2c ¼ 1:99 points (as two arbitrary
points), with R1c ¼ 11:454 and R2c ¼ 47:52, respectively,
are stable attractors of this model.

Example 2: Consider the following FðR;GÞ model:

FðR;GÞ ¼ RnfðGkRmÞ (87)

with arbitrary constants n, k and m. Substituting (87) into
Eq. (20), results in�

n

2
� 1

�
RnfðxÞ þ

�
m

2
þ k

�
RnþmGkf0ðxÞ ¼ 0; (88)

where x ¼ GkRm. If one demands the above equation
satisfies for all R and Gs and for any arbitrary function
fðxÞ, then the constants n, k and m must satisfy

n ¼ 2; m ¼ �2k: (89)

So FðR;GÞ ¼ R2fðGk=R2kÞ ¼ R2gðG=R2Þ satisfies (20),
and the curve R ¼ 12H2 is its critical curve. It is interest-

ing to note that the case considered in example 1, i.e. the

Eq. (86), is in fact of this type: ðRGÞ2=3 ¼ R2ðG=R2Þ2=3.
Example 3: Consider the following model:

FðR;GÞ ¼ �Gþ fðRÞ; (90)

then Eq. (20) results in

Rf0 ¼ 2f; (91)

which its solution, as a differential equation, is fðRÞ ¼
�R2. So all models of the type

FðR;GÞ ¼ �Gþ �R2 (92)

2 4 6 8 10
t

0.9775

0.9780

0.9785

H

FIG. 10 (color online). The plot of HðtÞ for the FðR;GÞ ¼
ðRGÞ2=3 model. The point ðHc; RcÞ ¼ ð0:977; 11:454Þ is a stable
attractor.

0 2 4 6 8 10
t

1.99380

1.99380

1.99380

1.99380

1.99380

1.99381

1.99381
H

FIG. 11 (color online). The plot of HðtÞ for the FðR;GÞ ¼
ðRGÞ2=3 model. The point ðHc; RcÞ ¼ ð1:99; 47:52Þ is a stable
attractor.
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have R ¼ 12H2 as their critical curve, with an infinite
number of stable attractors.

This example also shows that in the case of fðRÞ gravity
theories, which is the � ¼ 0 case of Eq. (90), the only
model that leads to the critical curve R ¼ 12H2 is the
fðRÞ ¼ R2 model.

Example 4: As the last example, consider the model

FðR;GÞ ¼ RþGfðRÞ: (93)

Substituting (93) into Eq. (20), results in

R2f0ðRÞ ¼ 6 ) fðRÞ ¼ � 6

R
: (94)

So FðR;GÞ ¼ R� 6G=R also has the critical curve R ¼
12H2.

The above-mentioned procedure can be applied to some
other functional forms, such as FðR;GÞ ¼ fðG=RÞ, with
the result F ¼ ðG=RÞ2, etc.

VII. CONCLUSION

As a candidate of dark energy, we consider the general-
ized Gauss-Bonnet dark energy models looking for the
situations where the late-time behavior of this modified
gravity theory is the de Sitter space-time. We describe the
phase space of this theory by the two-dimensional R-H

space. This dimensionality verifies by the fact if the three-
dimensional R-H -G space has been chosen, one of the
eigenvalues of stability matrix is always zero, which in-
dicates that the number of independent variables is two.
The eigenvalues of stability matrix show that the critical

points, i.e. the de Sitter space-times, are, in general, the
stable attractor if 
 ¼ FR=ð3AÞ � 4H2 > 0, a fact that has
been verified by several examples. The emergence of criti-
cal points with 
 ¼ 0, in which one of the eigenvalues is
zero, 	1 ¼ 0, forces us to consider the higher order terms
in normal basis in order to have a correct judgment about
the stability of these kinds of critical points.
We also find two classes of stable attractors: the singular

points of the Lagrangian FðR;GÞ and the cases where the
critical points are replaced by the critical curve R ¼ 12H2

(in R-H plane). In the latter case, all the points on this
curve are stable attractors.
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