
Limits on isotropic Lorentz violation in QED from collider physics

Michael A. Hohensee,1 Ralf Lehnert,2,3 David F. Phillips,4 and Ronald L. Walsworth1,4

1Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, USA
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We consider the possibility that Lorentz violation can generate differences between the limiting

velocities of light and charged matter. Such effects would lead to efficient vacuum Cherenkov radiation

or rapid photon decay. The absence of such effects for 104.5 GeVelectrons at the Large Electron Positron

collider and for 300 GeV photons at the Tevatron therefore constrains this type of Lorentz breakdown.

Within the context of the standard-model extension, these ideas imply an experimental bound at the level

of �5:8� 10�12 � ~�tr � ð4=3Þc00e � 1:2� 10�11 tightening existing laboratory measurements by 3–4

orders of magnitude. Prospects for further improvements with terrestrial and astrophysical methods are

discussed.
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I. INTRODUCTION

Established physics is successfully described by two
distinct theories: general relativity (GR) and the standard
model (SM) of particle physics. These two theories are
commonly believed to arise as the low-energy limit of a
more fundamental Planck-scale framework that consis-
tently merges gravity and quantummechanics. Since direct
measurements at this scale are presently impractical, ex-
perimental research in this field relies largely on ultrahigh-
precision searches for Planck-suppressed effects at attain-
able energies.

One candidate effect within this context is a minute
breakdown of Lorentz invariance [1]. Lorentz symmetry
represents a cornerstone of both GR and the SM, so that
any observed deviation from this symmetry would imply
new physics. A number of theoretical approaches to under-
lying physics, such as strings [2], noncommutative field
theories [3], cosmologically varying fields [4], quantum
gravity [5], random-dynamics models [6], multiverses [7],
brane-world scenarios [8], and massive gravity [9], are
known to accommodate small violations of Lorentz invari-
ance at low energies. Searches for such violations are also
motivated by the seemingly fundamental character of
Lorentz symmetry: it should be buttressed as firmly as
possible by experimental evidence.

At currently attainable energies, Lorentz-violating ef-
fects are expected to be described by an effective field
theory [10]. The standard-model extension (SME) provides
the general framework in this context [11,12], containing
both GR and the SM as limiting cases. The additional
Lagrangian terms of the SME include all operators for
Lorentz violation that are scalars under coordinate
changes. The SME has already provided the basis for the
analysis of numerous experimental searches for Lorentz
breakdown [13], including ones with photons [14–17],
electrons [18–20], protons and neutrons [21–25], mesons

[26], muons [27], neutrinos [28], the Higgs [29], and
gravity [30,31].
The speed of light, in particular, has played a key role in

both the conception of Lorentz symmetry and its early
experimental tests. The continuing importance of electro-
dynamics to the subject is illustrated by the high precision
with which the SME’s photon sector is bounded. However,
the most notable exception to these tight limits has been the
SME ~�tr coefficient, which parameterizes isotropic shifts
in the speed of light. While the gap in precision to other
laboratory constraints on electrodynamics was, until re-
cently, at least 5 orders of magnitude, we recently pub-
lished new results employing data from CERN’s Large
Electron Positron (LEP) collider and Fermilab’s
Tevatron, improving existing laboratory limits on ~�tr by
3–4 orders of magnitude [32].
In this paper, we expand on our recent work to provide a

detailed analysis of the sensitivity of collider experiments
to ~�tr. The outline of this paper is as follows. In Sec. II, we
review the basics of Lorentz-violating electrodynamics
coupled to charged matter and present the basic idea
behind the physics leading to our constraints on ~�tr.
Section III employs the absence of vacuum Cherenkov
radiation to limit positive values of ~�tr. Constraints on
negative values of ~�tr, inferred from photon stability, are
derived in Sec. IV. Section V presents a brief summary and
mentions future possibilities for measuring ~�tr, along with
some of the associated projected bounds. Supplementary
material is collected in two appendices. Unless noted
otherwise, we work in natural units c ¼ @ ¼ 1, and our
convention for the metric signature is ðþ;�;�;�Þ.

II. BASICS

The photon and electron sectors of the minimal SME
[11] are described by the Lagrangian
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L ¼ �1
4F

2 � 1
4ðkFÞ����F��F�� þ ðkAFÞ�A� ~F��

þ 1
2i
�c��D

$
�c � �cMc ; (1)
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�� � �� þ c
��
e �� þ d

��
e �5��;

M � me þ b�e �5�� þ 1
2H

��
e ���;

(2)

F�� ¼ @�A� � @�A� is the electromagnetic field-strength

tensor, and ~F�� ¼ ð1=2Þ�����F�� denotes its dual. The

spinor c describes electrons and positrons of massme, and
the usual Uð1Þ-covariant derivative is denoted by D� ¼
@� þ ieA�. The SME coefficients ðkFÞ����, ðkAFÞ�, b�e ,
c
��
e , d

��
e , and H

��
e control the extent of Lorentz and CPT

violation.
In this work, we are primarily interested in the ~�tr

component of ðkFÞ����, and will set ðkAFÞ� to zero. The
ðkFÞ���� coefficient possesses the symmetries of the
Riemann curvature tensor, and its double trace vanishes
ðkFÞ���� ¼ 0, leaving 19 independent components. To
exhibit ~�tr, we decompose ðkFÞ���� such that the electro-
magnetic component of the Lagrangian (1) becomes

L ¼ 1
2½ð1þ ~�trÞE2 � ð1� ~�trÞB2� þ 1

2E � ð~�eþ þ ~�e�Þ �E
� 1

2B � ð~�eþ � ~�e�Þ �Bþ E � ð~�oþ þ ~�o�Þ �B (3)

Here, the dimensionless parameter ~�tr and the dimension-
less and traceless 3� 3 matrices ~�e�, ~�eþ, ~�oþ, and ~�o�
are defined in terms of the ðkFÞ���� coefficients [14] with
~�tr � ð2=3ÞðkFÞ�0�0. Note that the above decomposition of

ðkFÞ���� into ~� coefficients is not manifestly coordinate
independent: under changes of the observer inertial frame,
the various ~� parameters mix. To facilitate comparisons
between different experimental tests, a reference coordi-
nate system must therefore be selected. A conventional
choice is the Sun-centered celestial equatorial frame [14].

The parameterization determined by Eq. (3) is particu-
larly intuitive because of its analogy to conventional elec-
trodynamics in macroscopic media [11,14]. For example,
all ~� coefficients modify the photon dispersion relation,
and thus the phase speed of light cph. A subset of them,

namely, ~�o� and ~�eþ, affect each of the two
electromagnetic-wave polarizations differently leading to
birefringence. The absence of this type of birefringence in
spectropolarimetric studies of cosmological sources con-
strains ~�o� and ~�eþ at the level of 10�37 [33]. The remain-
ing coefficients ~�e�, ~�oþ, and ~�tr arise from the

~k �� � ðkFÞ	�	� (4)

component. They lead to polarization-independent shifts in
cph, so that other types of measurements are necessary. A

particularly sensitive measurement involves optical- or
microwave-cavity experiments that search for parity-even
anisotropies in cph. Assuming negligible Lorentz violation

effects on the cavity itself, these tests set limits on the

elements of ~�e� at the level of 10�17 [34]. The parity-odd
matrix ~�oþ and the isotropic ~�tr can be constrained indi-
rectly with such measurements via higher-order effects: the
laboratory is boosted with respect to the Sun-centered
celestial equatorial frame, so that ~�e�, ~�oþ, and ~�tr mix.
The absence of any observed resultant effect upon the
cavity resonances yields ~�oþ & <10�13 [34], and j~�trj<
1:8� 10�8 [35]. The latter had represented the best labo-
ratory bound on ~�tr prior to the recent paper [32] expanded
here.
The present study exploits direct physical effects of ~�tr

to obtain improved constraints on this coefficient. The
basic idea is that dispersion-relation modifications due to
~�tr would not only change cph, but also affect the kinemat-

ics of the electromagnetic vertex. In contrast to the con-
ventional case, the three external legs of the vertex can go
simultaneously on shell allowing various particle reactions
to proceed that are normally forbidden by Lorentz symme-
try. We focus on two such reactions, each occurring only
for a specific sign of ~�tr. The first is vacuum Cherenkov
radiation

f ! fþ � for ~�tr > 0; (5)

and the second is photon decay

� ! fþ �f for ~�tr < 0: (6)

Here, � denotes a photon, f a charged fermion, and �f the
corresponding antifermion. These processes are depicted
in Fig. 1.
In what follows, we will explore how the observed

absence of the reactions (5) and (6) provides bounds on
~�tr, expanding on our recently published paper on this
subject [32]. Similar ideas have been exploited previously
[16,36], primarily in the context of purely kinematical
dispersion-relation tests [37]. In the present case, the
underlying SME Lagrangian permits the inclusion of dy-

FIG. 1. Two possible electromagnetic-vertex configurations.
Charged fermions and antifermions are denoted by f and �f,
respectively. The photon is labeled by �. In the conventional
case, energy–momentum conservation together with ordinary
dispersion relations prohibits the three external legs from going
simultaneously on shell. In the presence of the Lorentz-violating
~�tr modification of the photon dispersion relation kinematically
allows reactions (a) and (b) for ~�tr > 0 and ~�tr < 0, respectively.
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namical features, such as the rate at which the reactions (5)
and (6) proceed. Dynamical considerations are often nec-
essary to obtain convincing and conservative results
[38,39].

In addition to ~�tr, other Lorentz-violating SME coeffi-
cients can lead to dispersion-relation modifications, and
thus to the reactions (5) and (6). However, the effects of
such additional coefficients can be safely neglected as long
as their scale S is small compared to the ~�tr constraint to be
determined. The other relevant coefficients are those of the
fermion f, the remaining kF components (i.e., the ~� ma-
trices), and the kAF coefficient in Lagrangian (1). Since we
will primarily consider f to be an electron, the relevant
matter-sector coefficients in the minimal SME are b�e , c

��
e ,

d��
e , and H��

e of the electron. With these considerations,
the scale S is given by

S � max

�
~�e�; ~�o�;

kAF
me

;
be
me

; ce; de;
He

me

�
: (7)

Here, the absolute values of the individual components of
the SME coefficients are implied, and me the electron
mass, as before.

To interpret and determine the scale S correctly, certain
subtleties need to be taken into account. One such is that
elements of the electron’s c

��
e coefficient are physically

equivalent to the nonbirefringent ~� parameters, as can be
established by a coordinate redefinition. This means that
only the anisotropic components of c

��
e should enter the

determination of S because only anisotropic ~�’s occur in
S. More importantly, the equivalence of c��

e and the non-
birefringent ~�’s implies that our ultimate constraint upon
~�tr is, strictly speaking, a constraint upon the linear combi-
nation ~�tr � ð4=3Þc00e . In what follows, we will often scale
the coordinates such that c00e ¼ 0, but undo this special
choice of scaling and reinstate c00e when stating results. A
more complete discussion of the above issues is contained
in Appendix A. The result of interest in the present context
is that currently S � 10�13 dominated by the ~�oþ matrix
coefficient [13]. So we may indeed focus on ~�tr and ignore
other types of Lorentz violation for photon–electron
interactions.

We note in passing that vacuum Cherenkov radiation can
also occur for antifermions and that further unconventional
processes, such as fermion–antifermion annihilation into a
single photon, are possible. Moreover, two-photon emis-
sion and absorption processes, synchrotron radiation, and
inverse Compton processes can also be modified. Some of
these effects have been employed in astrophysical contexts
to extract general bounds on �cph=cph down to the 10�16

level [19].

III. VACUUM CHERENKOV RADIATION

In the present context, the vacuum Cherenkov effect (5)
can only occur for positive ~�tr. To leading order, the
modified dispersion relation for a photon with wave vector

p� � ðE�; ~pÞ is [14]
E2
� � ð1� ~�trÞ ~p2 ¼ 0: (8)

We scale the coordinates such that the fermion dispersion
relation remains conventional. Energy-momentum conser-
vation for the process (5) then yields a threshold energy
EVCR,

EVCR ¼ 1� ~�trffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2� ~�trÞ~�tr

p m ¼ 1ffiffiffiffiffiffiffiffi
2~�tr

p mþOð ffiffiffiffiffiffi
~�tr

p Þ; (9)

which corresponds to the kinetic energy of a fermion with
mass m moving as fast as photons obeying (8) in the
vacuum [40]. For charges with energies above EVCR, vac-
uum Cherenkov radiation is kinematically allowed.
Here, we constrain positive values of ~�tr from the ob-

served absence of vacuum Cherenkov radiation in nature.
To set such constraints, vacuum Cherenkov radiation
would have to be efficient enough to be observable.
Close to the threshold energy EVCR, the dominant process
is single-photon emission, such that the charge falls below
threshold; an estimate for the corresponding rate is [40]

�VCR ¼ 	Z2m2
ðEf � EVCRÞ2

2E3
f

; (10)

where 	 is the fine-structure constant, Z the charge mea-
sured in multiples of the elementary charge, and Ef the

fermion energy. This shows the effect is undoubtedly effi-
cient: for example, a 104.5 GeVelectron with an energy of
1% above the threshold (9) would reach subluminal speeds
after traveling an average distance of 23 cm. We therefore
conclude that limits on ~�tr can indeed be established from
the observed absence at particle colliders of the vacuum
Cherenkov effect for low-mass charges at the highest
possible energies.

A. Bounds from collider experiments

Common to all analyses of collider experiments is a
precise knowledge of the species and energy of the poten-
tial vacuum Cherenkov emitter. At present, the LEP ex-
periment provides the best compromise between a charge’s
mass vs its energy for terrestrial Cherenkov constraints. As
a result, we can immediately determine that measurements
of EVCR derived from the LEP eþe� beams will constrain
~k�� � 2c

��
e , independent of Lorentz-violating effects for

other particles. As shown in Appendix A, for the energies
attained at LEP (� 100 GeV), ~�tr � ð4=3Þc00e is the only
SME coefficient combination that can contribute to vac-
uum Cherenkov radiation, permitting a significantly sim-
plified study. An analysis of LEP data has the potential to
yield rigorous one-sided improvements upon previous
laboratory constraints on ~�tr.
The LEP collider was a circular particle accelerator

approximately 27 km in circumference. This accelerator
was an exquisitely precise and carefully controlled device
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with a relative uncertainty in the center-of-mass energy
�ECM=ECM less than 2:0� 10�4 [41]. To keep the uncer-
tainty at this level, minute effects such as Earth tides,
variations in the pressure of the local water table, and
even seasonal variations in the volume of the nearby lake
needed to be taken into account [41]. The highest
laboratory-frame energy attained at LEP was ELEP ¼
104:5 GeV. We can obtain a first estimate for a limit on
~�tr by arbitrarily setting EVCR ¼ 100 GeV. Then,
104.5 GeV electrons or positrons would fall below thresh-
old after traveling approximately 1.2 cm. This length is far
shorter than the distance between superconducting radio-
frequency cavities at LEP or even the dimensions (5.8 m)
of each of the dipole bending magnets [41], so that such an
effect would have been readily apparent. The observed
absence of such effects at LEP implies EVCR > 100 GeV;
together with Eq. (9), we then obtain 0 � ~�tr �
1:3� 10�11. A more refined line of reasoning is presented
in the next paragraphs.

At ELEP ¼ 104:5 GeV, the energy loss due to conven-
tional synchrotron radiation was U0 ¼ 3:486 GeV per
electron or positron per turn [41]. The LEP circumference
of 26 659 m then predicts an average energy loss per
distance travelled of

dEsyn

dL
¼ 2:580� 10�20 GeV2: (11)

One of the three energy-calibration methods at LEP relied
upon the dependence of the synchrotron tune on the energy
loss. For this reason, a precise determination of the energy
loss was paramount. Deviations from the value (11) arise
through parasitic-mode losses, finite beam size and other
quadrupole effects, and losses in the corrector dipoles. The
sum of these contributions is conservatively estimated to
be 0.5 MeV per turn per particle with at most a 20%
uncertainty [41]. This implies that

dECher

dL
� 10�4

dEsyn

dL
; (12)

where dECher=dL denotes the energy loss per distance due
to vacuum Cherenkov radiation.

The final step is to determine a lower bound for EVCR

such that the inequality (12) together with the value (11) is
satisfied. To this end, recall that for charges near EVCR the
dominant Cherenkov process for reaching subthreshold
energies proceeds via single-photon emission (10). The
energy loss per Cherenkov event must therefore be greater
than E� EVCR. The average distance L traversed by an
electron before Cherenkov emission occurs is 1=�VCR.
With Eq. (10), this yields

dECher

dL
	 	m2

e

ðELEP � EVCRÞ3
2E3

LEP

; (13)

where me ¼ 5:11� 10�4 GeV denotes the electron mass,
as before. It follows that EVCR can at most be 1.5 MeV

below ELEP ¼ 104:5 GeV. With Eq. (9), we then obtain

0 � ~�tr � 4
3c

00
e � 1:2� 10�11; (14)

explicitly including the contribution of c00e . The above
reasoning also shows that the uncertainty in the bound
(14) is primarily determined by the accuracy of the
electron-energy measurement. As this limit is still much
larger than the scale S defined in Eq. (7), other photon- or
electron-sector coefficients are not further constrained by
this reasoning. At the same time, this provides the justifi-
cation for dropping these additional coefficients from our
analysis.

B. Cosmic-ray analyses

Vacuum Cherenkov tests compare the respective group
velocities ~vX and ~v� of the charge X and the photon �.

Since both particles may exhibit independent Lorentz-
violating effects, vacuum Cherenkov radiation will typi-
cally depend on parameters originating from both the
photon and the charge sectors of the SME. This means
that any analysis of Lorentz-symmetry violation based on
vacuum Cherenkov physics must address the following
points: First, in the absence of independent constraints
from other experiments, a Cherenkov analysis must incor-
porate all relevant Lorentz-symmetry violating coefficients
from the photon as well as the charge. Second, the nature of
the charge must be known, since it would otherwise be
unclear as to which SME coefficients are actually con-
strained. The analysis of the previous subsection easily
addresses the second point, as it involves the electrons
and positrons at LEP. The first point is also addressed in
detail in Appendix A: the availability of complementary
experimental results leads to an estimation of the scale S in
Eq. (7), which justifies dropping all but the single combi-
nation ~�tr � ð4=3Þc00e from consideration.
Charged ultrahigh-energy cosmic rays (UHECRs) offer

the potential to yield the tightest limits on positive values
of ~�tr, as they possess energies orders of magnitude above
those available in any laboratory [16]. Unfortunately, ef-
forts to use observations of UHECRs to constrain Lorentz
violation in the photon sector are currently beleaguered by
a number of interpretational difficulties. Chief among them
is the lack of certainty as to the composition of UHECR
primaries, leading to an associated uncertainty as to which
SME coefficients are constrained. Although the observed
UHECR primaries are believed to be single protons, the
possibility that the observations could be due to the scat-
tering of more massive nuclei, high-energy photons, or
Lorentz-violating particles exhibiting no or a qualitatively
different Cherenkov effect, such as stable neutral pions or
neutrons [36], cannot yet be excluded. This uncertainty
will likely be ameliorated in coming years with continued
observations.
If the UHECR primaries are found to be single protons,

then in principle the analysis in Ref. [16] establishes that
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constraints on a combination of photon and proton SME
coefficients at the 10�21 . . . 10�22 level can be obtained. In
contrast to our LEP-electron study, however, there is an
insufficient number of complementary experimental

bounds to solely focus on the nine parameters 2c
��
p �

~k�� [42,43]. For example, the d��
p SME coefficient also

affects the maximal attainable velocity of the proton and
can therefore lead to vacuum Cherenkov radiation. But
thus far, only two of its nine components have been
bounded [22], so in general this coefficient needs to be
taken into consideration when performing vacuum
Cherenkov tests with protons.

If, instead, the UHECR primaries are identified as
atomic nuclei such as He, 12C, or even 56Fe nuclei, as is
assumed in Ref. [16], various additional considerations are
necessary. For example, the physical system under consid-
eration now also contains neutrons in addition to photons
and protons. This means that in principle neutron SME
coefficients need to be considered as well. Moreover, the
potential Cherenkov emitter is now a bound state without
its own SME coefficients. One could introduce effective
Lorentz-violating parameters for the nucleus, but this
would hamper comparison with other limits on Lorentz
violation for the photon, proton, or neutron. It is therefore
preferable to determine the group velocity of the nucleus in
terms of the proton’s and neutron’s SME coefficients via
simplified nuclear modeling. To this end, it may be pos-
sible to employ the nuclear Schmidt model along the lines
of the analysis in Ref. [22].

IV. PHOTON DECAY

For negative ~�tr, the phase speed of light is greater than
unity [44]. Vacuum Cherenkov radiation is then forbidden
and cannot be used to set experimental limits. However, the
kinematics of the electromagnetic vertex now allows pho-
ton decay into fermion–antifermion pairs (6). The disper-
sion relation (8) remains valid and establishes that photons
with energies

Epair ¼ 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�trð~�tr � 2Þp ¼

ffiffiffiffiffiffiffiffiffiffi
2

�~�tr

s
mþOð ffiffiffiffiffiffi

~�tr

p Þ (15)

or above are unstable, where m, as before, is the fermion
mass. In Appendix B, we derive the corresponding tree-
level decay rate (B9), which to leading order in ~�tr is

�pair ¼ 2

3
	E�

m2

E2
pair

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

pair

E2
�

vuut �
2þ E2

pair

E2
�

�
: (16)

Here, E� denotes the photon energy and	 is again the fine-

structure constant [46]. The efficiency of this photon decay
can be established by example: a 40 GeV photon with
energy 1% above threshold would decay after traveling
an average distance of about 15 �m.

The above results show that we may obtain limits on
negative values of ~�tr from the existence of high-energy
long-lived photons. As for the Cherenkov analysis, cosmic-
ray observations provide the potential to reach the highest
sensitivity. For example, primary photons from the Crab
nebula with energies up to 80 TeV have been reported by
HEGRA [47]. Equation (15) then implies the possibility of
one-sided limits on ~� coefficients at the 10�16 level. In
addition to some of the nonbirefringent ~� matrices, certain
SME coefficients of the electron cannot be neglected at
these scales. In view of the small event sample for TeV
gamma rays, the extraction of comprehensive and clean
bounds on this potentially large number of SME coeffi-
cients appears unlikely at the present time. Estimates for
limits from astrophysical TeV gamma rays would certainly
be useful, but such an analysis lies outside the scope of the
present study.
We focus instead on high-energy photons generated in

Earth-based laboratories. As for vacuum Cherenkov radia-
tion, the superior experimental control allows cleaner,
more conservative limits albeit with reduced sensitivity.
In this context, LEP becomes again one possible experi-
ment to consider: e.g., past studies of quark-to-photon
fragmentation involved a careful analysis of final-state
photons in LEP scattering events. In such analyses, pho-
tons with energies up to 42 GeV have been studied at
OPAL [48], implying such photons survived long enough
to interact normally with the OPAL calorimeter. Equation
(15) then allows limits at the level �3� 10�10 & ~�tr.
Other LEP studies at L3 [49] and OPAL [50] detectors,
which were optimized for QED precision tests, have mea-
sured pair annihilation eþe� ! �� at center-of-mass en-
ergies up to 209 GeV. This would yield an even better
bound of �5� 10�11 & ~�tr.
Nevertheless, the highest energies at terrestrial accelera-

tors are not reached with electrons but with hadrons. For
example, Fermilab’s Tevatron pp collider produces center-
of-mass energies up to 1.96 TeV and offers therefore ex-
cellent potential for producing high-energy photons. One
particular process, namely, isolated-photon production
with an associated jet, is of importance for QCD studies
and has therefore been investigated with the D0 detector. In
this context, photons of energies up to 442 GeV have been
observed [51]. The implied stability of photons with such
energies suggests an estimate of �3� 10�12 & ~�tr.
However, the small number of events observed at this
energy did not warrant inclusion into these QCD
investigations.
Our present analysis uses only D0 photon data at lower

energies, where comparisons to QCD predictions were
made. With this conservative restriction, photon-energy
bins up to 340.5 GeV were measured [52]. For this data,
the aforementioned jet-plus-photon production was mea-
sured as a function of E� in four angular regions. These

four directional configurations were characterized by the

LIMITS ON ISOTROPIC LORENTZ VIOLATION IN QED . . . PHYSICAL REVIEW D 80, 036010 (2009)

036010-5



photon and jet pseudorapidities y� and yjet. The largest
deviations between experiment and QCD theory in the
340.5 GeVenergy bin occurred in the fjyjetj< 0:8; y�yjet <
0g angular region [52]. The measured cross section was
about 52% of the QCD prediction. The relative uncertain-
ties in the experimental value were 46.1% statistical, 12.9%
systematic, and a 7.8% normalization error [52]. To ac-
count for uncertainties, the employed theoretical scales
were varied by a factor of 2, which led to a relative spread
of about 11% for theoretical predictions [52]. Combining
these errors in quadrature yields an overall relative uncer-
tainty of about 50%. The experiment-to-theory ratio in the
340.5 GeV energy bin is therefore 0:52� 0:26 for the
selected angular configuration. We can thus estimate that
at least 26% of the produced photons have reached the
detector.

The layout of the D0 detector implies that measured
photons traverse a minimum distance of lmin ’ 78 cm: they
have to travel through various drift chambers and the
transition-radiation detector before they interact and are
detected in the central calorimeter [53]. With the above
photon-flux estimate, we then obtain

expð��pairlminÞ 	 0:26: (17)

The 340.5 GeV energy bin extended from 300 GeV to
400 GeV. We therefore conservatively take E� ¼
300 GeV in our analysis. With Eq. (16), we then find that
Epair cannot be more than about 0.1 keV below E�.

Explicitly including the contribution of c00e , we therefore
conclude that

� 5:8� 10�12 � ~�tr � 4
3c

00
e : (18)

The uncertainty in the constraint (18) is essentially deter-
mined by the accuracy of the photon-energy measurement.
As with the Cherenkov bound, the limit (18) is larger than
the scale S, so other photon- or electron-sector coefficients
are not further constrained by this argument. At the same
time, this justifies the exclusion of these additional coef-
ficients from our study.

V. SUMMARYAND OUTLOOK

In this paper, we have considered new physical effects
arising from a Lorentz-violating CPT-even deviation of
the phase speed of light cph from its conventional value c.

At the theoretical level, such a deviation is controlled by
the ~�tr coefficient of the SME. This coefficient is defined
with respect to the Sun-centered celestial equatorial coor-
dinate system, in which the phase-speed deviation is iso-
tropic. At the phenomenological level, a positive value for
~�tr would lead to vacuum Cherenkov radiation (5) at the
rate (10) for charges with energies above the threshold (9);
whereas a negative value would cause photon decay (6) at
the rate (16) for photons with energies above the threshold
(15).

We have exploited the fact that both phenomena are
efficient threshold effects to extract constraints on ~�tr

from the nonobservation of vacuum Cherenkov radiation
and photon decay. In particular, the absence of the
Cherenkov effect at LEP leads to the bound (14), and
from the stability of photons at the Tevatron the constraint
(18) can be inferred. These results give the combined
conservative limit

� 5:8� 10�12 � ~�tr � 4
3c

00
e � 1:2� 10�11: (19)

This limit represents an improvement of previous labora-
tory bounds by 3–4 order of magnitude.
There are various ways for complementary or improved

bounds to be set on ~�tr. For instance, planned low-energy
laboratory tests could reach a level of 10�11 or better [17].
Another idea is to exploit photon triple splitting, as it is
known that the amplitude for this effect is nonzero in the
presence of c�� Lorentz violation [54]. This effect does not
involve a threshold, and so high energies are not neces-
sarily required.
Other future terrestrial bounds could employ the absence

of vacuum Cherenkov radiation and photon decay at even
higher energies than the ones considered here. One ex-
ample would be the prospective International Linear
Collider. If we take the laboratory-frame energy to be
500 GeV, the International Linear Collider gives a pro-
jected one-sided Cherenkov limit of 0 � ~�tr � ð4=3Þc00e �
5:2� 10�13. Similarly, the Large Hadron Collider will
reach about 7 times the energy of the Tevatron. Under
the assumption that the energy of produced photons scales
by the same factor, the limit (18) can be tightened by a
factor of 50. Other improvements of the photon-decay
bound would be possible with a dedicated D0 (or possibly
Large Hadron Collider) analysis: Ultrahigh-energy events
not considered for QCD tests could be used because the
statistics of such events is not of primary importance for
photon-decay studies. Moreover, the end of the photon-
energy spectrum could be exploited more efficiently by
avoiding large energy bins.
We note that during the preparation of this manuscript,

Brett Altschul performed a more detailed analysis of syn-
chrotron radiation processes at LEP, obtaining an improved
two-sided limit on isotropic violations of Lorentz symme-
try for light relative to electrons of j~�tr � ð4=3Þc00e j �
1:2� 10�15 [55].
The largest potential for improved bounds on ~� coeffi-

cients—in the context of both vacuum Cherenkov radiation
and photon decay—lies probably in UHECR physics
[16,46]: e.g., with a more reliable identification of the
UHECR primary particle, observations at still higher en-
ergies, better coverage of the sky with more events, and
data analysis allowing for Lorentz violation in both the
primary and the decay products should open an avenue to
tap this potential more completely. A fundamental limit on
the experimental reach is that the Universe becomes

HOHENSEE, LEHNERT, PHILLIPS, AND WALSWORTH PHYSICAL REVIEW D 80, 036010 (2009)

036010-6



opaque to cosmic rays above certain thresholds due to
processes such as Greisen-Zatsepin-Kuzmin suppression
or scattering from IR photons.
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APPENDIX A: COORDINATE RESCALINGS

In this appendix, we present the details of our determi-
nation of the scale S defined in Eq. (7) at which Lorentz
violation has been constrained for photons relative to
electrons, based upon limits obtained from terrestrial tests.
To accomplish this, we compare the results of experiments
reporting bounds on Lorentz violation for photons, elec-
trons, and protons. Making use of these bounds is some-
what complicated by the assumptions made regarding the
possibility of Lorentz violation in other sectors of the
SME.

Measurements of shifts and anisotropies in the vacuum
speed of light must be defined in terms of the velocity of a
chosen reference particle. In the SME, the limiting velocity
of any such reference particle is also subject to Lorentz-
violating shifts and anisotropies. As a result, constraints
upon the deviation of the speed of light based upon inter-
actions of light with electrons must be narrowly interpreted
as limits on the difference between the degree to which
Lorentz symmetry is violated in each sector. This is a
general feature of all tests of Lorentz symmetry, which
generally must be described as setting limits on combina-
tions of coefficients associated with not one, but all in-
volved particle species. In this sense, the number of
independent SME coefficients controlling the type and
extent of Lorentz violation in a given physical system is
increased.

Under certain circumstances, various SME coefficients
describing a given system may be physically equivalent
and can therefore not be distinguished. From a mathemati-
cal viewpoint, there typically exist canonical transforma-
tions that can eliminate one coefficient in favor of the other.
From an experimental viewpoint, this means that such
coefficients cannot be bounded or measured independently
in the physical system in question. In such a case, the
number of independent SME coefficients is therefore ef-
fectively reduced.

It is the interplay of the above two issues that is often
unappreciated in the literature. The interpretation of ex-
perimental constraints therefore requires special care. In
the present context, the former issue has been discussed in
various places in main text. The latter issue is not only
paramount for the precise formulation of our actual

bounds, but also for the interpretation of existing con-
straints necessary for the determination of the scale S.
The particular issue to be clarified in this appendix con-

cerns the ~k�� coefficient (i.e., ~�e�, ~�oþ, ~�tr) and c��-type
coefficients. To simplify the discussion, we will set all
other types of SME coefficients to zero in what follows.
In the context of the SME for one-flavor QED, a theory

characterized by a nonzero symmetric, traceless c
��
e tensor

and a vanishing ðkFÞ���� tensor exhibits the same phe-
nomenology as a theory in which c��

e ¼ 0 [14,56] and

ðkFÞ���� ¼ 1
2ð
��~k�� � 
��~k�� þ 
��~k�� � 
��~k��Þ;

(A1)

provided that

~k �� ¼ �2c
��
e (A2)

at linear order. Thus, a ~k�� model is physically equivalent
to a c��

e model if the models are related by Eq. (A2). This
fact can also be formally established via coordinate rescal-
ings [14,56]. We may use this freedom to select a particu-
larly convenient scaling of the coordinates to simplify
calculations. For example, our analysis in the main text is

performed within a ~k�� model (i.e., the coordinates are
scaled such that c

��
e ¼ 0), whereas our photon-decay cal-

culation in Appendix B employs a c
��
e model (i.e., the

coordinates are rescaled such that ~k�� ¼ 0). One way of
quoting results, such as experimental constraints, is to
employ a particular coordinate scaling and clearly state
this special scaling choice together with the actual result.
The choices of rescaling form a continuous set and are

not only confined to the two canonical cases of c
��
e ¼ 0

and ~k�� ¼ 0 discussed above. An infinite number of coor-

dinate scalings with both c��
e � 0 and ~k�� � 0 can cer-

tainly be selected. In the present context, one can show that
with such general rescalings, physical effects can only
depend upon (and thus provide bounds for) the value of

2c
��
e � ~k��. This is intuitively reasonable because the two

Lorentz-violating effects considered in this work, vacuum
Cherenkov radiation and photon decay, depend only on
certain velocity differences between the electron and the

photon. Note, in particular, that the combination 2c
��
e �

~k�� does not pertain to a particular choice of scale for the
coordinates and therefore provides a second way to quote
results that is coordinate-scaling independent. When for-
mulating our final bounds in the main text, we have
adopted this latter choice of stating results.
Other experimental tests of Lorentz and CPT symmetry

are not generally confined to one-flavor QED; other parti-
cle species are often involved. In such situations, the above
analysis is readily generalized: we may choose one particle
species to serve as the reference ‘‘ruler,’’ and thus work in a
coordinate system in which that species’ c�� coefficient (or
~k��, if the reference is light) is zero.
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With these considerations, we estimate the value S
provided by terrestrial experiments for the interaction of
light with electrons. Specifically, we will use the results of
a Cs-fountain clock experiment [23], and those of a series
of tests involving optical resonators [34]. These tests are
sensitive to Lorentz violation in conventional matter,
which is made up of protons, neutrons, and electrons,
interacting electromagnetically. In this four-species sys-
tems, the Lorentz-violating effects under consideration
are described by four sets of SME coefficients: c

��
p , c

��
n ,

c
��
e , and ~k��, where the subscripts p, n, and e, respectively,
denote the coefficients of protons, neutrons, and electrons.
One of these four sets of terms may be eliminated by a
scaling of coordinates, and so in practice only three of
these sets of parameters may independently contribute to
the physics.

Although the Cs-fountain test [23] involves protons,
neutrons, electrons, and electromagnetism, the observed
frequencies turn out to be only sensitive to the value of

2c��
p � ~k��. The constraints upon the eight spatially an-

isotropic components are at the level of

j2c��
p � ~k��j< 10�21 . . . 10�25: (A3)

We note that these results are presented in Ref. [23] in

coordinates such that ~k�� ¼ 0, which corresponds to using
light as a reference. In coordinates with protons as the
reference (i.e., c��

p ¼ 0), the Cs-fountain experiment pro-

vides the constraint j~k��j< 10�21 . . . 10�25 for the aniso-

tropic components of ~k��.
Next, we consider optical-resonator experiments [34],

which measure the resonance frequencies � of light prop-
agating in vacuum inside two orthogonally oriented Fabry-
Pérot cavities. As previously shown [13,15], these experi-
ments are sensitive to spatial anisotropies in the speed of

light (~k��) and to variations in the dimensions of the
resonators themselves. The cavity size is primarily deter-
mined by the electromagnetic interactions in the chemical
bonds. It therefore follows that the neutron’s contribution
to the cavity size must be suppressed because it is un-
charged, having only a magnetic moment. Moreover, the
cavities are made of fused silica SiO2, and the common
isotopes of oxygen and silicon have even numbers of
neutrons and spin zero. Pairing effects would therefore
tend to further suppress the influence of the neutron spin,
and so we conclude that the cavity frequencies should be
largely unaffected by c��

n .
Bearing this suppression of neutron effects in mind, two

independent combinations of parameters remain that can
influence the observable F determined from the cavity
frequencies �. This observable must therefore be given,
to leading order, by an expression of the form

F ¼ const:þ A��ð2c��
e � ~k��Þ þ B��ð2c��

p � ~k��Þ;
(A4)

where A�� and B�� are constants. Constraints on the

anisotropic pieces in Eq. (A4) at the 10�13 . . . 10�17 level
can be obtained by these cavity tests [34].
The B�� term in Eq. (A4) can be dropped from these

optical-resonator bounds for the following reason: The
constants A�� and B�� are likely to be of similar size, as

there appears to be no convincing argument suggesting that
the SME effects in one of the three involved particle
species would dominate the length of chemical bonds.
For certain sample chemical bonds including fused silica,
this has indeed been verified [57]. The next step is to
observe that the independent Cs-fountain bound (A3) pla-
ces a much tighter constrained on the coefficient combi-
nation multiplying B�� than the best sensitivity 10�17 of

the optical-resonator test. We thus conclude that

j2c��
e � ~k��j< 10�13 . . . 10�17 (A5)

follows from the cavity experiments [34]. It is understood
that this bound refers to the anisotropic components of

2c��
e � ~k��. We remark that Ref. [34] chooses to state

the resulting experimental limit assuming scaled coordi-
nates such that c��

e ¼ 0.
The constraint (A5) taken together with Refs. [13,20]

establish that S � 10�13, dominated by the contribution of
the parity-odd ~�oþ and c0Je coefficients. Because the limit
we will derive on isotropic ~�tr component lies above this
scale, we may indeed drop all other Lorentz-violating
corrections from our analysis.

APPENDIX B: PHOTON-DECAY RATE

Photon-decay rates in the presence of Lorentz violation
have been determined [58] for the dimension-three Chern-
Simons type SME coefficient ðkAFÞ� which governs pho-
ton triple splitting. In this appendix, we derive the tree-
level photon-decay rate into a fermion–antifermion pair
arising from the dimension-four SME ~�tr coefficient, ap-
propriate for our purposes.
The starting point is a model with Lorentz-violating

photons and conventional charged leptons. In the present
situation it is convenient to consider a physically equiva-
lent model constructed with the coordinate redefinition
discussed in Sec. II and Appendix A. In particular, we
remove all Lorentz violation from the photon sector at
the cost of introducing a Lorentz-breaking c��

e coefficient
in the lepton sector:

L 0 ¼ 1
2i
�c ð�� þ c��

e ��ÞD
$

�c �m �c c � 1
4F

2; (B1)

where D� ¼ @� þ ieA� is the usual covariant derivative.

The Lorentz-violating SME coefficient c
��
e is given in

explicit form as

c��
e ¼ �1

4~�tr diagð3; 1; 1; 1Þ: (B2)

The advantage of the above description (B1) for ~�tr

Lorentz violation is the following. Perturbation theory in
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quantum field theory relies on the quantization of the free-
field sectors of the model. For Lorentz-violating photons,
such a quantization is lacking, but the quantization of SME
fermions is comparatively well understood [11]. Moreover,
we may employ the methodology and notation of a pre-
vious tree-level calculation involving c��

e fermions [59].
Since ~�tr � ð4=3Þc00e is nonzero, the lepton sector of the

model (B1) in our chosen coordinates contains unconven-
tional time derivatives. The time evolution of c can then
be nonunitary, so its asymptotic states cannot directly be
identified with physical free-particle states. A standard
approach to avoid this potential interpretational difficulty
is a redefinition of the spinor field chosen to eliminate the
additional time derivatives [59,60]. In the present situation,
the field redefinition amounts to a rescaling

c � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4 ~�tr

q �; (B3)

so it is not strictly mandatory. We nevertheless implement
the redefinition (B3) for compatibility with previous stud-
ies [59] of this type. The Lagrangian (B1) then becomes

L ¼ 1
2i ��~
����D

$
��� ~m ���� 1

4F
2; (B4)

where we have defined

~m � m

1� 3
4 ~�tr

; ~
�� � diagð1;��;��;��Þ;

� � 1þ 1
4 ~�tr

1� 3
4 ~�tr

:

(B5)

The field redefinition (B3) is a canonical transformation,
and as such it leaves unchanged the physics. In particular,
the free fermions in model (B1) possess the same disper-
sion relation as those in (B4).

Because ~�tr is frame dependent, Eq. (B3) is not mani-
festly Lorentz coordinate covariant. Therefore, the specific
form of Lagrangian (B4) holds only in the frame in which
the field redefinition has been performed [61]. Note that the
Lagrangians (B1) and (B4) are singular for ~�tr ¼ �4 and
~�tr ¼ ð4=3Þ, while the dispersion relation (8) is singular at
~�tr ¼ 1. This difference arises because the coordinate re-
scaling used to generate Lagrangian (B1) from the original
~�tr model has been implemented only at leading order in
~�tr.
The Feynman rules can now be inferred from the

Lagrangian (B1). The appropriate tree-level Feynman dia-
gram for photon decay is depicted in Fig. 2. For the
corresponding matrix element, we obtain

iMrs ¼ �ie��ðpÞ~
�� �uðrÞðqÞ��v
ðsÞðkÞ; (B6)

where the various polarization and momentum assign-
ments are defined in Fig. 2. The next step is the calculation
of jMrsj2 followed by the usual summation over final spin

states and averaging over the initial photon polarizations

jMj2 � 1=2
P

�

P
r;s jMrsj2. We obtain

jMj2 ¼ e2½4 ~m2 þ 2�2ð1��2Þð ~q2 þ ~k2Þ þ ð1��2Þ2E2
��;

(B7)

where E� ¼ j ~pj is the photon energy and ~q and ~k are the

lepton and antilepton 3-momenta, respectively. To arrive at
this result, energy–momentum conservation, the usual re-
lation for photon-polarization sums, and trace identities for
Dirac matrices have been used. Moreover, we have em-
ployed the results for SME spinor projectors in Ref. [59]

with the normalization chosen such that Nð ~qÞ ¼ 2Eq ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 þ �2 ~q2

p
, etc.

The final step is the phase-space integration. In the
conventional Lorentz-symmetric case, the decay rate for
massive particles is defined in the particle’s rest frame with
a kinematic factor inversely proportional to its mass. This
procedure cannot be applied to present massless case. We
adopt instead the convention [54] to define the decay rate in
terms of the photon energy E� in the Sun-centered celestial

equatorial frame:

�pair ¼ 1

4�2

1

2E�

Z d3q

2Eq

d3k

2Ek

jMj2
ð4Þðp� q� kÞ:
(B8)

This yields

�pair ¼ 	
½~�trð~�tr � 4ÞE2

� þ 4m2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�trð~�tr � 4ÞE2

� � 8m2
q

3
8E

2
�ð4þ ~�trÞð4� 3~�trÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�trð~�tr � 4Þp

(B9)

for the exact tree-level decay rate within the context of
Lagrangian (B4). Equation (B9) applies only for perturba-
tive ~�tr < 0 and for photons above threshold. We remark
that undoing our initial coordinate redefinition would gen-
erate subleading corrections to Eq. (B9).

FIG. 2. Tree-level Feynman diagram for photon decay.
Lorentz-violating effects are contained in the modified disper-
sion relation for the lepton and antilepton 4-momenta q	 and k	,
respectively, as well as in the electromagnetic vertex containing
~
��.
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[45] V. A. Kostelecký and R. Lehnert, Phys. Rev. D 63, 065008
(2001); C. Adam and F. R. Klinkhamer, Nucl. Phys. B607,
247 (2001).

[46] During the final stages of preparing this manuscript for
publication, another preprint studying photon decay in the
~�tr model appeared on the arXiv: F. R. Klinkhamer and M.
Schreck, Phys. Rev. D 78, 085026 (2008).

[47] F. Aharonian et al. (The HEGRA Collaboration),
Astrophys. J. 614, 897 (2004).

[48] K. Ackerstaff et al. (OPAL Collaboration), Eur. Phys. J. C
2, 39 (1998).

[49] P. Achard et al. (L3 Collaboration), Phys. Lett. B 531, 28
(2002).

[50] G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C
26, 331 (2003).

[51] V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 639,
151 (2006); 658, 285(E) (2008).

[52] V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 666,
435 (2008).

[53] S. Abachi et al. (D0 Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 338, 185 (1994).

[54] V. A. Kostelecky and A.G.M. Pickering, Phys. Rev. Lett.
91, 031801 (2003).

[55] B. Altschul, arXiv:0905.4346.
[56] Q. G. Bailey and V.A. Kostelecký, Phys. Rev. D 70,

076006 (2004).
[57] H. Müller, Phys. Rev. D 71, 045004 (2005).
[58] C. Adam and F. R. Klinkhamer, Nucl. Phys. B657, 214

(2003).
[59] D. Colladay and V.A. Kostelecký, Phys. Lett. B 511, 209
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