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The Casher argument, which is believed to be quite general, states that in the confining regime chiral

symmetry is necessarily broken. In the large-Nc limit and at moderate and low temperatures, QCD is

confining up to arbitrary large densities, and there should appear a quarkyonic matter. It has been

demonstrated, within a manifestly confining and chirally symmetric model, which is a 3þ 1 dimensional

generalization of the ’t Hooft model, that, at zero temperature and at a density exceeding a critical one, the

chiral symmetry is restored while quarks remain confined in color-singlet hadrons. This is in conflict with

the Casher argument. Here, we explain the reason why the Casher argument fails and clarify the physical

mechanism lying behind such confined but chirally symmetric hadrons.
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I. INTRODUCTION

A famous Casher argument [1] states that, in a confining
domain, chiral symmetry should be necessarily broken in
hadrons. The argument is simple, transparent, and relies on
the constraints implied by requirements of confinement of
quarks. It is believed to be rather general. By contrast, the
’t Hooft anomaly matching conditions [2,3] state that, at
zero temperatures and densities, confinement implies nec-
essarily chiral symmetry breaking in the vacuum. These
conditions look rather formal and do not suggest any
physical picture that could lie behind such constraints.
These two generic arguments, supplemented by various
models, constituted the basis for the belief that the QCD
phase diagram should contain two general phases: one with
both confinement and broken chiral symmetry (hadronic
phase) and the other one, at larger temperatures and/or
densities, without confinement and with restored chiral
symmetry (quark-gluon matter). Quite recently McLerran
and Pisarski suggested the existence of another state of the
matter—quarkyonic phase [4]. Their crucial observation is
that, in the large-Nc limit and at low and moderate tem-
peratures, confinement in QCD survives up to arbitrarily
high densities. Indeed, if the large-Nc limit is taken first,
then there are no dynamical quark loops and hence nothing
screens the confining gluon propagator, whatever nature
this propagator can be. Then the Wilson and Polyakov loop
criteria of confinement for a pure gauge theory survive in
this case. Therefore, in the large-Nc dense matter confine-
ment takes place exactly in the same way as in the vacuum
simply because there is no screening of the linear confining
potential between the static quark sources in the funda-
mental representation. They have also suggested that, since
chiral symmetry is expected to be restored at some critical
density, then there could appear a chirally symmetric but
confined subphasewithin the quarkyonic matter. Existence
of such a subphase would mean that, while deep in the
quark Fermi sea, quark language is adequate, near the
Fermi surface, confinement necessarily groups quarks

into color-singlet hadrons with the restored chiral symme-
try. Then the only allowed excitation modes in this phase
are confined but chirally symmetric hadrons. However, no
microscopic mechanism of this phenomenon was
suggested.
Shortly after this, it was shown [5,6], within a manifestly

confining and chirally symmetric solvable model, that this
was indeed possible. The following mechanism for the
confining but chirally symmetric matter at large densities
was observed. Indeed, if one assumes an instantaneous
Coulomb-like confining interaction between quarks (which
is seen in Coulomb-gauge studies of QCD [7] and in
Coulomb-gauge lattice QCD simulations [8]) then a quark
Green function, that is a solution of the gap equation,
acquires not only a chiral symmetry breaking Lorentz-
scalar part, but also a Lorentz-vector part, which preserves
chiral symmetry. Both these parts are infrared-divergent,
which guarantees that the quark is confined. In color-
singlet hadrons, the infrared divergence cancels exactly,
so the color-singlet hadrons are finite and well-defined
quantities. At low temperatures and rather large densities,
chiral symmetry is restored due to the Pauli blocking of the
quark levels required for the existence of the quark con-
densate. This means that the Lorentz-scalar part of the
quark Green function vanishes. Meanwhile, the Lorentz-
vector part of the quark Green function is still there and is
infrared divergent. Hence a single quark does not exist. At
the same time, as was mentioned before, this infrared
divergence cancels exactly in color-singlet hadrons, so
that these manifestly chirally symmetric hadrons form
exact chiral multiplets. The masses of such hadrons are
generated only through chirally symmetric dynamics.
The chirally symmetric quarkyonic matter was also

studied within the Polyakov-Nambu-Jona-Lasinio model
[9–11]. This model is nonconfining, however, and the
problem of the confined but chirally symmetric hadrons
(excitations) cannot be formulated in its framework.
A natural question arises. Existence of such hadrons is in

conflict with the Casher argument. What is wrong? Here
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we demonstrate that the Casher argument is not general
enough and in reality it does not preclude existence of
confined but chirally symmetric hadrons at large density.

II. THE CASHER ARGUMENT

Suppose we have a quark with a 3-momentum ~pmoving
along the z-axis. Its helicity (chirality) is fixed. Let us
choose, for simplicity, its spin to be parallel to the quark
momentum ~p—see Fig. 1. Confinement means that, at
some point, this quark must turn back and start moving
right in opposite direction. If chiral symmetry is unbroken,
then the quark helicity (chirality) is conserved. Hence, at
the turning point, the quark spin has to be flipped, �Sz ¼
�1. Since the angular momentum is conserved, then this
spin flip must be compensated somehow. The only object
which could be responsible for this spin compensation is
the QCD string. This string does not have Lz and thus
cannot support conservation of the total angular momen-
tum. This implies that, if chiral symmetry is unbroken, the
quark never turns, i.e., there is no confinement. The only
possibility to turn the quark back and, at the same time, not
to violate the angular momentum conservation is to keep
the spin direction fixed. This requires the quark helicity
(chirality) to be changed from þ1 before the turning point
to �1 after the turning point. Therefore, at the turning
point, there must appear a chiral symmetry breaking term
in the quark Green function. In other words, confinement
of quarks requires dynamical breaking of chiral symmetry.
Essentially the same picture takes place in the bag model
[12].

III. CONFINED BUT CHIRALLY SYMMETRIC
HADRONS AT HIGH DENSITY

First, let us overview briefly the essentials of the model
[5,6]. A global chiral symmetry of this large-Nc model is
Uð2ÞL �Uð2ÞR. We assume that there is a linear Coulomb-
like instantaneous Lorentz-vector potential between
quarks. Hence this model can be considered as a straight-
forward generalization of the 1þ 1 dimensional ’t Hooft
model [13], that is QCD in the large-Nc limit in two
dimensions. The ’t Hooft model is exactly solvable.
Under an appropriate choice of the gauge, the only inter-
action between quarks is an instantaneous Coulomb poten-

tial, that is a linear Lorentz-vector confining potential in
two dimensions. Instantaneous Lorentz-vector Coulomb or
Coulomb-like interaction between fermions is one of the
most important elements of both QED and QCD in the
Coulomb gauge. Of course, in four dimensions, gluody-
namics is much richer, so that solving QCD with full
gluodynamics, even in the large-Nc, looks hopeless. It is
postulated within the model that there exists an instanta-
neous Coulomb-like confining potential, like that in the
’t Hooft model in 1þ 1 dimensions, which is seen in lattice
simulations in four dimensions, indeed. Clearly, such a
model represents a certain simplification of real QCD
because gluonic interactions beyond the Coulomb-like
part are neglected. Nevertheless, such a model contains
all principal elements of QCD, such as confinement of
quarks, dynamical breaking of chiral symmetry,
Goldstone bosons, etc. Hence, it can be used as a toy model
related to some aspects of confinement and chiral symme-
try breaking.
The problem of chiral symmetry breaking within this

model was addressed long ago [14–18]. It actually reduces
to solving the gap (Schwinger-Dyson) equation in the rain-
bow approximation, which is exact in the large-Nc limit.
The Fourier transform of the linear potential and loop

integrals are infrared-divergent. Hence an infrared regu-
larization is required. Any physical observables, such as
hadron masses, etc., must be independent of the infrared
regulator �IR in the infrared limit (i.e., when �IR ! 0).
If the quark self-energy operator is parametrized in the

form

�ð ~pÞ ¼ Ap þ ð ~� � ~̂pÞ½Bp � p�; (1)

where the functions Ap and Bp are to be found, then, for an

instantaneous interaction, the Schwinger-Dyson equation
for the self-energy operator (see Fig. 2) reduces to a non-
linear gap equation for the chiral (Bogoliubov) angle ’p,

Ap cos’p � Bp sin’p ¼ 0; (2)

where

Ap ¼ 1

2

Z d3k

ð2�Þ3 Vð ~p� ~kÞ sin’k; (3)

Bp ¼ pþ 1

2

Z d3k

ð2�Þ3 ð ~̂p � ~̂kÞVð ~p� ~kÞ cos’k: (4)

The functions Ap and Bp, i.e., the quark self-energy, are

singular. However, in the gap equation (2), these singular-
ities cancel against each other exactly. In Refs. [5,6,19–
22], the infrared regularization of the linear potential is
chosen in such a way that both functions Ap and Bp as well

as the linear potential contain divergent contributions
1=�IR. This guarantees that a single quark cannot be
observed and is therefore confined. There exist other regu-
larization prescriptions that lead to the same result for the
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FIG. 1. Right-handed quark before and after turning point.
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color-singlet observables, and physics, of course, does not
depend on a particular regularization scheme.

The chiral symmetry breaking is signaled by a nontrivial
solution for the chiral angle, nonzero quark condensate,
and by the dynamical momentum-dependent ‘‘mass’’ of
quarks

h �qqi ¼ �NC

�2

Z 1

0
dpp2 sin’p; MðpÞ ¼ p tan’p:

(5)

The dynamical mass is finite at small momenta and van-
ishes at large momenta.

Given a dressed quark Green function, the homogeneous
Bethe-Salpeter equation for a quark-antiquark bound state
in the rest frame with the instantaneous interaction can be
written in the ladder approximation, which is exact in the
large-Nc limit (see Fig. 3):

�ðm; ~pÞ ¼ �i
Z d4q

ð2�Þ4 Vðj ~p� ~qjÞ�0Sðq0 þm=2; ~p� ~qÞ
� �ðm; ~qÞSðq0 �m=2; ~p� ~qÞ�0: (6)

Herem is the meson mass and ~p is the relative momentum.
The infrared divergence cancels exactly in this equation
and it can be solved either in the infrared limit or for very
small values of the infrared regulator [6,21,22]. Con-
sequently meson masses are well-defined, finite quantities.
The spectrum exhibits a fast effective chiral restoration in
excited mesons at J ! 1—for a review see Ref. [23].

In a dense matter and at low temperatures we assume a
quark Fermi surface with a Fermi momentum pf. Hence,

one is to remove from the integration both in the
Schwinger-Dyson (gap) and Bethe-Salpeter equations all
intermediate quark momenta below pf since they are

Pauli-blocked. The modified gap equation is then the
same as in (2)–(4), but the integration starts not from k ¼
0, but from k ¼ pf. Similarly, the integration in q in the

Bethe-Salpeter equation also starts from q ¼ pf.

At a critical value pcr
f , the gap equation exhibits a chiral

restoration phase transition [5,24]. Hence chiral symmetry
gets restored, so that ’p ¼ 0. The quark condensate and

the dynamical quark mass vanish as well, h �qqi ¼ 0,
MðqÞ ¼ 0, as it follows from (5). At ’k ¼ 0, the
Lorentz-scalar self-energy of quarks vanishes identically,
Ap ¼ 0. The Lorentz spatial-vector self-energy integral Bp

does not vanish at ’k ¼ 0, however, and remains in fact
infrared-divergent. Hence, a single quark is confined at any
chemical potential. As a matter of fact, all color-nonsinglet
objects are infrared divergent and, hence, are confined.
Within the color-singlet hadrons or, in general, in a matter,
the infrared divergence is canceled exactly [6]. The only
allowed (infrared-finite) excitations are color-singlet had-
rons. The spectrum represents a complete set of exact
chiral multiplets [5]. Masses of these excitations are man-
ifestly chirally symmetric and come from the manifestly
chirally-symmetric dynamics.

IV. WHY THE CASHER ARGUMENT DOES NOT
EXCLUDE EXISTENCE OF CHIRALLY

SYMMETRIC HADRONS AT LARGE DENSITY

The spectrum of the color-singlet hadrons (excitations)
at densities above the chiral restoration phase transition,
obtained in Ref. [5], is manifestly chirally symmetric. This
is certainly in conflict with the Casher qualitative argu-
ment. Then it is important to clarify where the Casher
argument fails in the present situation.
In this model, as well as in the ’t Hooft model, a motion

of a quark and an antiquark within a meson is highly
synchronous. This is because the interaction is instanta-
neous (see Fig. 4). When the quark scatters off the confin-

FIG. 3. Homogeneous Bethe-Salpeter equation for the quark-
antiquark bound states.

FIG. 2. Dressed quark Green function and Schwinger-Dyson equation.

FIG. 4. Synchronous motion of a quark and an antiquark in a
meson.
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ing potential, the same happens simultaneously with the
antiquark.

Consider, as an example, the motion of a quark and an
antiquark in a spin-zero meson in a chirally restored re-
gime. At the quark turning point, chiral symmetry requires
a quark spin flip, �Sz ¼ �1. The same turning undergoes
the antiquark and it happens simultaneously. The quark and
the antiquark interact to each other at the turning point via
the chirally symmetric Coulomb-like instantaneous inter-
action. In the meson rest frame, the momenta of the quark
and the antiquark are just opposite, so that the flip of the
antiquark spin is necessarily �Sz ¼ þ1. Consequently, the
total angular momentum in the quark-antiquark system is
conserved, because spin flips of the quark and the antiquark
mutually cancel. This analysis for the J ¼ 0 meson can be
extended straightforwardly to mesons with arbitrary J’s.
Then it makes it clear why the Bethe-Salpeter equation
admits solutions in any nonexotic channel with fixed quan-
tum numbers JPC even when the quark Green function does
not contain the chiral symmetry breaking self-energy part
Ap, as it happens in a dense matter above the chiral

restoration transition. At the same time a single quark is
removed from the spectrum, because the chirally symmet-
ric part of its self-energy, Bp, is always infrared divergent.

This simple picture demonstrates explicitly that the
Casher argument is not general enough to forbid the ex-
istence of confined but chirally symmetric hadrons at large
densities. A physical picture outlined above has obvious
limitations. It relies on the Coulomb gauge where the
presence of an instantaneous interaction is guaranteed. It
remains a puzzle how this physical mechanism looks in
other gauges. In addition, the Coulomb gauge is not co-
variant, so physics in a moving frame should look differ-
ently. However, we do know from the ’t Hooft model that,
while all ‘‘intermediate’’ results are manifestly gauge-
dependent and look differently in different gauges, the final
results for color-singlet quantities are gauge and Lorentz
invariant. What mechanism will take place for the chirally
symmetric quarkyonic matter in QCD within an alternative
gauge remains to be seen. (Lorentz invariance is manifestly
broken in a medium, however.)
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