
Double-binary-pulsar test of Chern-Simons modified gravity

Nicolás Yunes1 and David N. Spergel2,3

1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
2Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
3Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA
(Received 30 October 2008; revised manuscript received 21 June 2009; published 14 August 2009)

Chern-Simons modified gravity is a string theory and loop-quantum-gravity inspired effective theory

that modifies general relativity by adding a parity-violating Pontryagin density to the Einstein-Hilbert

action multiplied by a coupling scalar. We strongly constrain nondynamical Chern-Simons modified

gravity with a timelike Chern-Simons scalar through observations of the double-binary-pulsar PSR J0737-

3039A/B. We first calculate Chern-Simons corrections to the orbital evolution of binary systems. We find

that the ratio of the correction to periastron precession to the general relativistic prediction scales

quadratically with the semimajor axis and inversely with the square of the object’s radius. Binary pulsar

systems are thus ideal to test this theory, since periastron precession can be measured with subdegree

accuracies and the semimajor axis is millions of times larger than the stellar radius. Using data from PSR

J0737-3039A/B we dramatically constrain the nondynamical Chern-Simons coupling toMCS :¼ 1=j _#j>
33 meV, approximately a hundred billion times better than current Solar System tests.
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I. INTRODUCTION

String theory is an intricate web of a mathematically
beautiful hypothesis that promises to unify all forces of
nature. General relativity (GR) is expected to be its low-
energy limit with possible higher-order curvature correc-
tions. To date, however, string theory remains intrinsically
difficult to test experimentally, because these curvature
corrections are believed to be perturbatively Planck sup-
pressed. Dynamical situations with large spacetime curva-
ture could lead to nonlinear couplings and enhance such
curvature corrections to a constrainable realm.

One such curvature correction is the parity-violating
Pontryagin density, which in addition to the Einstein-
Hilbert term defines an effective theory: Chern-Simons
(CS) modified gravity [1]. In four dimensions, this density
is a topological term that does not contribute to the field
equations, unless its coupling is nonconstant or promoted
to a scalar field [2]. From a string theoretical standpoint,
the Pontryagin correction is inescapable, if one is to have a
mathematically consistent theory that is anomaly free [3–
5]. From an experimental standpoint, the search for the
breakage of fundamental symmetries can provide hints that
can guide theorist toward the correct ultraviolet completion
of GR.

CS modified gravity is also motivated from the standard
model of elementary particles and from loop quantum
gravity (LQG). For example, in particle physics, we
know that an asymmetry in the number of left- and right-
handed fermions forces the fermion number current to be
anomalous, in analogy to the triangle anomaly [6]. This
anomaly leads to the inclusion of the Pontryagin density in
an effective fermionic action [7]. Similarly, it has been
recently found that LQG also leads to CS modified gravity

when the Barbero-Immirzi parameter is promoted to a
pseudo-scalar field in the presence of fermions [8–12].
The signature of CSmodified gravity is the enhancement

of gravitational parity asymmetry, which, in particular,
leads to frame-dragging modifications [13–15]. In GR,
the gravitomagnetic sector of the metric couples to the
spin and the orbital angular momentum of gravitating
systems, leading to corrections in their orbital evolution,
such as precession of the orbital plane. In CS modified
gravity, the gradient of the coupling scalar selects a pre-
ferred direction in spacetime that corrects this precession.
Thus, observations of gravitomagnetic precession can be
used to test the validity of the effective theory [14,15].
In the Solar System, this precession correction has al-

ready been studied for an externally prescribed (nondy-
namical) CS coupling [2]. Through comparisons with the
LAGEOS and the Gravity Probe B experiment, bounds
have been placed on the local magnitude of the time

derivative of this field _# & 103 km or its associated energy

scale MCS :¼ 1= _# � 10�13 eV near Earth.1

From a theoretical standpoint, the effective mass scale
for the CS term is uncertain. While it could be as large as
the Planck scale, it is intriguing to explore the possibility

that the scale is around cosmological constant scale�1=4 �
1 meV. Such intrigue arises because the cosmological
constant is an example of a quantity that according to
string-theoretic predictions could be as much as 120 orders
of magnitude larger than the observed value, depending on
the formulation. Since CS modified gravity is also pre-
dicted by string theory, it is interesting to study whether its

1When converting _# into an energy scale we shall employ
natural units. Otherwise, in this paper we use geometric units.
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modifications are also observable at the cosmological con-
stant scale.

The weakness of Solar System constraints can be quali-
tatively understood by focusing on the ratio of the CS
precession correction to the GR expectation. For any bi-
nary system, this ratio scales as ðRext=RindÞ2, where Rext

and Rind are the radius of curvature of the combined
system and of either compact body, respectively. For a
binary system Rext � a, where a is the semimajor axis,
and Rind � R, where R is the stellar radius. In the Solar
System, a ¼ Rþ þ h, where h is the height to which
satellites can be reliably placed in orbit, while R ¼ Rþ is
Earth’s radius. Thus, the ratio Rext=Rind � 1� h=Rþ �
1 and the CS effect is inherently small. For a binary pulsar,
however, Rext=Rind �Oð105Þ, which thus enhances the
CS effect by a factor of approximately Oð1010Þ.

In this paper, we study nondynamical CS modified
gravity in the far field, applied to gravitomagnetic preces-
sion. We choose to work with the nondynamical theory,
since this has been studied in more detail (see e.g. [2,7,14–
25]), and we choose the standard CS coupling scalar # ¼
�CSt, where �CS is a quantity we wish to constrain with
units of length. We recalculate the corrections to gravito-
magnetic precession and solve the orbital perturbation
equations to find the CS corrected, averaged rate of change
of the periastron. Using the measurement of periastron
precession from the double-binary-pulsar PSR J0737-
3039A/B [26], we place a bound on the magnitude of the

time derivative of the CS coupling: _# ¼ �CS &
6� 10�9 km or equivalently MCS * 33 meV (in natural
units), much stronger than the previous Solar System
constraint.

The remainder of this paper deals with the details of this
calculation, and it is divided as follows: Section II defines
CS modified gravity and presents the modified field equa-
tions of the theory; Section III tests the nondynamical
framework with the double binary pulsar; Section IV con-
cludes and points to future research.

We shall here employ the conventions in [27], with
Greek letters ranging over spacetime indices, and Latin
letters over spatial indices only. We work exclusively in
four spacetime dimensions, with the metric signature
ð�;þ;þ;þÞ. Round and square brackets in index lists
denote symmetrization and antisymmetrization, respec-
tively, namely Tð��Þ ¼ 1=2ðT�� þ T��Þ and T½��� ¼
1=2ðT�� � T��Þ. The Einstein summation convention is

employed unless otherwise specified and geometric units
(G ¼ c ¼ 1) are used mostly throughout the paper, except
when relating our results to those of Ref. [2], where we use
natural units (h ¼ c ¼ 1).

II. CHERN-SIMONS MODIFIED GRAVITYAND
THE FAR-FIELD SOLUTION

Let us begin by summarizing the basic equations of CS
modified gravity (see e.g. [28] for a pedagogical review or

[1,2,7] for more details). The CS action is here defined by

S ¼ SEH þ SCS þ S# þ Smat; (1)

where

SEH ¼ �
Z
V
d4x

ffiffiffiffiffiffiffi�g
p

R; (2)

SCS ¼ �

4

Z
V
d4x

ffiffiffiffiffiffiffi�g
p

#�RR; (3)

S# ¼ ��

2

Z
V
d4x

ffiffiffiffiffiffiffi�g
p ½g��ðr�#Þðr�#Þ þ 2Vð#Þ�;

(4)

Smat ¼
Z
V
d4x

ffiffiffiffiffiffiffi�g
p

Lmat: (5)

Equation (2) is the Einstein-Hilbert action, Eq. (3) is the
CS correction, Eq. (4) is the action for the scalar field, and
the last equation represents additional matter degrees of
freedom. In these equations, ��1 ¼ 16�G, �, and � are
dimensional coupling constants, g is the determinant of the
metric, r� is the covariant derivative associated with the
metric g��, and R is the Ricci scalar. The CS action

depends on the Pontryagin density �RR, namely,

�RR ¼ R ~R ¼ �R�
�
��R�

���; (6)

where the dual Riemann-tensor is

�R�
�
�� ¼ 1

2
����	R�

��	; (7)

and ����	 the four-dimensional Levi-Civita tensor.
From the action we can derive the CS modified field

equations [1,2]

G
� þ �

�
C
� ¼ 1

2�
ðTmat


� þ Tð#Þ

� Þ; (8)

�h# ¼ �
dV

d#
� �

4
�RR; (9)

where G
� is the Einstein tensor and the C tensor C
� is

defined via [29]

C
� :¼ v	�
	��ð
r�R

�Þ
� þ v	�

�R	ð
�Þ�; (10)

where h is the D’Alembertian operator, and v	 ¼ r	#
and v	� ¼ r	r�# are the covariant velocity and accel-
eration of the scalar field. The matter stress-energy tensor

is Tmat

� and the scalar-field stress-energy is Tð#Þ


� [see e.g.

Eq. (67) in [25]], where
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T#
�� ¼ �½v�v� � 1

2g��v	v
	 � g��Vð#Þ�: (11)

The scalar-field potential Vð#Þ depends on the fundamen-
tal theory from which CS modified gravity derives. In
string theory, # is a moduli field with a shift symmetry
that forces the potential to vanish. One can generally
employ this assumption to set the potential to zero.

One of the main ingredients of CS modified gravity is
the CS coupling scalar # ¼ #ðx
Þ, which is a function of
spacetime. If this field were a constant, then the modified
theory reduces to GR because the Pontryagin density is a
purely topological term. The coupling constant � deter-
mines the coupling strength of the CS scalar and the
Riemann curvature, while the coupling constant � deter-
mines the magnitude of the energy in the scalar field. The
choice of units for either ð�;�; #Þ fixes the units for the
rest. For example, if ½�� ¼ LA where L is a unit of length
and A is any real number, then ½#� ¼ L�A and ½�� ¼
L2A�2, where we required the action to be dimensionless
when using natural units (h ¼ 1). If instead we use geo-
metric units (G ¼ c ¼ 1), then the action has units of L2,
which if ½#� ¼ LA, requires ½�� ¼ L2�A and ½�� ¼ L�2A.

CS modified gravity can be classified into two distinct
subtheories: a dynamical one and nondynamical one. In the
dynamical theory, � and � are arbitrary and the field
equations are written in Eqs. (8) and (9). In the nondynam-
ical theory, � ¼ 0 at the level of the action, and the field
equations become

G
� þ �

�
C
� ¼ 1

2�
Tmat

� ; (12)

0 ¼ �RR: (13)

The evolution equation for # thus becomes a differential
constraint, the so-called Pontryagin constraint, for the
space of allowed solutions, while the scalar field is an
externally prescribed quantity.

In this paper, we shall choose to work with the non-
dynamical theory,2 since this has already been studied in
detail and constraints (albeit weak) have already been
placed on the strength of the correction [2,13–15]. In the
nondynamical framework, the functional form of the CS
coupling scalar # is not predetermined. When CS modified
theory was originally proposed [1], a specific choice was
made, namely, #c ¼ �CSt, where �CS is a constant with
dimensions of length. A possible interpretation for #c is as
an ‘‘arrow of time’’ since its associated embedding coor-
dinate becomes vc


 ¼ ½�CS; 0; 0; 0�. From a mathematical

standpoint, this choice is convenient, since it leaves the CS
action time translation and reparameterization invariant
(see e.g. [1] for more details). From a physical standpoint,
this choice is also convenient, since the Schwarzschild
solution is automatically recovered for stationary and

spherically symmetric backgrounds, and thus, most Solar
System tests are automatically passed. The only tests that
are not automatically passed are those that involve grav-
itomagnetism, such as LAGEOS and Gravity Probe B, and

these experiments have been used to constrain _#c ¼ �CS &
103 km [2]. In Appendix A, we present some informal
arguments for why # ¼ #c might be the only allowed
functional for the CS field in the Solar System, although
a formal proof is still lacking.
With such a choice of #, one can solve the linearized

field equations for the metric components. In Appendix A,
we show explicitly that the temporal-temporal and spatial-
spatial sectors of the modified field equations are automati-
cally satisfied, which implies that scalar gravitational per-
turbations are unaffected by the CS modification. The 0i
field equations, however, are CS corrected, but they can be
solved to linear order in �CS via (see Appendix A for more
details)

g0k ¼ �4
Z vk�

0

jx� x0jd
3x0 � 2�CS

Z
d3x0

ð ~r�� ~vÞk
jx� x0j ;

(14)

where � is a matter density distribution, while vi is its
three-velocity, � is the Euclidean cross product, and we
have neglected any time dependence of the Newtonian
gravitational potential. The vectorial solution presented
here is similar to that found in [14,15], except that here
we consider generic density distributions. One can show
that in the limit as � ! m�3ðxiÞ, Eq. (14) reduces identi-
cally to Eq. (44) in [14], with the appropriate choice of �CS.
The gravitomagnetic potential presented in Eq. (14) is

similar to that found in [2]. One can show that if �vi is
replaced with the stress-energy component appropriate to a
homogeneous rotating sphere, then this potential reduces
to Eq. (B4) in [2] with the appropriate choice of �CS and to
linear order. Care must be taken, however, when solving
explicitly Eq. (14) with a nontrivial density distribution, as
boundary terms might be required to ensure the junction
conditions are satisfied [2].

III. ASTROPHYSICAL TESTS OF CS MODIFIED
GRAVITY

A. Weak-field tests

The lack of a CS correction to the scalar sector of the
gravitational perturbations implies that most astrophysical
process are unaffected. For example, the equations of
structure formation remain untouched because the
Poisson equation is not CS corrected and the stress-energy
tensor remains locally conserved. The vectorial sector of
the metric, however, is CS modified in a normal direction
relative to the GR prediction. For randomly oriented ve-
locities, the average value of the leading-order CS correc-
tion [that shown in Eq. (14)] in fact identically vanishes,
simply because the correction is odd in vi and hvii ¼ 0. In2Henceforth, we choose � ¼ �, following [1]
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many astrophysical scenarios, however, the velocity field is
not randomly oriented. One such case are binary systems,
where the CS correction leads to an anomalous frame-
dragging effect.

Anomalous frame dragging induces modifications on a
variety of astrophysical processes, such as the formation of
accretion discs around protoplanetary systems and the
evolution of neutron star spins. The CS correction, how-
ever, would be hard to detect in such processes because it
scales inversely with the radius of curvature of the system,
as one can see from Eq. (14). Galactic radii are on the kpcs
scale, which renders the ratio of the CS correction to the
GR prediction on the Oð10�17Þ if we saturate the Solar
System constraint [2].

Although the CS correction is insignificant in the evo-
lution of noncompact astrophysical sources, this is not the
case for binary systems. For example, inspiraling black
hole binaries would be ideal laboratories to test CS modi-
fied gravity. Such systems do not radiate electromagneti-
cally unless surrounded by an accretion disk, but
gravitational wave observations with space-based or
earth-based detectors could be used to test the modified
theory [20,21,30,31]. Such observations would be sensitive
to the integrated history of the CS term, instead of its
instantaneous value.

Another type of binary system that shall be used in this
paper to test the modified theory are binary pulsars. In such
systems, there are two important scales the CS correction
could couple to: the radius of curvature of the system,
which is proportional to the semimajor axis a; and the
radius of curvature of either component, which is propor-
tional to the radius of either body R. As we shall see, the
GR prediction for the precession of the periastron scales as
a�3, while the CS correction scales as a�1R�2, which
implies that observed binary systems are preferred labora-
tories to test the modified theory since a=R�Oð105Þ.

One might worry at this juncture that the CS correction
dominates over the GR solution whenM=a � 1, since the
former seems to decay more slowly with semimajor axis
than the latter. In this paper, however, we shall assume that
the solution in Eq. (14) applies when the CS correction is
small relative to the GR solution. This is indeed the case
provided �CS � R3=a2, which for the binary system under
consideration becomes �CS � 10�6 meters. We shall see
that the bound derived in this paper forces �CS to be well
below this value, and thus, the approximation made are
indeed valid.

B. Binary pulsar test

Consider binary systems of spinning neutron stars,
whose orbital evolution we shall model through a geodesic
study of a compact object in the background of a rotating,
homogeneous sphere. Following [2], the stress-energy ten-
sor of this sphere will be described by T0i ¼ �ji, where the

current ji ¼ �0ð ~�� ~rÞi�ðR� rÞ, with �0 some constant

density, �i ¼ ½0; 0;�� the angular velocity vector in
Cartesian coordinates, ri ¼ ½x; y; z� the distance from the
center of the sphere to a field point and R the radius of the
sphere. The total mass of this sphere is M ¼ 3�0=ð4�R3Þ,
while its spin angular momentum Ji ¼ I�i, where I ¼
ð2=5ÞMR2 is the moment of inertia
The motion of the compact body in this background is

governed by the geodesic equations ~a ¼ �4 ~v� ~B, where
we have neglected time-dependent scalar potentials and
where ~a and ~v are the three-acceleration and three-velocity

of the compact object. The gravitomagnetic field is ~B :¼
~r� ~A, where the gravitomagnetic potential is Ai :¼
�g0i=4. As anticipated in the previous section, both the
field and the potential have been computed for this stress
energy to arbitrary order in �CS [2], but we shall here work
only to leading order �CS, since as we shall see second-
order effects will be negligible. The gravitomagnetic field

can then be written as ~BCS ¼ ~B� ~BGR, with

~B CS ¼ c0
r
cos½ðrÞ�½ ~J � tanð ~J � r̂Þ � ð ~J � r̂Þr̂�; (15)

where ðrÞ ¼ 2r=�CS, c0 ¼ 15�CS=ð4RÞ sin½ðRÞ�, r̂ ¼
~r=r, ~J ¼ ~J=R2 and � the Euclidean dot product. Note
that Eq. (15) accounts both for the homogeneous solution
of [14,15] and the boundary term found in [2].
From the gravitomagnetic field, we can straightfor-

wardly compute the CS correction to the geodesic accel-
eration by taking the cross product with the velocity vector

~aCS ¼ � 4c0
r

fcos½ðrÞ�ð ~v� ~J Þ � sin½ðrÞ�
� ½ ~J ð ~v � r̂Þ � r̂ð ~J � ~vÞ�
� cos½ðrÞ�ð ~J � r̂Þð ~v� r̂Þg; (16)

plus subdominant terms that scale with higher powers of
the derivatives of the CS scalar.
One must be careful when expanding solutions in �CS,

since this quantity has units of length, and thus, corrections
will arise as combinations ofOð�CS=RÞ andOð�CS=aÞ. The
approximations made so far hold provided these combina-
tions are much smaller than unity. As we already argued,
�CS � R3=a2, which supersedes the above requirements.
Care must be taken, however, since the argument of the
oscillatory functions scales as 1=�CS, and thus, any spatial
derivatives of Ai (or g0i) will be larger than Ai (or g0i) by
one power of �CS. When this fact is taken into account, the
results for the gravitomagnetic field found in [2,14,15] and
[2] are in formal agreement.3

We shall here parameterize the trajectory of the compact
object in terms of equatorial coordinates. We shall thus

3As already discussed, [2] obtains a boundary contribution that
is not modeled in [14,15], because the latter employed a point-
particle approximation, while the former dealt with extended
bodies.
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define the triad

r̂ ¼ ½cosu; cos� sinu; sin� sinu�;
t̂ ¼ ½� sinu; cos� cosu; sin� cosu�;
n̂ ¼ ½0;� sin�; cosi�

(17)

to describe radial, transverse, and normal directions rela-
tive to the comoving frame in the orbital plane. The quan-
tity � is the inclination angle, w is the argument of
periastron, u ¼ fþ w with f the true anomaly and � ¼
0 is the right ascension of the ascending node, chosen in
this way so that the line of nodes is coaligned with the x̂
vector [32].

The perturbation equations for the variation of the
Keplerian orbital elements is governed by the projection
of the geodesic acceleration on this triad. To leading order
in �CS, however, only the radial projection ar :¼ ~a � r̂ is CS
modified, leading to aCSr :¼ ar � aGRr :

aCSr ¼ �4c0 _uJ fcos� cos½ðrÞ� þ sin� cosu sin½ðrÞ�g:
(18)

We can now compute the variation of the orbital ele-
ments by studying the perturbation equations [32]

da

dt
¼ 2

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
�
ear sinfþat

p

r

�
;

de

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

na

�
ar sinfþat

�
cosfþ 1

e

�
1� r

a

���
;

di

dt
¼ 1

na
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p an
r

a
cosu;

d�

dt
¼ 1

na sin�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p an
r

a
sinu;

d!

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

nae

�
�ar cosfþ at

�
1þ r

p

�
sinf

�
� cos�

d�

dt
;

dM
dt

¼ n� 2

na
ar

r

a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p �
d!

dt
þ cos�

d�

dt

�
; (19)

where n ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
M=a3

p
is the unperturbed Keplerian mean

motion, e is the eccentricity, and M is the mean anomaly.

Since ~aCS � t̂ ¼ Oð�2CSÞ ¼ ~aCS � n̂, _�CS ¼ 0 while _wCS ¼
�ar=ðnaeÞ cosf, to leading order in the eccentricity.

The average of the rate of change of w can be computed
by integrating _! over one orbital period:

h _!i :¼
Z T

0

_!

P
dt ¼

Z 2�

0
_!

ð1� e2Þ3=2
2�ð1þ e cosfÞ2 df; (20)

during which we shall assume the pericenter is approxi-

mately constant, so that _u� _f ¼ nð1þ e cosfÞ2 �
ð1� e2Þ�3=2, and the motion of the compact object can
be described by a Keplerian ellipse, where r ¼
að1� e2Þð1þ e cosfÞ�1. This last assumption is justified

by the fact that the motion of test particles about any
arbitrary background remains unchanged relative to the
GR prediction, i.e. test-particle motion satisfies the geode-
sic equation both in GR and in CS modified gravity. Such is
the case provided the strong-equivalence principle is sat-
isfied, which is guaranteed by the Pontryagin constraint in
the nondynamical version of the theory or by the scalar-
field equation of motion in the dynamical version (see [31]
for a proof). Finally, the integrals in Eq. (20) shall be
approximated with a small eccentricity expansion e � 1.
The averaged rate of change of the periastron can then

be decomposed into a GR prediction plus a CS correction,
where the latter is given by

h _wiCS ¼ 15

2a2e

J

R2

�CS
R

X sin

�
2R

�CS

�
sin

�
2a

�CS

�
; (21)

and where the projected semimajor axis is X :¼ a sin�.
Equation (21) neglects terms of order unity, since the
dominant contribution scales as e�1 and we here concen-
trate on systems with small but nonvanishing eccentricity.
The e�1 scaling occurs because although _w scales as cosf,
so does aCSr , and thus, the leading-order term in e does not
vanish upon integration, unlike in the GR case. The orbital
orientation, however, is ill-defined for exactly zero eccen-
tricity, and thus, the limit e ! 0 is meaningless. The scal-
ing in the precession of the periastron of Eq. (21) is
consistent with other precession results studied in the
Solar System [2]. As discussed in the Introduction, the
ratio of CS correction to the GR expectation scales as
a2�CS=R

3, since h _!iGR � J=a3. In the Solar System, how-
ever, a=R is very close to unity, while for binaries a=R�
Oð106Þ.
At this junction, one might worry that the calculation of

the CS modification to _w is not sufficient to place a bound
on the nondynamical theory with the binary pulsar, since
other relevant quantities that play an important role in the
test might also be CS modified [33]. Although this is
generally true, the CS modification to other quantities turns
out to be either identically zero or subleading. This is so
because C00 identically vanish for # / t in the nondynam-
ical formalism, while Cij is proportional to gravitational

wave perturbations only. These waves will be CS modified,
but the CS correction to the quadrupole formula is sub-
leading [hCSij / ð�CS=DLÞd3Iij=dt3, where Iij is the quad-

rupole moment and DL is the luminosity distance to the
source [31]], and thus, the CS correction to the rate of
change of the binary period _P is also subleading. Since the
only post-Keplerian parameters that is CS corrected to
leading order is _!, we can treat, as a first approximation,
all other orbital quantities as given in [34].
With these remarks in mind, observations of the preces-

sion of the periastron in the double-binary-pulsar PSR
J0737-3039A/B [26] can be used to test CS modified
gravity. We shall treat pulsar A as the rotating homoge-
neous sphere, and pulsar B as the test body in orbit around
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the sphere, where the bodies are sufficiently separated that
we can neglect tidal interactions. The relevant system
parameters are [34] the mass MA ¼ M 	 1:34M
, the
projected semimajor axis X 	 1:41 s, the eccentricity
eb 	 0:088, and the inclination angle � 	
89ð�76;þ50Þ deg . From the projected semimajor axis
we can deduce that ab 	 4:24� 105 km, where we used
the nominal value for the inclination angle. We assume the
standard value for the moment of inertia of body A I 	
1038 kgm2, which leads to a radius of RA 	 9:69 km and
an angular momentum of JA 	 2:8� 1040 kgm2 s�1,
since the rotational period has been determined to be
22 milliseconds [34,35]. The precession of the periastron
has been measured to be _!� 16:96 degrees per year, in
complete agreement with the GR expectation, with an
overall uncertainty of approximately � ¼ 0:05 degrees
per year4 [34,35].

We can then constraint �CS by requiring graphically that
h _!CSi be less than �. The uncertainty in geometric units
becomes � ¼ 9:2� 10�17 radians km�1. Figure 1 presents
a plot of h _!CSi as a function of �CS.

A 1	 constraint can then be derived from this figure,

namely, _# ¼ �CS & 6� 10�9 km, or simply MCS :¼
_#�1 ¼ ��1

CS * 33 meV in natural units, which is approxi-

mately 1011 times stronger than current Solar System
constraints.

We have checked that terms higher order in e or �CS do
not significantly affect this bound, which is however pri-
marily affected by uncertainties in the semimajor axis.
Even with the most pessimistic choice of a, the bound
deteriorates only by a factor of 20, still leading to a con-
straint 1010 times stronger than the Solar System one. Also

note that this bound is consistent with the approximation
made to derive the CS correction to periastron precession.

IV. CONCLUSIONS

We have studied nondynamical CS modified gravity
with a timelike CS coupling scalar. Until now, the only
constraint on nondynamical CS modified gravity (MCS &
10�13 eV) came from Solar System experiments due to CS
corrections to frame dragging [2,14,15]. We here calcu-
lated the leading-order CS correction to post-Keplerian
parameters of binary systems. We find that the precession
of the periastron is the only parameter that is CS corrected
to leading order. This corrections is such that its ratio to the
GR expectation scales as a2=R2, where a is the semimajor
axis and R is the neutron star radius. For the binary pulsar
considered here, this ratio is of Oð1010Þ, which leads to an
enormous enhancement over previous Solar System con-
straints: MCS > 33 meV. This constraint is approximately
a hundred billion times stronger than current Solar System
constraints.
Although this paper constrains the nondynamical frame-

work of CS modified gravity to unprecedented levels, it
cannot do the same for the dynamical formulation.
Corrections to post-Keplerian parameters in the dynamical
theory are of high post-Newtonian order, because the
Pontryagin density vanishes to leading order. Meaningful
tests of the dynamical formulation would then have to rely
on strongly gravitating sources.
One such scenario is the inspiral and merger of compact

objects. Dynamical CS modified gravity should correct
both the trajectories of such objects as well as the genera-
tion of gravitational waves. A detection of such waves with
LIGO or LISA could then be used to place stringent bounds
on the dynamical formulation [20,21,30,31]. A program
that pursues just such a calculation is currently ongoing
[30,31].
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APPENDIX A: FAR-FIELD SOLUTIONS IN
NONDYNAMICAL CS GRAVITY

In this Appendix, we study solutions to the modified
field equations in the far field. We begin by describing the
approximation schemes employed and then tackle the
modified field equations order by order. We shall here
initially allow # to be arbitrary, but we shall present
some informal arguments that suggest #c might be the
only solution allowed in the Solar System, albeit a formal
proof is lacking.
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FIG. 1. CS correction to the precession of the periastron as
a function of �CS for the system parameters of PSR J0737-
3039A/B.

4The precession of the periastron has been measured to higher
accuracy for pulsar A, but we adopt here the larger uncertainty so
as to derive a conservative bound on mCS.
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1. Approximation schemes

Consider the far-field expansion of the line element

ds2 ¼ �ð1þ 2�Þdt2 þ 2gidtdx
i þ ð1� 2c Þ�ijdx

idxj;

(A1)

where t, xi are Cartesian coordinates, �ij is the Euclidean

metric, ðc ; �Þ and gi :¼ g0i are scalar and vectorial per-
turbation potentials, respectively, in the longitudinal gauge
(@ig

i ¼ 0).
The perturbation potentials and the matter sources that

generate them shall be treated perturbatively, in a post-
Newtonian (PN) sense, where the latter are assumed slowly
moving (� :¼ v=c � 1), weakly gravitating, and isolated
(see e.g. [33]). We shall ignore gravitational wave pertur-
bations, since these have been partially studied elsewhere
[1,16,20,36]. In particular, we shall model these sources
via a perfect fluid stress-energy tensor, such that T00 ¼
� ¼ Oð�2Þ, T0i ¼ ��vi ¼ Oðv3Þ and Tij ¼ Oð�4Þ, where
� is density and vi is the three-velocity of the fluid.

We shall be concerned here with binary systems, whose
exterior gravitational field (or metric) can be modeled in
GR (to leading post-Newtonian order) via

c GR ��GR �m1

r1
þm2

r2
; giGR �m1

r1
vi
1ðtÞ þ

m2

r2
vi
2ðtÞ;
(A2)

where m1;2 are the component masses, r1;2 ¼ jxi � xi1;2ðtÞj
are their field point positions, with xi1;2ðtÞ the trajectories

and vi
1;2ðtÞ ¼ _xi1;2ðtÞ the velocities. Note that these poten-

tials are not spherically symmetric and are here expressed
in Cartesian coordinates, in spite of the appearance of
fiducial radial distances r1;2. Such potentials become

spherically symmetric only in the limit m2 ! 0 and m1

fixed (or vice versa), in which case one recovers a boosted,
Schwarzschild metric in harmonic coordinates. If these
objects are spinning, then the gravitomagnetic sector of
the metric giGR acquires more terms proportional to the spin

angular momentum (see e.g. [14,15]). These equations can
be derived by assuming a point-particle approximation, but
we relegate any such details to the post-Newtonian reviews
in [33,37].

We shall concentrate on a rather special, yet physically
reasonable subset of metric perturbations: potentials that
are small CS deformations of GR solutions. In other words,
on top of the PN perturbative scheme, we shall employ a
small-coupling approximation. In the dynamical formal-
ism, this can be achieved by expanding in � :¼
�2=ð��M4Þ � 1, where M is the gravitational mass (a
length scale) associated with �. In the nondynamical
scheme, the perturbation parameter becomes � ¼
j@
#j=M � 1, which for # ¼ #c becomes _#=M ¼
�CS=M � 1.

The combined use of a PN expansion and the small-
coupling approximation defines a bivariate perturbation

scheme, where both � and � can be treated as indepen-
dently small parameters. Moreover, in the dynamical
framework, this scheme defines a boot-strapping frame-
work in which one can first solve the evolution equation for
# in the non-CS corrected background, and then use this #
to solve the modified field equations to first-order in the CS
correction. For more details on this boot-strapping scheme
or the small-coupling approximation as applied to the
dynamical theory, we refer the reader to [30].
Based on these considerations, we shall commonly make

the decomposition A ¼ AGR þ �ðAÞ, where A is any metric

perturbation, AGR is a GR solution ofOð�0Þ and �A is some
undetermined potential of Oð�Þ. Moreover, we shall re-
quire that A and �A be at least of the same order in �, such
that we can search for CS-deformed solutions. The metric
perturbations shall then be expanded as

c ¼ c GR þ �ðc Þ; � ¼ �GR þ �ð�Þ;

gi ¼ giGR þ �i
ðgÞ;

(A3)

where c GR and �GR are both of Oð�2; �0Þ, giGR is of

Oð�3; �0Þ, �ðc Þ and �ð�Þ are both of Oð�2; �Þ, and �i
ðgÞ is

of Oð�3; �Þ. The notation Oð�m; �nÞ stands for a term of
Oð�mÞ or Oð�nÞ.
Such a decomposition neglects CS corrections that mod-

ify the leading-order behavior of GR. For example, we
shall not consider a perturbation �ð�Þ of Oð�; �Þ. Such an

assumption is justified on the basis of the small-coupling
approximation and the fact that GR has been found to agree
to incredible precision with Solar System experiments
[33]. The above expansion then guarantees that to lowest
order all such experiments are passed, with the new poten-
tials �ðc Þ;ð�Þ;ðgÞ leading only to small perturbations.

2. Scalar metric perturbations

The scalar metric perturbations are traditionally solved
for by studying the field equations of a theory toOð�2Þ. For
an arbitrary #, the modified field equations become

r2c ¼ 4��; (A4)

~� i
jk½ð@j#Þ@kr2 þ ð@jm#Þ@mk�ðc þ�Þ ¼ 0; (A5)

ð�ijr2 � @ijÞð�� c Þ ¼ �ð@l _#Þ~�ðikl@jÞkðc þ�Þ; (A6)

wherer2 is the Laplacian in Cartesian coordinates, �ijk :¼
�0ijk and ~�ijk is the Levi-Civita symbol.
The decomposition of Eq. (A3) simplifies the modified

field equations. To Oð�2; �0Þ, the field equations reduce to
those of GR, namely,

r2c GR ¼ 4��; (A7)

ð�ijr2 � @ijÞð�GR � c GRÞ ¼ 0; (A8)

where the temporal-spatial component automatically van-
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ishes. Equation (A7) leads to the standard GR solution
[2,14,15]

c GR / �
Z �ðx0Þ

jx� x0jd
3x0; (A9)

while Eq. (A8) implies �GR ¼ c GR.
To next order [Oð�2; �Þ], the modified field equations

become

r2�ðc Þ ¼ 0; (A10)

~� i
jk½ð@j#Þ@kr2 þ ð@jm#Þ@mk�c GR ¼ 0; (A11)

ð�ijr2 � @ijÞð�ð�Þ � �ðc ÞÞ ¼ �2ð@l _#Þ~�ðikl@jÞkc GR:

(A12)

Equation (A10) forces �ðc Þ to be a solution to the Laplace

equation. The remaining two equations [Eqs. (A11) and
(A12)] are clearly satisfied if # ¼ #c.

We have searched for other choices for # that satisfy
these equations and we have found the following sufficient
conditions:

ðiÞ @i# ¼ 0; ðiiÞ @i# ¼ Oð�Þ: (A13)

Clearly, the choice # ¼ #c satisfies either (i) or (ii).
Option (i) forces both terms in Eq. (A11) to exactly vanish,
as well as the right-hand side of Eq. (A12), while option (ii)
forces these terms to vanish only perturbatively, since then
ð@#Þð@c GRÞ ¼ Oð�3; �Þ. Either option then forces �ðc Þ ¼
�ð�Þ, but since these functions must satisfy the Laplace

equation and the metric (and thus �ðc Þ;ð�Þ) must be asymp-

totically flat at spatial infinity,5 we choose �ðc Þ ¼ 0 ¼
�ð�Þ.

Although the conditions presented above are sufficient,
we cannot formally prove that they are necessary to satisfy
the modified field equations. In other words, although we
have failed to find a solution to the above system of
differential equations, we cannot prove that a solution
does not necessarily exist.

3. Vectorial metric perturbations

The vectorial sector of the metric perturbations can be
solved for by studying the field equations to Oð�3Þ. For an
arbitrary scalar field, these equations become

~� ijkð@i#Þr2@jgk ¼ �~�ijkð@il#Þ@ljgk; (A14)

32�G�vi þ 8@i _c ¼ 2r2gi � _#~�i
klr2@kgl

� ~�i
klð@j _#Þð@jkglÞ

� ~�ljkð@l _#Þð@ijgkÞ; (A15)

4ð@l#Þ~�ðilkð@jÞk _c Þ ¼ ð@l#Þ~�ðilkðr2@kgjÞÞ þ ~�ði
kl €#ð@jÞkglÞ

� 2~�ði
nlð@nk#Þ@l½jÞgk�; (A16)

where we have used the longitudinal gauge condition.
Once more, when we apply the CS-deformed decom-

position of Eq. (A3), the modified field equations simplify.
ToOð�3; �0Þ, only the temporal-spatial component of these
equations survive:

r2gGRi ¼ 16�G�vi þ 4@i _c GR; (A17)

which leads to the exterior gravitomagnetic solution of
Eq. (A2) (see e.g. [14,15,33]).
To next order [Oð�3; �Þ], the field equations become

~� ijkð@i#Þr2@jg
GR
k ¼ �~�ijkð@il#Þ@ljgGRk ; (A18)

2r2�ðgÞ
i ¼ _#~�i

klr2@kg
GR
l þ ~�i

klð@j _#Þð@jkgGRl Þ
þ ~�ljkð@l _#Þð@ijgGRk Þ; (A19)

4ð@l#Þ~�ðilkð@jÞk _c GRÞ ¼ ð@l#Þ~�ðilkðr2@kgjÞGRÞ
þ ~�ði

kl €#ð@jÞkgGRl Þ
� 2~�ði

nlð@nk#Þ@l½jÞgGRk� : (A20)

With the choice # ¼ #c, not all the field equations are
automatically satisfied, with the temporal-spatial compo-
nent becoming

r2�ðgÞ
i ¼

_#

2
~�i

klr2@kg
GR
l ; (A21)

whose solution is given in Eq. (14) by noting that g0i ¼ gi.
If a nontrivial density distribution is used, such as the
homogeneous sphere in Sec. III, then one must ensure
that the solution to Eq. (A21) accounts for possible bound-
ary contributions that arise to guarantee the junction con-
ditions are satisfied.
Let us now argue that the conditions of Eq. (A13)

together with the modified field equations to this order
lead directly to # ¼ #c. With either condition, one can
show that Eq. (A18) and the second line of Eq. (A19) either
automatically vanish or become of Oð�4; �Þ. Equation

(A20), on the other hand, leads to ~�ði
kl €#ð@jÞkgGRl Þ ¼ 0,

which forces €# ¼ 0 since gGRi does not vanish.

Combining Eq. (A13) with €# ¼ 0 one is then led to # ¼
#c.
Once more, although the conditions in Eq. (A13) are

sufficient, we have not succeeded in formally proving that
they are necessary to satisfy the modified field equations.

5Since the metric is asymptotically flat, it must decay as 1=r1
or 1=r2 at spatial infinity, but the Laplacian of these functions is
nonvanishing. For example, in the limit of vanishing m2, the
Laplacian of 1=r becomes proportional to the Dirac delta
function.
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In other words, we could not mathematically prove that
Eqs. (A18)–(A20) do not possess some other obscure
solution that we have missed.

4. The Pontryagin constraint

One last issue to consider is whether the solution found
above satisfies the Pontryagin constraint of the nondynam-
ical theory. The Pontryagin density is independent of the
CS scalar, but for the line element in Eq. (A1), it is given by

�RR ¼ �4~�ijkð@jlgiÞ@klð�þ c Þ þOð�6Þ: (A22)

With the GR solutions of Eq. (A2), the Pontryagin density
identically vanishes to this order, since @ir1;2 ¼ ni1;2 and

the Levi-Civita symbol is completely antisymmetric under
index permutation. If one were to include spin correction to
the gravitomagnetic components, then the Pontryagin den-
sity would not vanish. In this sense, the Pontryagin density,
to leading order, is of Oð�6Þ, and thus, unless a post-
Newtonian expansion is carried to high order, this con-
straint does not affect the analysis of this paper.
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