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We consider improving the sensitivity of future interferometric gravitational-wave detectors by

simultaneously injecting two squeezed vacuums (light), filtered through a resonant Fabry-Perot cavity,

into the dark port of the interferometer. The same scheme with single squeezed vacuum was first proposed

and analyzed by Corbitt et al. [Phys. Rev. D 70, 022002 (2004).]. Here we show that the extra squeezed

vacuum, together with an additional homodyne detection suggested previously by one of the authors

[F. Ya. Khalili, Phys. Rev. D 77, 062003 (2008).], allows reduction of quantum noise over the entire

detection band. To motivate future implementations, we take into account a realistic technical noise

budget for Advanced LIGO and numerically optimize the parameters of both the filter and the

interferometer for detecting gravitational-wave signals from two important astrophysics sources, namely,

neutron-star–neutron-star binaries and bursts. Assuming the optical loss of the �30 m filter cavity to be

10 ppm per bounce and 10 dB squeezing injection, the corresponding quantum noise with optimal

parameters lowers by a factor of 10 at high frequencies and goes below the technical noise at low and

intermediate frequencies.
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I. INTRODUCTION

During the last decade, several laser interferometric
gravitational-wave detectors including LIGO [1], VIRGO
[2], GEO600 [3], and TAMA [4] have been built and
operated almost at their design sensitivity, aiming at ex-
tracting gravitational-wave signals from various astrophys-
ical sources. At present, developments of next-generation
detectors such as Advanced LIGO (AdvLIGO) [5] are also
under way, and sensitivities of these advanced detectors are
anticipated to be limited by quantum noise nearly over the
whole observational band from 10 to 104 Hz. At high
frequencies, the dominant quantum noise is photon shot
noise, caused by phase fluctuation of the optical field;
while at low frequencies, the radiation-pressure noise,
due to the amplitude fluctuation, dominates and it exerts
a noisy random force on the probe masses. These two
noises, if uncorrelated, will impose a lower bound on the
noise spectrum, which is called the standard quantum limit
(SQL). In terms of gravitational-wave strain h � �L=L, it
is given by

SSQLh ¼ 8@

m�2L2
: (1)

It can also be derived from the fact that position measure-
ments of the free test mass do not commute with them-
selves at different times [6].

The existence of SQL was first realized by Braginsky in
the 1960s [7,8]. Since then, various approaches are pro-
posed to beat the SQL. One recognized by Braginsky is to
measure conserved quantities of the probe masses (also
called quantum nondemolition quantities). This can be

achieved, e.g. by adopting speed-meter configurations
[9–14], which measure the conserved quantity momentum
rather than the position. An alternative is to change the
dynamics of the probe mass, e.g. using optical rigidity
[15,16], in which case the free mass SQL mentioned is
no longer relevant. As shown by Buonanno and Chen [17–
19], optical rigidity exists in signal-recycled (SR) inter-
ferometric gravitational-wave detectors; therefore we can
beat the SQL without radical redesigns of existing topol-
ogy of the interferometers. Another approach is to modify
input and/or output optics of the interferometers such that
photon shot noise and radiation-pressure noise are corre-
lated. After the initial paper by Unruh [20], this was further
developed by other authors [21–29]. A natural way to
achieve this is by injecting squeezed vacuum, in which
phase and amplitude fluctuations are correlated, into the
dark port of the interferometers. With great advancements
in preparation of the squeezed state [30,31], squeezed-
input interferometers will be promising candidates for
third-generation gravitational-wave detectors. As elabo-
rated on in the work of Kimble et al. [26], frequency-
dependent squeezing is essential to reduce the quantum
noise at various frequencies of the observation band. In
addition, they demonstrated that this can be realized by
filtering the frequency-independent squeezed vacuum
through two detuned Fabry-Perot cavities before sending
into the interferometer. Their results were extended by
Buonanno and Chen [27], where the filters for general
cases were discussed.
Another method, which also uses an additional filter

cavity and squeezed light, but in a completely different
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way, was proposed by Corbitt, Mavalvala, and Whitcomb
(hereafter referred to as CMW) [21]. They proposed to use
a tuned optical cavity as a high-pass filter for the squeezed

vacuum. This scheme does not create the noises correla-
tion, but instead, renders the noise spectral densities fre-
quency dependent. At high frequencies, the phase
squeezed vacuum gets reflected by the filter and enters
the interferometer such that high-frequency shot noise is
reduced; while at low frequencies, ordinary vacuum trans-
mits through the filter and enters the interferometer, thus
low-frequency radiation-pressure noise remains un-
changed. One significant advantage is that the squeezed
vacuum does not really enter the filter cavity and thus it is
less susceptible to the optical losses. However, it does not
perform as well as hoped for, and there is a noticeable
degradation of sensitivity in the intermediate-frequency
range. One of us [32] pointed out that this has to do with
the quantum entanglement between the optical fields at two
ports of the filter cavity. Equivalently, it can be interpreted
physically as the following: some information about phase
and amplitude fluctuation flows out from the idle port of
the filter cavity and the remaining quantum state which
enters the interferometer is not pure. In order to recover the
sensitivity, the filter cavity needs to have a low optical loss
such that this information can be collected with an addi-
tional homodyne detector (AHD) at the idle port. Given an
achievable optical loss of the filter cavity of �10 ppm per
bounce, Khalili showed that we can obtain the desired
sensitivity at intermediate frequencies. A natural extension
of this scheme is sending additional squeezed vacuum into
the idle port of the filter cavity such that the low-frequency
radiation-pressure noise is also suppressed. The corre-
sponding configuration is shown schematically in Fig. 1,
where two squeezed vacuums ŝ and p̂ are injected from
two ports of the filter cavity, and some ordinary vacuum n̂
leaks into the filter due to optical losses. By optimizing the

FIG. 1 (color online). Schematic plot of the proposed configu-
ration. Two squeezed vacuums ŝ and p̂ are injected from both
sides of the filter cavity rather than the one which was considered
in Refs. [21,32]. The signal is detected by the main homodyne
detector (MHD) and an additional homodyne detector (AHD) is
made in the idle port of the filter cavity. ETM: end test mass;
ITM: input test mass; PRM: power recycling mirror; PBS:
polarized beam splitter; IM: input mirror; EM: end mirror;
SQZ: squeezed light.

TABLE I. Main notations used in this paper.

Quantity Value for estimates Descriptions

� Gravitational-wave (sideband) frequency

c 3:0� 108 m=s Speed of light

!0 1:8� 1015 s�1 Optical pumping frequency

m 40 kg Mass of the end mirrors

L 4 km Length of the arm cavity

Ic 840 kW Circulating optical power

�c ¼ 8!0Ic
mLc ð2�� 100Þ3 s�3

�arm 2�� 100 s�1 Bandwidth of the arm cavity

rSR Amplitude reflectivity of the SRM

�SR Phase detuning of the SR cavity

� Effective frequency detuning of the SR interferometer

� Effective bandwidth of the SR interferometer

� Homodyne angle of the MHD

� Homodyne angle of the AHD

Lf 30 m Length of the filter cavity

�I;E;L ¼ T2
I;E;L

2�f
�f ¼ �I þ �E þ �L Bandwidth of the filter cavity

ri ði ¼ s; pÞ ðln10Þ=2 (10 dB) Squeezing factors

�i ði ¼ s; pÞ Squeezing angles
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squeezing angles of squeezed states, we will show that the
resulting quantum noise is reduced over the entire obser-
vational band.

The outline of this paper is as follows. In Sec. II, we will
calculate the quantum noises in this double squeezed-input
CMW scheme with AHD (later referred to as CMWA). We
will use the same notation as in Ref. [19], which enables us
to extend the results in Ref. [32] to the case of signal-
recycled interferometers easily. In Sec. III, we numerically
optimize the parameters of this new scheme for searching
the gravitational-wave signals from neutron-star–neutron-
star (NSNS) binaries and bursts. Finally, we will summa-
rize our results in Sec. IV. For simplicity, we will neglect
the optical losses inside the main interferometer, but we
consider the losses from the filter cavity and also nonunity
quantum efficiency of the photodiodes. As shown in
Refs. [17,26,33], the losses from the main interferometer
are not expected to be important. The main notations used
in this paper are listed in Table I.

II. QUANTUM-NOISE CALCULATION

A. Filter cavity

In this section, we will derive single-sided spectral
densities of the two outgoing fields â and q̂ as shown in
Fig. 1. From the continuity of optical fields, we can relate
them to ingoing fields, which include two squeezed vacu-

ums ŝ and p̂ and one ordinary vacuum n̂ entering from the
lossy mirror (LM) [32]. Specifically, we have

âð�Þ ¼ RIð�Þŝð�Þ þT ð�Þp̂ð�Þ þAIð�Þn̂ð�Þ; (2)

q̂ð�Þ ¼ REð�Þp̂ð�Þ þT ð�Þŝð�Þ þAEð�Þn̂ð�Þ:
(3)

Here â ¼ ðâA; â’ÞT , and q̂ ¼ ðq̂A; q̂’ÞT are amplitude and

phase quadratures (subscript A stands for amplitude and ’
for phase). In our case, the carrier light is resonant inside
the filter cavity. Therefore, the effective amplitude reflec-
tivity R, transmissivity T , and loss A can be written as

RIð�Þ ¼ �I � �E � �L þ i�

�f � i�
;

REð�Þ ¼ �E � �I � �L þ i�

�f � i�
; (4a)

T ð�Þ ¼ �2
ffiffiffiffiffiffiffiffiffiffiffi
�I�E

p
�f � i�

; (4b)

AIð�Þ ¼ �2
ffiffiffiffiffiffiffiffiffiffi
�I�L

p
�f � i�

; AEð�Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
�E�L

p
�f � i�

; (4c)

where �f � �I þ �E þ �L. They satisfy the following

identities:

jRIð�Þj2 þ jT ð�Þj2 þ jAIð�Þj2 ¼ jREð�Þj2 þ jT ð�Þj2 þ jAEð�Þj2 ¼ 1; (5a)

R�
I ð�ÞT ð�Þ þREð�ÞT �ð�Þ þA�

I ð�ÞAEð�Þ ¼ 0: (5b)

If the input and end mirrors of the filter cavity are identical,
namely, �I ¼ �E, we will have RI, RE � 1, and T � 0
when � � �f and RI, RE � 0, and T � 1 when � �
�f. Therefore, the squeezed vacuum ŝ enters the interfer-
ometer at high frequencies while p̂ becomes significant
mostly at low frequencies. By adjusting the squeezing
factor and angle of these two squeezed fields, we can
reduce both the high-frequency shot noise and low-
frequency radiation-pressure noise simultaneously.

To calculate the noise spectral densities, we assume
these two squeezed vacuums have frequency-independent
squeezing angles �iði ¼ s; pÞ and can be represented as
follows:

ŝ ¼ ~Rðrs; �sÞv̂s; p̂ ¼ ~Rðrp; �pÞv̂p; (6)

with

~Rðr; �Þ � coshr� cos� sinhr � sin� sinhr
� sin� sinhr coshrþ cos� sinhr

� �
:

(7)

Here r is the squeezing factor, and v̂i ¼ ðv̂iA; v̂i’ÞT are

ordinary vacuums with single-sided spectral densities:
SAð�Þ ¼ S’ð�Þ ¼ 1, and SA’ð�Þ ¼ 0 [26].

The noise spectral densities of the two filter-cavity out-
puts can then be written as

~Sâ âð�Þ ¼ jRIð�Þj2 ~Rð2rs; 2�sÞ þ jT ð�Þj2 ~Rð2rp; 2�pÞ
þ jAIð�Þj2~I; (8)

~Sq̂ q̂ð�Þ ¼ jREð�Þj2 ~Rð2rp; 2�pÞ þ jT ð�Þj2 ~Rð2rs; 2�sÞ
þ jAEð�Þj2~I; (9)

~S â q̂ð�Þ ¼ REð�ÞT �ð�Þ ~Rð2rp; 2�pÞ
þR�

I ð�ÞT ð�Þ ~Rð2rs; 2�sÞ
þAEð�ÞA�

I ð�Þ~I; (10)

where ~Sâ q̂ð�Þ is the cross correlation between two outputs;
~I is the identity matrix, and

~S ið�Þ ¼ SA;ið�Þ SA’;ið�Þ
SA’;ið�Þ S’;ið�Þ

� �
(11)

with i ¼ â â , q̂ q̂ , and â q̂ , whose elements are single-
sided spectral densities.
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B. Quantum noise of the interferometer

According to Ref. [19], the input-output relation, which
connects ingoing fields â and gravitational-wave signal h

with the outgoing fields b̂, for a signal-recycled interfer-
ometer can be written as

b̂ ¼ 1

M

�
~C âþD

h

hSQL

�
: (12)

In the above equation,

M ¼ ½�2 � ð�þ i�Þ2��2 � ��c; (13)

and ~C is the transfer function matrix with elements

~C11 ¼ ~C22 ¼ �2ð�2 � �2 þ �2Þ þ ��c; (14a)

~C12 ¼ �2���2; ~C21 ¼ 2���2 � 2��c; (14b)

where �c � 8!0Ic=ðmcLÞ. The elements of the transfer
function vector D are

D1 ¼ �2�
ffiffiffiffiffiffiffiffi
��c

p
�; D2 ¼ �2ð�� i�Þ ffiffiffiffiffiffiffiffi

��c
p

�:

(15a)

The effective detuning � and bandwidth � are given by

� ¼ 2rSR�arm sinð2�SRÞ
1þ r2SR þ 2rSR cosð2�SRÞ

; (16a)

� ¼ ð1� r2SRÞ�arm

1þ r2SR þ 2rSR cosð2�SRÞ
; (16b)

where rSR is the amplitude reflectivity of the signal recy-
cling mirror (SRM) and �SR is phase detuning of the SR
cavity. If the main homodyne detector (MHD) measures

b̂ �ð�Þ ¼ ffiffiffiffi
	

p ½sin�b̂Að�Þ þ cos�b̂’ð�Þ�
þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 	
p

v̂ð�Þ; (17)

where � is the homodyne angle and v̂ is the additional
vacuum due to nonunity quantum efficiency of the photo-
diode, and then the corresponding h-referred quantum-
noise spectral density can be written as

Shð�Þ ¼ h2SQL
ðsin�cos�Þ ~C~SI ~C

yðsin�cos�ÞT þ 1�	
	 jMj2

ðsin�cos�Þ ~D ~Dyðsin�cos�ÞT :

(18)

It can be minimized by adjusting the squeezing angle � of ŝ
and p̂. We can estimate the optimal � qualitatively from the
asymptotic behavior of the resulting noise spectrum. At
very high frequencies (� � �), from Eq. (2), â� ŝ and
thus

Shð�Þ / coshð2rsÞ þ cos½2ð�þ �sÞ� sinhð2rsÞ: (19)

If the squeezing angle of ŝ

�s ¼ �

2
þ n���; (20)

where n is an integer, we achieve the optimal case, namely,
Sh / e�2rs . Similarly, at very low frequencies (� � �),
we have â� p̂ and the spectral density Sh / e�2rp if

�p ¼ arctan

�
2 cos� sin


cosð
��Þ þ 3 cosð
þ�Þ
�
: (21)

More accurate values for optimal �s;p can be obtained

numerically as we will apply in the next section. Given
optimal �s;p, the sensitivity of this double squeezed-input

scheme improves at both high and low frequencies.
However, due to the same reason as in the case of single
squeezed-input that two outputs of the filter cavity are
entangled [32], this double squeezed-input scheme does
not perform well in the intermediate-frequency range. To
recover the sensitivity, we need to use an AHD at the idle
port E of the filter cavity. The corresponding measured
quantity is

q̂ � ð�Þ ¼ ffiffiffiffi
	

p ½sin�b̂Að�Þ þ cos�b̂’ð�Þ� þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	

p
v̂0ð�Þ;
(22)

where � is the homodyne angle and v0ð�Þ is the addition
vacuum, which enters due to nonunity quantum efficiency
of the photodiode. We combine q̂� ð�Þ with the output

b̂�ð�Þ using a linear filter Kð�Þ, obtaining
ôð�Þ ¼ b̂�ð�Þ �Kð�Þq̂� ð�Þ: (23)

Corresponding, the noise spectral density of this new out-
put ôð�Þ can be written as

Sôð�Þ ¼ Sb̂�ð�Þ � 2<½Kð�ÞSb̂�;q̂� ð�Þ�
þ jKð�Þj2Sq̂� ð�Þ: (24)

The minimum quantum noise is achieved when Kð�Þ ¼
Sb̂�;q̂� ð�Þ=Sb̂�ð�Þ and the resulting h-referred noise spec-

trum with AHD is then

SAHDh ð�Þ ¼ Shð�Þ

� h2SQL
	jðsin� cos�Þ ~C~SIEðsin� cos�ÞTj2

ðsin� cos�Þ ~D ~Dyðsin� cos�ÞTS� ð�Þ ;

(25)

where S� ð�Þ � 	ðsin� cos�Þ~SEðsin� cos�ÞT þ 1� 	. The
second term has a minus sign, which shows explicitly that
the sensitivity increases as a result of additional detection.

III. NUMERICAL OPTIMIZATIONS

In this section, we will take into account realistic tech-
nical noise and numerically optimize interferometer pa-
rameters for detecting gravitational-wave signals from
specific astrophysics sources which include NSNS binaries
and bursts.
For a binaries system, according to Ref. [34], the spec-

tral density of a gravitational-wave signal is given by
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Shð2�fÞ ¼ �

12

ðGMÞ5=3
c3r2

�ðfmax � fÞ
ð�fÞ7=3 : (26)

Here the ‘‘chirp’’ mass M is defined as M � �3=5M2=5

with� andM being the reduced mass and total mass of the
binaries system. With other parameters being fixed, the
corresponding spectrum shows a frequency dependence of

f�7=3. Therefore, as a measure of the detector sensitivity,
we can defined an integrated signal-to-noise ratio (SNR)
for NSNS binaries as

�2
NSNS /

Z fmax

fmin

f�7=3df

S
quant
h ð2�fÞ þ Stechh ð2�fÞ : (27)

The upper limit of the integral fmax � fISCO 	
4400� ðM=M
Þ Hz is determined by the innermost stable
circular orbit frequency, and the lower limit fmin is set to be
10 Hz, at which the noise can no longer be considered as
stationary. Here we choose M ¼ 2:8M
, the same as in

Ref. [35]. Here Squanth is the quantum-noise spectrum de-

rived in the previous sections and Stechh corresponds to the

technical noise obtained from BENCH [36].
Bursts are another interesting astrophysical source [37].

The exact spectrum is not well modeled and a usual applied
simple model is to assume a logarithmic-flat signal spec-
trum, i.e. Shð2�fÞ / f�1. The corresponding integrated
SNR is then given by

�2
bursts /

Z fmax

fmin

d logf

Squanth ð2�fÞ þ Stechh ð2�fÞ : (28)

The integration limit is taken to be the same as the NSNS
binaries case.

To estimate the SNR and also motivate future imple-
mentation of this scheme, we assume the filter cavity has a
length of�30 m and an achievable optical loss 10 ppm per
bounce and also consider the nonunity quantum efficiency
of the photodiodes	 ¼ 0:9 for bothMHD and AHD. Other
relevant parameters will be further optimized numerically.
For comparison, we will also optimize other related con-
figurations, which include AdvLIGO, AdvLIGO with
frequency-independent squeezed-input (FISAdvLIGO for
short), and the CMW scheme. Specifically, free parameters
for these different schemes that need to be optimized are
the following:

AdvLIGO: rSR; �SR; �; (29a)

FISAdvLIGO: rSR; �SR; �; �; (29b)

CMW: rSR; �SR; �; �I; �E; �s; �p; (29c)

CMWA: rSR; �SR; �; �I; �E; �s; �p; �: (29d)

The resulting optimal parameters for different schemes
are listed in Table II. They are rounded to have two
significant digits at most to balance various uncertainties
in the technical noise. The integrated SNR � is normalized
with respect to that of the AdvLIGO configuration.
The optimal �s from the numerical result is in accord
with the asymptotic estimation, namely, �s 	 ð�=2Þ ��
[cf. Eq. (20)].
The corresponding quantum-noise spectrums of differ-

ent schemes optimized for detecting gravitational waves
from NSNS binaries are shown in Fig. 2. The
FISAdvLIGO, FISAdvLIGO, and CMW schemes almost
have the identical integrated sensitivity and the CMWA
scheme shows moderate 20% improvement in SNR. This is
attributable to the fact that the signal spectrum of NSNS

binaries has a f�7=3 dependence and low-frequency sensi-
tivity is very crucial. However, due to low-frequency tech-

TABLE II. Optimization results for different schemes.

NSNS Bursts

Configurations � rSR �SR �I �E � �p � � rSR �SR �I �E � �p �

AdvLIGO 1.0 0.8 1.4 � � � � � � �1:0 � � � � � � 1.0 0.7 1.5 � � � � � � �0:2 � � � � � �
FISAdvLIGO 1.0 0.7 1.5 � � � � � � �1:2 �0:6x � � � 1.5 0.8 1.6 � � � � � � 0.0 �1:6a � � �
CMW 1.0 0.8 1.6 240 240 �0:8 �0:6 � � � 1.5 0.8 1.6 0.0 0.0 0.0 �1:4 � � �
CMWA 1.2 0.7 1.6 230 210 0.0 �0:1 0.7 1.5 0.8 1.6 140 140 0.0 �0:2 0.9

aThis is the squeezing angle � in the case of single squeezed-input.

FIG. 2 (color online). Quantum-noise spectrums of different
schemes with optimized parameters for detecting gravitational
waves from NSNS binaries. The optimal values for the parame-
ters are listed in Table. II.
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nical noise, advantages of the CMWA scheme are at most
limited in the case for detecting low-frequency sources.

The case for detecting gravitational waves from bursts is
shown in Fig. 3. The other three schemes have a significant
50% improvement in terms of SNR over AdvLIGO. The
sensitivities of the optimal FISAdvLIGO, CMW, and
CMWA schemes at high frequencies almost overlap each
other. In addition, the detuned phases �SR of the signal
recycling cavity of those three are nearly equal to �=2,
which significantly increases the effective detection band-
width of the gravitational-wave detectors and is the same
as the resonant-sideband extraction (RSE) scheme. This is
because a broadband sensitivity is preferable in the case of
bursts which have a logarithmic-flat spectrum.

To show explicitly how different parameters affect sen-
sitivity of the CMWA scheme, we present quantum-noise
spectrums of different schemes using the same parameters
as the optimal CMWA in Fig. 4. In the case of AdvLIGO,
we obtain a RSE configuration with �SR 	 �=2. The
quantum noise of FISAdvLIGO with squeezing angle � ¼
�s is lower at high frequencies but higher at low frequen-
cies than the RSE AdvLIGO. FISAdvLIGO with � ¼ �p
behaves in the opposite way with a significant increase of
sensitivity at low frequencies but worse at high frequen-
cies. The CMW scheme with double squeezed-input, just
as expected, can improve the sensitivity at both high and
low frequencies but does not perform so well at the inter-
mediate frequencies. The CMWA scheme performs very
nicely over the whole observational band compared with
others and it would be more attractive if the technical noise
of the AdvLIGO design can be further decreased.

IV. CONCLUSION

We have proposed and analyzed the double squeezed-
input CMWA scheme as an option for increasing sensitiv-
ity of future advanced gravitational-wave detectors. Given
an achievable optical loss of the filter cavity and 10 dB
squeezing, this CMWA configuration shows a noticeable
reduction in quantum noise at both high and low frequen-
cies compared with other schemes. Since the length of the
filter cavity considered here is around 30 m, with the
developments of low-loss coating and better squeezing-
state sources, it could be a promising and relatively simple
add-on to AdvLIGO without a need for dramatically mod-
ifying the existing topology.
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FIG. 3 (color online). Quantum-noise spectrums of different
schemes which are optimized for detecting gravitational waves
from bursts. The optimal values for the parameters are listed in
Table. II.

FIG. 4 (color online). Quantum-noise spectrums of different
schemes using the same parameters as the optimal CMWA to
show how different parameters affect sensitivity of the CMWA
scheme.
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