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I. INTRODUCTION

Q-balls are nontopological solitonic solutions of a self-
interacting complex scalar field theory carrying a con-
served global Uð1Þ charge. Introduced by Coleman in
1985 [1], their properties have been extensively studied
since then [2].

If on the one hand, Volkov and Wöhnert [3] showed, in
the context of some theories with nonrenormalizable scalar
potentials, that there exist particular Q-ball configurations
possessing nonvanishing angular momentum, now known
as ‘‘spinning Q-balls’’, on the other hand, Dvali, Kusenko
and Shaposhnikov [4] proved in the framework of super-
symmetric extensions of the standard model that gauge-
singlet combinations of squarks and sleptons correspond-
ing to some flat direction of the supersymmetric potential
can give rise to Q-balls whose charge Q is some combina-
tion of baryon and lepton numbers. The attractive feature
of theses ‘‘supersymmetric Q-balls’’ is that they could
represent the dark matter component of the Universe
[5,6] (for reviews on dark matter see, e.g., Ref. [7]).
Motivated by this fact, experimental searches for Q-balls
are being carried out [8], although no compelling evidence
for their existence has been reported so far.

The aim of this paper is to present novel configurations
of a charged scalar field describing nonspherically-
symmetric supersymmetric Q-balls with nonvanishing an-
gular momentum. To our knowledge, spinning supersym-
metric Q-balls are the first example of analytical solution
in field theory in Minkowski spacetime representing a
soliton possessing angular momentum. As we will see,
spinning supersymmetric Q-balls are excitations of
spherically-symmetric supersymmetricQ-balls, since their
energy spectrum lies above the ground state represented by
nonspinning Q-balls. However, it is highly probable that
these exited states could form during collisions between
supersymmetric Q-balls and, most importantly, during the
process of fragmentation of the Affleck-Dine condensate,
which is a plausible process that can lead to a copious
production of Q-balls at the end of inflation [5,6].

The plan of the paper is as follows. In Sec. II we review
the general properties of spherically-symmetric supersym-
metric Q-ball in order to make clearer the derivation and
the study of nonspherically-symmetric supersymmetric
Q-balls configurations which will be tackled in Sec. III.
In Sec. IV we show that spinning supersymmetric Q-balls
are stable against small perturbations about their classical
configurations. Finally, in Sec. V we draw our conclusions.

II. SPHERICALLY-SYMMETRIC
SUPERSYMMETRIC Q-BALLS

Let us consider a charged scalar field�whose dynamics
is described by Lagrangian density

L ¼ ð@���Þð@��Þ �Uðj�jÞ: (1)

Being the theory invariant under a global Uð1Þ transforma-
tion, there exists a conserved Noether charge, q, which we
normalize as

q ¼ 1

i

Z
d3xð�� _��� _��Þ; (2)

where a dot indicates a derivative with respect to time. The
energy-momentum tensor associated to a given field con-
figuration �ðt; rÞ, reads

T�
� ¼ @��@��

� þ @��@��� � ��
�L; (3)

so that the total energy is

E �
Z

d3xT0
0 ¼

Z
d3x½j _�j2 þ jr�j2 þUðj�jÞ�: (4)

In general, Q-balls are solitonic solutions of the field
equations carrying a definite value of the charge (2), let
us say Q. An elegant way to construct such a type of
solution [9] is to introduce a Lagrange multiplier ! asso-
ciated to q, and require that the physical configuration
�ðt; rÞ makes the functional

E ½�;��; !� � Eþ!

�
Q� 1

i

Z
d3xð�� _��� _��Þ

�
(5)

stationary with respect to independent variations of � and
!. Noticing that the choice [1,9]
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�ðt; rÞ ¼ ei!t�ðrÞ; (6)

assures that the total energy E is independent on the time,
one finds that Q-balls solutions have to satisfy the con-
straints

�E
��

¼ 0;
�E
��� ¼ 0;

�E
�!

¼ 0: (7)

The first two constraints lead to the equations of motion of
the fields ��ðrÞ and �ðrÞ, respectively,

ðr2 þ!2Þ�� ¼ �U

��
; (8)

ðr2 þ!2Þ� ¼ �U

��� ; (9)

while the second one is equivalent to the requirement that
the charge corresponding to the solution of the equation of
motion is equal to Q:

q ¼ 2!
Z

d3xj�j2 � Q: (10)

Taking into account the equations of motion, the functional
E can be conveniently rewritten as:

E ¼
Z

d3x

�
U��

�U

��

�
þ!Q: (11)

A spherically-symmetric Q-ball is defined as the solution
�ðrÞ of Eq. (9) satisfying, at fixed charge Q, the boundary
conditions [1]

lim
r!0

�ðrÞ � 1; lim
r!1�ðrÞ ¼ 0; (12)

where r � jrj. In particular, a (spherically-symmetric)
supersymmetric Q-ball is a Q-ball configuration arising
in a supersymmetric model of particle physics where su-
persymmetry is broken via low-energy gauge mediation
[10]. In this kind of model the coupling of the massive
vectorlike messenger fields to the gauge multiplets, with
coupling constant g� 10�2, leads to the breaking of su-
persymmetry [10]. The coupling itself gives rise to an
effective potential for the flat direction � whose lowest
order (two-loops) contribution has been calculated in
Ref. [11]:

UðzÞ ¼ �
Z 1

0
dx

z�2 � xð1� xÞ þ xð1� xÞ ln½xð1� xÞz2�
½z�2 � xð1� xÞ�2 :

(13)

Here, z � j�j=M and M � MS=ð2gÞ, with MS the mes-

senger mass scale. The value of the mass parameter�1=4 is
constrained as (see, e.g., Ref. [12]):

1 TeV & �1=4 & 104
�
m3=2

GeV

�
1=2

TeV; (14)

where the gravitino mass, m3=2, is in the range 100 keV &

m3=2 & 1 GeV [11,12]. The asymptotic expressions of

UðzÞ, for small and large z are [11]:

UðzÞ
�

’
�
z2; if z � 1;
ðlnz2Þ2 � 2 lnz2 þ �2

3 ; if z � 1:
(15)

A widely used approximation in constructing Q-ball solu-
tions, whose validity has been ascertained in Ref. [13],
consists in replacing the full potential UðzÞ with its asymp-
totic expansions (15) in which a plateau plays the role of
the logarithmic rise for large values of z. More precisely,
the approximate supersymmetric potential has the form

Uðj�jÞ �
�
m2

�j�j2; if j�j � M;
�; if j�j 	 M;

(16)

where m� � ffiffiffiffi
�

p
=M is the soft breaking mass and is of

order 1 TeV [12]. Within this approximation, it has been
shown that the potential Uðj�jÞ allows spherically-
symmetric Q-ball solutions as the nonperturbative ground
state of the model [4,14].
The profile of the supersymmetricQ-ball is easily found

from Eqs. (9) and (16):

�ðrÞ ¼
�
�0j0ð!rÞ þ ~�0y0ð!rÞ; if j�j 	 M;
��i0ðr=�Þ þ ~��k0ðr=�Þ; if j�j � M;

(17)

where �0 and �� are constants of integration, j0ðxÞ ¼
sinx=x is the zeroth-order spherical Bessel function of first
kind, y0ðxÞ ¼ � cosx=x is the zeroth-order spherical
Bessel function of second kind, i0ðxÞ ¼ sinhx=x is the
zeroth-order modified spherical Bessel function of first
kind, and k0ðxÞ ¼ e�x=x is the zeroth-order modified
spherical Bessel function of second kind [15]. Here, we
have introduced the ‘‘thickness’’ of the Q-ball,

� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� �!2
q : (18)

We can now define the ‘‘radius’’ of the Q-ball, R, as the
solution of the equation j0ð!RÞ ¼ M=�0. In the limit
�0 � M we have j0ð!RÞ ’ 0, from which it follows that

R ¼ �

!
: (19)

(We will see in the following that the condition �0 � M
will correspond to have large values of the chargeQ.) If the
thickness of the Q-ball is much smaller than its radius (we
will see, below, that indeed large charges Q implies that
R � �), we can write

�ðrÞ ¼
�
�0j0ð!rÞ; if r � R;
0; if r 	 R;

(20)

which is the solution found in Refs. [4,14]. Inserting the
above solution in Eq. (11) and minimizing with respect to
! [see the last equation in Eq. (7)], we find the parameter!
as a function of the charge Q:
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!

m�
¼ 2

ffiffiffi
2

p
�

�
Q

QðcrÞ

��1=4
; (21)

where we have introduced the ‘‘critical charge’’ QðcrÞ,
whose meaning will be clear in the following, as

QðcrÞ � 4�

m4
�

: (22)

Inserting Eq. (21) in Eq. (19), we find theQ-ball radius as a
function of the charge:

R

m�1
�

¼ 1

2
ffiffiffi
2

p
�

Q

QðcrÞ

�
1=4

: (23)

From the above equation and taking into account Eqs. (18)

and (21), we find that for large charges, Q � QðcrÞ, it
results R=� ’ ðQ=QðcrÞÞ1=4=2 ffiffiffi

2
p � 1, and this justifies

our approximation to neglect the thickness of the Q-ball
in computing its profile.

Inserting Eq. (21) in Eq. (11), and observing that, at
fixed charge Q, the energy coincides with the functional E,
we find E as a function of the charge:

E

m�Qcr
¼ 4�

3

�
Q

QðcrÞ

�
3=4

: (24)

Finally, inserting Eq. (20) in Eq. (10) and taking into
account Eq. (21), we find the value of �0 as a function of
the charge:

�0

M
¼

�
Q

QðcrÞ

�
1=4

: (25)

The above relation clarifies the meaning of the critical
charge: The Q-ball solution we found in the limit �0 �
M, corresponds indeed to the case of large charges com-

pared to QðcrÞ.
If the energy E of the Q-ball at fixed charge Q is less

thenm�Q, the soliton decays intoQ quanta of the field (the

perturbative spectrum of the theory), each of them with
mass m�. Instead, if E<m�Q the Q-ball is said to be

classically stable, and then represents the ground state of
the theory. Using Eq. (24), we find classical stability,

E=m�Q< 1, for Q>QðminÞ, with

QðminÞ ¼
�
4�

3

�
4
QðcrÞ: (26)

III. SPINNING SUPERSYMMETRIC Q-BALLS

In general, spherically-symmetric Q-balls have zero
angular momentum. In fact, the total angular momentum
for a scalar field configuration is given by

J ¼ ðJ23; J31; J12Þ; (27)

where J�� is the total angular momentum tensor [16]

J�� ¼
Z

d3xðx�T0� � x�T0�Þ; (28)

with T�� being the energy-momentum tensor given by
Eq. (3). Now, using spherical coordinates, r ¼ ðr; �; ’Þ,
we obtain

J1 ¼
Z

d3x½cosð2�Þ sin’T0
� þ cot� cos’T0

’�; (29)

J2 ¼
Z

d3x½� cosð2�Þ cos’T0
� þ cot� sin’T0

’�; (30)

J3 ¼ �
Z

d3xT0
’; (31)

so that for a spherically-symmetric Q-ball, � ¼ �ðt; rÞ,
we get J ¼ 0. On the other hand, for a nonspherically-
symmetric Q-ball (if it ever exists), � ¼ �ðt; r; �; ’Þ, we
could have in principle a nonvanishing angular momentum
(for supersymmetric Q-balls this will be indeed the case).
In particular, if one makes use of the ‘‘axially-symmetric
ansatz’’,

�ðt; r; �; ’Þ ¼ �ðt; r; �Þeim’; (32)

m being a real constant, one easily finds

J3 ¼ �mq; (33)

where q is given by Eq. (2). Since single-valuedness of the
scalar field requires �ðt; r; �; ’þ 2�Þ ¼ �ðt; r; �; ’Þ, the
constantmmust be an integer. Therefore, for this particular
configuration, the third component of the angular momen-
tum is quantized and proportional to the charge. It is useful
for the following discussion to observe that if a Q-ball
configuration is such that the field � is given by

�ðt; r; �; ’Þ ¼ ei!tþim’�ðr; �Þ; (34)

with �ðr; �Þ a real function, then (as it easy to verify) it
results J1 ¼ J2 ¼ 0, so that the nonspherically-symmetric
Q-ball is indeed a spinning Q-ball with total angular
momentum directed along the z-axis.
We now return to the supersymmetric case to find

nonspherically-symmetric supersymmetricQ-ball configu-
rations. We start by writing the equation of motion for the
field �ðrÞ [Eq. (9)] in spherical coordinates:�

@2r þ 2

r
@r þ 1

r2
@2� þ

cot�

r2
@� þ csc2�

r2
@2’ þ!2

�
�

¼ �U

��� : (35)

Using the technique of separation of variables,

�ðr; �; ’Þ � �ðrÞ�ð�;’Þ; (36)

we easily find [using the approximate form of the super-
symmetric potential, Eq. (16)] the solution of Eq. (35):
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�ð�;’Þ ¼ ffiffiffiffiffiffiffi
4�

p
Ym
l ð�; ’Þ; (37)

where

Ym
l ð�;’Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

ðl�mÞ!
ðlþmÞ!

s
Pm
l ðcos�Þeim’ (38)

are the usual spherical harmonics of degree l and order m,
with Pm

l ðxÞ being the associated Legendre polynomials of

degree l and order m [15], and

�ðrÞ ¼
�
�ljlð!rÞ þ ~�lylð!rÞ; if j�j 	 M;
��ilðr=�Þ þ ~��klðr=�Þ; if j�j � M:

(39)

Here, �l, ~�l, ��, ~�� are constants of integration, the
Q-ball thickness � is the same as in Eq. (18), jlðxÞ and
ylðxÞ are the spherical Bessel function of order l of first and
second kind, respectively, and ilðxÞ and klðxÞ are the modi-
fied spherical Bessel function of order l of first and second
kind respectively [15].

We can now define the radius of the Q-ball, Rl, as the
solution of the equation jlð!RlÞ ¼ M=�l. In the limit
�l � M we have jlð!RlÞ ’ 0, from which it follows that

Rl ¼
jlþ1=2;1

!
; (40)

where j�;1 represents the first zero of the Bessel function of
order � of first kind, J�ðxÞ [15].1 (We will see in the
following that the condition �l � M will correspond to
have large values of the charge Q.) If the thickness of the
Q-ball is much smaller than its radius (we will see, below,
that indeed large charges Q implies that Rl � �), we can
write

�ðrÞ ¼
�
�ljlð!rÞ; if r � Rl;
0; if r 	 Rl:

(41)

Inserting the above solution in Eq. (11) and minimizing
with respect to !, we find the parameter ! as a function of
the charge Q:

!l ¼
�
jlþ1=2;1

�

�
3=4

!0; (42)

where, from now on, quantities with the subscript ‘‘0’’ refer
to the case of spherically-symmetric supersymmetric
Q-balls analyzed in Sec. II.

Inserting Eq. (42) in Eqs. (40) and (11) we find, respec-
tively, the Q-ball radius and energy as a function of the
charge:

Rl ¼
�
jlþ1=2;1

�

�
1=4

R0 (43)

and

El ¼
�
jlþ1=2;1

�

�
3=4

E0; (44)

while, inserting Eq. (41) in Eq. (10) and taking into account
Eq. (42), we obtain

�l

M
¼

�
Q

QðcrÞ
l

�
1=4

; (45)

where we have introduced the ‘‘critical charge’’ QðcrÞ
l as

QðcrÞ
l � �ðjlþ1=2;1Þ3½jlþ1ðjlþ1=2;1Þ�4QðcrÞ

0 : (46)

Therefore, the Q-ball solution we found in the limit �l �
M, corresponds indeed to the case of large charges com-

pared to QðcrÞ
l . Also, from Eq. (43) and taking into account

Eqs. (18) and (42), we find that for large charges, Q �
QðcrÞ

l , it results Rl=� ’ Rl=m
�1
� � 1, and this justifies our

approximation to neglect the thickness of the Q-ball in
computing its profile.
Finally, using Eq. (44), we find classical stability,

El=m�Q< 1, for Q>QðminÞ
l , with

QðminÞ
l ¼

�
jlþ1=2;1

�

�
3
QðminÞ

0 : (47)

Taking into account that the general form of a supersym-
metric Q-ball solution [given by Eqs. (6), (36)–(38), and
(41)] is of the form (34) with �ðr; �Þ a real function, and
taking into account the discussion at the beginning of this
Section, we conclude that the nonspherically-symmetric
Q-ball solutions we found describe Q-balls with total
angular momentum directed along the z-axis and equal to
J3 ¼ �mQ. Moreover, observing that the angular part of

P 1 l

l 0

l 1

l 2 l 2

l 3 l 3

l 4 l 4

l 5

l 1

0 1 2 3 4

1

1.31

1.58

1.82

2.05

2.27

0 1 2 3 4

1

1.09

1.16

1.22

1.27

1.31

m

El

E0

J 3 Q

Rl

R0

FIG. 1. Energy spectrum of allowed states of a spinning super-
symmetric Q-ball for �4 � m � 4. Also shown are the corre-
sponding values of the radius Rl, the angular momentum J3, and
the parity P of the state.

1We observe that j�;1 is an increasing function of � with
j1=2;1 ¼ � and j3=2;1 ’ 4:49341, j5=2;1 ’ 5:76346, j7=2;1 ’
6:98793, j9=2;1 ’ 8:18256, j11=2;1 ¼ 9:35581 [15], etc.
Moreover, the asymptotic expansion of j�;1, as � ! 1, is: j�;1 �
�� ða1=21=3Þ�1=3 þ ð3a2121=3=20Þ��1=3 þ . . . , where a1 ’�2:33811 is the first negative zero of the Airy function AiðxÞ
[15].
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the Q-ball solution is proportional to the spherical har-
monic Ym

l ð�;’Þ, we deduce that l determines its parity P:

P ¼ ð�1Þl: (48)

However, not all values of l are admitted since, at fixed
chargeQ, aQ-ball with definite angular momentum J3 (or,
which is the same, with definite value of m) is such that its
energy is minimum. Looking at Eq. (44) and taking into
account that jlþ1=2;1 is an increasing function of l, we
deduce that at fixed Q and m, two values of l are allowed:
For even (odd) jmj, l ¼ jmj if the parity of the Q-ball
solution is positive (negative) and l ¼ jmj þ 1 if the parity
of the Q-ball solution is negative (positive). Accordingly,

the energy spectrum of allowed states of a spinning super-
symmetric Q-ball looks like that in Fig. 1.
In Fig. 2, we plot the spinning supersymmetric Q-ball’s

profile,�ðr; �Þ � �ðr; �; ’Þe�im’, as a function of r and �

for different values of l and m, at fixed charge Q ¼ 5

102QðminÞ

l . We observe that, using well-known properties of

spherical harmonics, the profiles for negative values of m
coincide with the corresponding positive ones if jmj is
even, while they get an extra minus sign if jmj is odd.

IV. STABILITY

Before concluding, we would like to show that spinning
supersymmetric Q-balls are stable against small perturba-
tions about their classical configurations. We will closely
follow an analysis performed in Ref. [17] (see also refer-
ences therein) regarding the stability of Q-balls arising in
some theories with nonrenormalizable scalar potentials.
Writing

�ðt; rÞ ¼ ei!t�ðt; rÞ; (49)

and varying the functional E [defined by Eq. (5)] with
respect to �, we find the equation of motion for the field
�ðt; rÞ:

� €�� 2i! _� ¼ D̂�; (50)

where D̂ is the linear differential operator

D̂ ¼ �r2 þ �U

�j�j2 �!2: (51)

Since Eq. (50) is linear in � [due to the form of the
potential U, see Eq. (16)], the evolution of small perturba-
tions �� about the background spinning supersymmetric
Q-ball configurations is described by a similar equation:

� ð��Þ�� � 2i!ð��Þ� ¼ D̂��: (52)

The solutions ��� of the above equation are easily found:

��� ¼ ei�t	�; (53)

where � ¼ �!�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ �

p
, 	� and � being the eigenvec-

tors and eigenvalues of D̂:

D̂	� ¼ �	�: (54)

From Eq. (53), we get that the background solution is
unstable [i.e. ���ðtÞ grows unboundedly with time] if
there exists a � such that Im½��< 0. However, this is not
the case since � is real. In fact, writing Eq. (54) as

�r2	� ¼
�
� �U

�j�j2 þ!2 þ �

�
	�; (55)

and remembering that the eigenvalues of the operator�r2

are strictly positive real numbers, we obtain

0

1
2

1
r R1

0

2

20

10

0

10

20

M

0

1
2

1
r R1

0

2

20

10

0

M

0

1
2

1
r R2

0

2

20

10

0

10

20

M

FIG. 2. Spinning supersymmetric Q-ball’s profile, �ðr; �Þ �
�ðr; �; ’Þe�im’, for Q ¼ 5
 102QðminÞ

l . From upper to lower

panel: ðl; mÞ ¼ ð1; 0Þ, (1, 1), (2, 1).
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!2 þ � >
�U

�j�j2 	 0; (56)

where in the last inequality we used Eq. (16). The above
equation shows that � is a real quantity, as anticipated.

V. CONCLUSIONS

We have succeeded in obtaining, analytically, nontopo-
logical solitonic solutions with nonvanishing angular mo-
mentum in (3þ 1)-dimensional Minkowski spacetime in
the theory of a self-interacting complex scalar field carry-
ing a conserved global Uð1Þ charge.

This kind of solitons (known as spinning Q-balls) natu-
rally emerge in a particular class of supersymmetric ex-
tensions of the standard model of particle physics where
supersymmetry is spontaneously broken at low energy. The
scalar field is in this case a gauge-singlet combination of
squarks and sleptons corresponding to some flat direction
of the supersymmetric potential, while the conserved
global charge is some combination of baryon and lepton
numbers. In this class of models an effective potential for
the flat directions arises due to the breaking of
supersymmetry.

We have shown that such a type of potential admits, as
the nonperturbative ground state of the theory, axisymmet-

ric Q-balls whose angular momentum is directed along the
axis of symmetry. Working in the limit of large charges, we
have found that the state of a spinning supersymmetric
Q-ball can be labeled by the triple ðQ; l;mÞ, where Q is
the conserved Uð1Þ charge, l is positive integer that can
take the values l ¼ jmj and l ¼ jmj þ 1 and defines the
parity of the state, P ¼ ð�1Þl, while m is a integer which
gives the projection of the angular momentum on the axis
of symmetry through J ¼ �mQ.
Moreover, we have found the expressions for the energy

and radius of spinning supersymmetric Q-balls, which
fully determine their astrophysical and cosmological prop-
erties. It turns out that they do not explicitly depend on m
and, at fixed charge, are increasing functions of l. This
indicates that spinning supersymmetric Q-balls are indeed
excitations of spherically-symmetric supersymmetric
Q-balls. They are classically stable—due to conservation
of angular momentum and parity—and stable against small
perturbations about their classical configurations, and
could form during collisions between supersymmetric
Q-balls and/or during the process of fragmentation of the
Affleck-Dine condensate at the end of inflation.
Finally, in the case ðl; mÞ ¼ ð0; 0Þ, we reobtain the well-

known solution and properties of parity-even, supersym-
metric Q-balls with vanishing angular momentum already
analyzed in the literature.
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