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We compute the simplest hard thermal loops for a spatial ’t Hooft loop in the deconfined phase of a

SUðNÞ gauge theory. We expand to quadratic order about a constant background field A0 ¼ Q=g, whereQ

is a diagonal, color matrix and g is the gauge coupling constant. We analyze the problem in sufficient

generality that the techniques developed can be applied to compute transport properties in a ‘‘semi’’-quark

gluon plasma. Notably, computations are done using the double line notation at finite N. The quark self-

energy is a Q-dependent thermal mass squared �g2T2, where T is the temperature, times the same hard

thermal loop as atQ ¼ 0. The gluon self-energy involves two pieces: aQ-dependent Debye mass squared,

�g2T2, times the same hard thermal loop as for Q ¼ 0, plus a new hard thermal loop �g2T3, due to the

color electric field generated by a spatial ’t Hooft loop.
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I. INTRODUCTION

The spectacular success of the experiments at the
Relativistic Heavy Ion Collider at Brookhaven has invigo-
rated the study of gauge theories at a nonzero temperature,
T [1,2]. Experiment clearly shows that an understanding of
quantities in thermal equilibrium are not sufficient to
understand the data, and that one also needs quantities
near thermal equilibrium, especially transport coefficients.

In this paper we compute for what appears to be an
unrelated problem: the real time response functions for a
spatial ’t Hooft loop [3,4]. A Wilson loop,
trP expðigHC A�dx

�Þ, represents the propagation of a

test electric charge along the path C, and measures the
response to magnetic flux. Similarly, a ’t Hooft loop in-
troduces a test magnetic charge along a given path, and
measures the response to electric flux. Their behavior is
dual to one another. At zero temperature in a SUðNÞ gauge
theory without quarks, the condensation of magnetic
charges confines electric charge, so the Wilson loop has
area behavior, and the ’t Hooft loop, perimeter. Conversely,
at temperatures above that for deconfinement, magnetic
charges do not condense, and electric charge is not con-
fined; hence, a (thermal) Wilson loop has perimeter behav-
ior, and the (spatial) ’t Hooft loop, area [5].

The ’t Hooft loop does not have a simple representation
in terms of the vector potential for the gauge field, but in
the deconfined phase, the area behavior of the spatial
’t Hooft loop can be simply understood [5] as a ZðNÞ
interface [6–11]. Without dynamical quarks, a SUðNÞ
gauge theory has N equivalent vacua, which differ by
global ZðNÞ transformations from one another [3,4]. To
probe this, take a box that is long in one spatial direction,
say of length L in z, and let the two ends of the box differ
by a ZðNÞ transformation. Thus, at one end of the box, z ¼
0, the Wilson line in the imaginary time direction,
P expðigRA0d�Þ equals the unit matrix; at the other end

of the box, z ¼ þL, the Wilson line is a ZðNÞ phase,
expð2�i=NÞ, times the unit matrix. These boundary con-
ditions can be imposed by introducing a background field
for the timelike component of the vector potential [6–16]:

A0ðzÞ ¼ 1

g
QðzÞ; (1)

where Q is a diagonal matrix in color space, and g is the
gauge coupling constant. The matrixQðzÞ is then chosen to
vary so that a ZðNÞ interface, centered at z ¼ þL=2, forms.
Only the ends of the box represent allowable vacua, so a
nonzero color electric field is generated along the z direc-
tion, Ez � @zQðzÞ, and the configuration has nonzero ac-
tion. By construction, the interface is independent of the x
and y directions, and so the action is proportional to
the transverse area. This ZðNÞ interface is then equivalent
to a spatial ’t Hooft loop, in the plane of x and y, at z ¼
þL=2 [5].
The action for the ZðNÞ interface can be computed in

weak coupling, and reduces to a tunneling problem in one
dimension [6]. There is no potential for Q classically, but
one is generated at one-loop order, and so the action for the

associated instanton is not �1=g2, but �1=
ffiffiffiffiffi
g2

p
[6,17]. A

derivative expansion can be used to compute, because
along the z direction, the width of the interface is propor-
tional to the inverse Debye mass, �1=ðgTÞ, which is large
relative to the typical thermal correlation length for mass-
less fields, �1=ð2�TÞ. Consequently, at the outset one
computes for a field QðzÞ, which is constant in z, as effects
from the variation in z enter through corrections that are of
higher order in g. Corrections to the interface tension have
been carried out to �g3 [7], and are underway to �g4 [8].
This is to be compared with the free energy (whereQ ¼ 0),
which has been computed to �g6 [18–22].
The interface tension is measurable through numerical

simulations on the lattice [10]. This includes simulations
that model the behavior in real time [11]. In this paper, we
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address a related problem semiclassically, by computing
the simplest real time response functions, for a spatial
’t Hooft loop, in weak coupling. To do this, we expand to
quadratic order about the background field in Eq. (1),
taking Q to be a constant matrix, and analytically continue
to real time. As for quantities computed in equilibrium,
near equilibrium there is a natural division between mo-
menta that are ‘‘soft,’’ with components of order the Debye
mass, �gT, and ‘‘hard,’’ �T. The simplest real time
response functions are the quark and gluon self-energies,
computed in the hard thermal loop approximation, for soft
external momenta [23–25].

We perform this computation in order to develop tech-
niques that will enable us to address a problem of much
broader interest. Resummations of perturbation theory ap-
pear to break down by temperatures several times the
critical temperature [20,21]. The obvious guess is to as-
sume that since Tc � 150–200 MeV in a gauge theory, that
the theory has entered a nonperturbative regime by this
point, where the QCD coupling is large [2]. While the
former must be true—confinement cannot be seen in per-
turbation theory—computations of an effective theory for
the pressure find that the coupling is moderate even at Tc,
with �eff

s ðTcÞ ¼ g2effðTcÞ=ð4�Þ � 0:3 [22]. This is because

in imaginary time, the typical ‘‘energies’’ are large, multi-
ples of 2�T [18].

Why, then, does deconfinement occur at moderate cou-
pling? Deconfinement is an ordering of global ZðNÞ spins,
and is measured by the trace of the thermal Wilson line,
which is the Polyakov loop [3,4]. In the fundamental
representation, without quarks the expectation value of
the Polyakov loop vanishes below Tc, and approaches
one at high temperature. Since the Polyakov loop is not
equal to one wheneverQ � 0, one way to model the region
where the Polyakov loop is not near one is to assume a
nontrivial distribution of Q’s [11,26–31], which in
Ref. [32] we term a semi quark-gluon plasma (semi-
QGP). At least at infiniteN, it is easy to model the confined
phase, as a distribution that is flat in Q. This implies that
the expectation value of the Polyakov loop in any non-
trivial representation vanishes, whether or not the loop
carries ZðNÞ charge. This is also consistent with how the
’t Hooft loop must change near Tc. At high temperature,
ZðNÞ interfaces are rare, and in infinite volume the theory
lies in one ZðNÞ domain. As T ! Tþ

c , though, the interface
tension decreases, ZðNÞ domains become plentiful, and the
ZðNÞ spins are disordered. The decrease of the ZðNÞ inter-
face tension near Tc has been confirmed on the lattice [10].

A semi-QGP can be shown to occur in one unphysical
limit. Let the spatial volume be a sphere of hadronic
dimensions, so small that by asymptotic freedom, the
coupling constant runs to a very small value [33].
Although systems at finite volume cannot have phase
transitions, they can if the number of colors is infinite. If
R is the radius of the sphere, then even when g2 ¼ 0, at

infinite N there is a deconfining phase transition, of first

order, when Tc ¼ c=R, where c ¼ 1= logð2þ ffiffiffi
3

p Þ [33]. At
Tþ
c , the expectation value of the (renormalized) Polyakov

loop, in the fundamental representation, is exactly 1=2. The
Q distribution for the constant mode on the sphere reduces
to a type of matrix model, which can be computed analyti-
cally about Tc [33]. Further, since all resonances are of
zero width at infinite N, the Hagedorn temperature is a
precise quantity. On a small sphere at N ¼ 1, at zero
coupling the Hagedorn temperature coincides with Tc.
Perturbative corrections move Tc below the Hagedorn
temperature, and the loop at Tþ

c away from 1=2, by an
amount �ðg2ðRÞNÞ2 [34]. Presumably, the expectation
value of the (renormalized) Polyakov loop, in the funda-
mental representation, goes from 1=2 at Tþ

c , to near one, by
temperatures that are a few times Tc. This is then the semi-
QGP on a small sphere.
Of course this might be an artifact of working on a small

sphere at infinite N. In a large spatial volume, one must
look to numerical simulations on a lattice. In any volume,
the Wilson line, and so the Polyakov loop has ultraviolet
divergences, so that the bare loop vanishes in the contin-
uum limit. A nonzero value in the continuum limit is
obtained after a type of mass renormalization [27,35–40].
On a small sphere, when g2ðRÞ � 1, one can renormalize
the loop perturbatively. In a large volume, on the lattice
there are two methods of renormalizing the Polyakov loop
[27,35], which now agree up to the numerical accuracy
[40]. The most precise measurements are for a SUð3Þ gauge
theory without quarks [40]. From Fig. 1 of [40], in the
triplet representation the expectation of the renormalized
Polyakov loop vanishes below Tc, and is�0:5 at Tc. It then
rises to it rises rapidly, and is �0:9 by 2:0Tc. It then rises
slowly, reaching �1:1 by �4Tc. From 4 to 12Tc, its
expectation value is flat. This suggests that there is a non-
trivial Q distribution about Tc, which is relevant up to
temperatures that are 2–4Tc. Above 4Tc, any nonperturba-
tive effects from the Q distribution appear negligible,
consistent with the success of resummations of perturba-
tion theory [21,22]. In a SUð3Þ gauge theory with quarks,
the simulations are of more limited accuracy, but a similar
picture emerges [39]. The principal difference is that the
expectation value of the renormalized triplet loop is non-
zero even below Tc [39].
At present, it is not known what theQ distribution is in a

gauge theory, even without quarks. This would correlate
the pressure with the expectation value of the (renormal-
ized) Polyakov loop(s). Such a distribution might be ob-
tained from numerical simulations, in both the original and
an effective theory [30].
Even without knowing the full Q distribution, though,

one can take the first steps toward the response functions in
real time, which we do here. For either a Q distribution, or
a ’t Hooft loop, one begins by computing the quadratic
fluctuations about the background field in Eq. (1). We then
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analytically continue the fluctuations, computed in imagi-
nary time, to real time [25,41]. (For a numerical approach
to quantities in real time, see [11].)

We find that the quark self-energy is a trivial extension
of that for Q ¼ 0: it is equal to a thermal mass squared,
�g2T2, times the same hard thermal loop as in zero field.
The gluon self-energy is different, though. Besides the
usual hard thermal loop, proportional to a thermal mass
squared,�g2T2, there is a new piece,�g2T3. The function
is similar to other hard thermal loops, but is novel. We
suggest that it arises because of the background color
electric field in a ’t Hooft loop.

The paper is organized as follows: In Sec. II, we discuss
how the double line notation, which is standard at large N
[42], can also be used easily at finiteN [43]. Our discussion
is elementary, but is absolutely essential to being able to
compute in an arbitrary background field with A0 � 0,
Eq. (1).

Section III introduces the background field calculation
for constant A0. The perturbative rules in the ’t Hooft basis
are given in Sec. III A. These are nothing more involved
than the usual perturbative rules, with a simple ‘‘shift’’ in
the energies, �Q. Section III B gives expressions, useful
for calculation, in terms of a ‘‘mixed’’ representation,
working with spatial momenta and Euclidean time. In
Sec. III C, we follow Furuuchi [41] and discuss how to
obtain scattering amplitudes, in real time, from those com-
puted in imaginary time.

The computation of the hard thermal loop in the quark
self-energy is given in Sec. IV. We go through this example
in some detail to develop familiarity with computing dia-
grams when Q � 0. The hard thermal loop in the gluon
self-energy is computed in Sec. V. In Sec. VA, we discuss
the Q dependence of the hard thermal loops in two tadpole
diagrams, which are independent of the external momenta.
In Sec. VB, we consider the hard thermal loops that arise
from diagrams that exhibit with Landau damping. With
these examples in hand, computing the one point gluon
function, in Sec. VC, the quark contribution to the gluon
self-energy, Sec. VD, and that of ghosts and gluons to the
gluon self-energy, Sec. VE, is relatively straightforward.

In an appendix we draw some distinctions on the differ-
ences between ZðNÞ and U(1) interfaces [29].

II. THE DOUBLE LINE NOTATION AT FINITE N

In order to compute efficiently, it is useful to have a
convenient basis for the generators of SUðNÞ. In this sec-
tion we follow Cvitanovı́c [43] to show how the usual
double line notation, which is familiar at large N [42], is
also natural at small N.

Our purpose here is to establish the notation that we
need to compute in the presence of a constant, background
field for A0, Eq. (1). We note that atN ¼ 1, Aharony et al.
computed the free energy with A0 � 0 to three-loop order,
�g4, on a small sphere [33]. At finite N, recently Korthals

Altes used the double line notation to compute the free
energy for A0 � 0 to �g2 in supersymmetric theories [8].
The standard choice for the generators of a gauge group,

�A, is to take a complete and orthonormal basis,

tr ð�A�BÞ ¼ 1
2�

AB; (2)

A and B refer to adjoint indices, which for SUðNÞ run from
A, B ¼ 1; 2; . . . ; ðN2 � 1Þ.
We denote indices in the fundamental representation by

a; b . . . ¼ 1; 2; . . . ; N. Indices in the adjoint representation
are then denoted by a pair of fundamental indices, ðabÞ.
The basic quantity that we need is a projection operator
that ties together upper and lower adjoint indices

P ab
cd ¼ �a

c�
b
d �

1

N
�ab�cd: (3)

For an arbitrary matrix M, adjoint indices are raised and
lowered by flipping the order in the pair: Mab ¼ Mba. The
indices flip because off-diagonal generators are ladder
operators. With this convention, the projection operators
between a pair of upper indices, or a pair of lower indices,
are

P ab
cd ¼ P ab;dc ¼ P ba;cd: (4)

It is obvious that Eq. (3) represents a projection operator

P ab
efP

ef
cd ¼ P ab

cd : (5)

While we have to be careful in lowering and raising adjoint
indices, we can raise or lower single indices without con-
cern, �ab ¼ �a

b ¼ �ab. The second term in Eq. (3) ensures

that it is traceless in either of the two pairs of adjoint
indices,

�abP ab
cd ¼ �cdP ab

cd ¼ 0: (6)

While we call ðabÞ an adjoint index, this terminology is
somewhat misleading. SUðNÞ has N2 � 1 independent
generators, but there are obviously N2 values for the index
ðabÞ. By using projection operators (or in the terminology
of [43], invariant tensors), the resulting basis is overcom-
plete, with one extra generator.
While we give explicit expressions for all quantities, it is

handy to use a diagramatric notation [42,43]. For SUðNÞ,
lines always carry an arrow, with fields in the fundamental
representation represented by a single line, and those in the
adjoint, by a double line. For an adjoint index ðabÞ, we
adopt the notation that for upper indices, a is outgoing and
b ingoing; for lower indices, a is ingoing and b outgoing.
This reversal is necessary so that upper and lower indices
are contracted accordingly.
Generally, any confusion with indices is dispelled by

drawing the corresponding diagram. For example, the pro-
jection operator of Eq. (3) is illustrated in Fig. 1, and is
drawn like a gluon propagator.
With these conventions, the generators of the fundamen-

tal representation are just projection operators,
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ðtabÞcd ¼ 1ffiffiffi
2

p P ab
cd: (7)

Note that the upper pair, ðabÞ, refers to the index for the
adjoint representation, while the lower pair, ðcdÞ, refers to
the components of this matrix in the fundamental repre-
sentation. This is illustrated in Fig. 2. While this is also a
projection operator, we draw it differently from Fig. 1,
distinguishing between the adjoint indices, on top of the
diagram, and the matrix indices for the fundamental rep-
resentation, on the two sides.

As each generator is a projection operator, the trace of
two generators is again a projection operator

tr ðtabtcdÞ ¼ 1
2P

ab
efP

cd
fe ¼ 1

2P
ab;cd: (8)

We now make an extended comment about the normaliza-
tion of generators, which is implied by Eq. (8). While
mathematically elementary, at least we found it confusing
at first.

The off-diagonal generators are the customary ladder
operators of the Cartan basis. That is, for a � b, they are
normalized as in Eq. (2), i.e.,

tr ðtabtbaÞ ¼ 1
2; (9)

here, a and b are fixed indices, with no summation con-
vention. In SUðNÞ, there are NðN � 1Þ off-diagonal
generators.

The only difference lies in the choice of the diagonal
generators (which is the Cartan subalgebra, the space of
mutually commuting generators). The Cartan basis in-
cludes one generator proportional to

tNN ¼ �1

N
ffiffiffi
2

p 1N�1 0
0 �ðN � 1Þ

� �
; (10)

where 1N�1 is the unit matrix in N � 1 dimensions. In the

Cartan basis, the corresponding matrix is �N ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N=ðN � 1Þp
tNN , where the overall constant is required

so that �N obeys Eq. (2). In the Cartan basis, the other
diagonal generators are like tNN , but for smaller N. For
example,

�N�1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1ÞðN � 2Þp 1N�2 0 0

0 �ðN � 2Þ 0
0 0 0

0
@

1
A;
(11)

and so on. We denote the N � 1 diagonal generators in the
Cartan basis as �a, a ¼ 2; 3; . . . ; N. While orthonormal,
this basis clearly treats the different diagonal elements on
an unequal footing, with the Nth element occuping a
privileged position.
In contrast, for the double line basis the diagonal gen-

erators are just permutations of one another: start with
Eq. (10), and simply shuffle where the factor of �ðN �
1Þ lies along the diagonal, e.g.,

t11 ¼ �1

N
ffiffiffi
2

p �ðN � 1Þ 0
0 1N�1

� �
; (12)

and so on. The t11; . . . ; tNN are a set of N diagonal gen-
erators, which manifestly do not treat any diagonal element
different from any other. This is only possible only because
they are not independent, that is, their sum vanishes,

XN
a¼1

taa ¼ 0: (13)

Consider the example of two colors, where the double
line basis has four generators. There are two off-diagonal,
ladder generators,

t12 ¼ 1ffiffiffi
2

p
�
0 1
0 0

�
; t21 ¼ 1ffiffiffi

2
p

�
0 0
1 0

�
: (14)

For the diagonal generators, from Eqs. (3) and (7) there are
two contributions,

t11 ¼ 1ffiffiffi
2

p
 

1 0

0 0

 !
� 1

2

1 0

0 1

 !!
¼ 1

2
ffiffiffi
2

p 1 0

0 �1

 !

¼ �t22: (15)

As expected, t11 is proportional to the Pauli matrix �3, but
the constant appears wrong. While the ladder generators
are normalized as in Eq. (9), trðt12t21Þ ¼ 1=2, the diagonal
generators satisfy trðt11Þ2 ¼ trðt22Þ2 ¼ 1=4, instead of 1=2;
further, trðt11t22Þ ¼ �1=4.
This normalization is correct, and arises because the

basis is overcomplete. From Eq. (8), the trace of a product
of two generators is itself a generator. Thus, the trace of a
given diagonal generator, squared, is

tr ðtaaÞ2 ¼ 1

2

�
1� 1

N

�
; (16)

with no summation over a; for N ¼ 2, this¼ 1=4. Further,
the trace between two different diagonal generators is
nonzero:

tr taatbb ¼ 1

2

�
� 1

N

�
; (17)

FIG. 2. Generator for SUðNÞ, times
ffiffiffi
2

p
.

FIG. 1. Projection operator, P ab;dc.
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with no summation over a or b, and a � b; for N ¼ 2, this
¼ �1=4. Thus, in this basis, the (peculiar) normalization
of the diagonal generators arises because the generators are
projection operators. Of course the diagonal and off-
diagonal generators are orthogonal to one another in the
usual manner.

In the absence of a background field, that the Cartan
basis chooses a preferred direction amongst the diagonal
generators is of no concern. The Cartan basis is also
convenient when computing the properties of a ZðNÞ inter-
face [6], since then the background field is along tNN , and
treating the Nth diagonal element as special is natural.

In the presence of an arbitrary background field, Eq. (1),
though, where Q is a diagonal matrix, ðQÞab ¼ Qa�ab,
Eq. (32), the double line basis is more useful. In particular,
all covariant derivatives are simple. In the fundamental
representation, Q acts linearly upon fields c . Then c is
like a column vector, so if c a is the ath element,

Qc a ¼ Qac a: (18)

In the adjoint representation, the covariant derivative in-
volves a commutator. The commutator of Q with any
generator, though, is just that generator times a difference
of Q’s:

½Q; tab� ¼ ðQa �QbÞtab � Qabtab: (19)

This is clear if a ¼ b, tab is a diagonal matrix, and the
commutator of taa with another diagonal matrix, Q,
vanishes. If a � b, only the first term in ðtabÞcd, ��a

c�
b
d,

Eqs. (3) and (7), contributes, to give Eq. (19). We introduce
the notation Qab ¼ Qa �Qb, which we shall use
extensively.

As a consequence of Eqs. (18) and (19), we find in
Sec. III A that with the double line basis, perturbation
theory for Q � 0 is a trivial generalization of that for Q ¼
0: just a constant, albeit color dependent, shift in the
energies. Energies that carry color indices were introduced
when the determinant in a background constant A0 field
was first computed, in Appendix D of Ref. [12].

The double line basis is useful in other ways. While
admittedly perverse for two colors, for three or more colors
it is a very efficient means of deriving various identities
amongst generators of the gauge group. For example, the
product of two generators is

ðtabtcdÞef ¼ 1

2
P ab

egP cd
gf

¼ 1

2

�
�a
e�

bc�d
f �

1

N
ð�a

e�
b
f�

cd þ �ab�c
e�

d
fÞ

þ 1

N2
�ab�cd�ef

�
; (20)

as illustrated in Fig. 3. This certainly shows how writing
down all of the indices is more tedious than just drawing
the corresponding diagram. By tying the sides of the
diagram together, representing summation over the matrix

indices, we obtain the normalization conditions above,
Eqs. (16) and (17). By tying the adjoint indices together
on top of the diagram, we also obtain the familiar identity

XN
a;b¼1

ðtabtbaÞcd ¼ N2 � 1

2N
�cd: (21)

In principle, we really should contract the adjoint indices
with a projection operator. Since the generators are trace-
less, though, Eq. (13), the projection operator reduces to
ordinary Kronecker deltas.
The product of three arbitrary generators can be written

out, similar to Fig. 3. By drawing diagrams, it is easy
obtaining the standard relation

XN
c;d¼1

tcdtabtdc ¼ � 1

2N
tab; (22)

where we leave the matrix indices implicit.
More useful is to take a trace of the product of three

generators. The antisymmetric combination is proportional
to the structure constant of the group

½tab; tcd� ¼ i
XN

e;f¼1

fðab;cd;efÞtfe; (23)

and is simple,

fðab;cd;efÞ ¼ iffiffiffi
2

p ð�ad�cf�eb � �af�cb�edÞ; (24)

as illustrated in Fig. 4. In this basis the structure constants
satisfy the identity

XN
e;f;g;h¼1

fðab;ef;ghÞfðcd;fe;hgÞ ¼ NP ab;cd: (25)

It is also easy to draw the diagram for the symmetric

structure constant, dðab;cd;efÞ,

FIG. 3. The product of two generators, times two.
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dðab;cd;efÞ ¼ 2 trðtabftcd; tefgÞ
¼ 1ffiffiffi

2
p

�
�ad�cf�eb þ �af�cb�ed

� 2

N
ð�ab�cf�ed þ �ad�cb�ef þ �af�cd�ebÞ

þ 4

N2
�ab�cd�ef

�
; (26)

as illustrated in Fig. 5.
For higher representations of the group, instead of dia-

grams with just two lines, one obtains diagrams with many
lines, or ‘‘birdtracks.’’ For a careful discussion of the
classification of arbitrary representations of Lie groups
by means of birdtrack diagrams, see Cvitanovı́c [43].

III. COMPUTING IN BACKGROUND FIELD
GAUGE

A. Propagators in a background A0 field

In this section we develop the perturbative rules in the
appropriate background field [16]. At tree level the
Lagrangian is

L ¼ 1
2 trðG2

��Þ þ �c ð 6DþmÞc : (27)

We assume there are Nf flavors of quarks, c , in the

fundamental representation of the gauge group; the cova-

riant derivative in that representation is D� ¼ @� � igA�.

The field strength tensor G�� ¼ ½D�;D��=ð�igÞ ¼
@�A� � @�A� � ig½A�; A��. The covariant derivative in

the adjoint representation is D� ¼ @� � ig½A�; :�. We

work in Euclidean spacetime, with a positive metric. The
gamma matrix is Hermitian and satisfies f	�; 	�g ¼ 2���.

We expand about a background field Acl
�,

A� ¼ Acl
� þ B�; (28)

where B� denotes the fluctuation. The classical covariant

derivative is then Dcl
� ¼ @� � igAcl

�, etc. The gauge fixing

and ghost terms are chosen to be those for background field
gauge, with gauge fixing parameter 
:

L gauge ¼ 1



trðDcl

�B�Þ2 � 2 trð ��Dcl
�D��Þ; (29)

with � the ghost field.
The inverse propagators follow directly. That for the

quark field is 6Dcl þm. The inverse propagator for the ghost
is �ðDcl

�Þ2, while that for gluon fluctuations, B�, is

ð�cl
��Þ�1 ¼ �ðDcl

� Þ2��� þDcl
�D

cl
� � 1



Dcl

�D
cl
� þ ig½Gcl

��; :�

¼ �ðDcl
� Þ2��� þ

�
1� 1




�
Dcl

�D
cl
� þ 2ig½Gcl

��; :�:
(30)

Most of our calculations are done assuming a back-
ground field that is constant in spacetime. Notice, however,
that the last term in the inverse gluon propagator is pro-
portional to the field strength tensor of the background
field. This will be important in understanding novel terms
for gluon hard thermal loops in the presence of an
interface.
The covariant derivative in the fundamental representa-

tion enters into the quark inverse propagator, while that in
the adjoint representation enters into the ghost and gluon
inverse propagators. We now compute at a nonzero tem-
perature T in the imaginary time formalism, where the
Euclidean time �: 0 ! 1=T. The energies are then

p0 ¼ 2n�T; bosons;

~p0 ¼ ð2nþ 1Þ�T; fermions:
(31)

We use a tilde for the energies and momenta of fermions, to
distinguish them from bosons.
We take the background field as a constant, diagonal

matrix for the timelike component of the vector potential

Acl
0 ¼ 1

g
Q; ðQÞab ¼ Qa�ab; (32)

as an SUðNÞ matrix, the sum of the Qa’s vanishes,

FIG. 4. Structure constant for SUðNÞ, times �i
ffiffiffi
2

p
.

FIG. 5. Symmetric structure constant, times
ffiffiffi
2

p
.
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XN
a¼1

Qa ¼ 0: (33)

As discussed in Sec. II, the great virtue of the double line
notation is that the covariant derivatives in a field like
Eq. (32) are trivial. For fields in the fundamental represen-
tation, the covariant derivative in the background field is
Dcl

�c a ¼ �i ~Pa
�c a, Eq. (18). If this covariant derivative

acts upon a quark field, ~Pa
� is a momenta with one color

index,

~P a
� ¼ ð~p0 þQa; ~pÞ: (34)

Since the background field shifts the Euclidean energies, it
is convenient to write

~P a
� ¼ P� þ ~Qa; ~Qa ¼ Qa þ �T: (35)

That is, we treat all momenta as bosonic, which we can
easily do by just putting the change in the boundary
condition for fermions, versus bosons, into part of the
background field.

The covariant derivative acts upon fields in the adjoint
representation asDcl

�t
ab ¼ �iPab

� tab, Eq. (19). For bosonic

fields,

Pab
� ¼ ðp0 þQa �Qb; ~pÞ ¼ ðpab

0 ; ~pÞ; (36)

and involves an adjoint color index, ðabÞ.
To be explicit, the quark propagator is

hc aðPÞ �c bð�PÞi ¼ �ab

�i~6Pa þm
; (37)

the ghost propagator,

h�abðPÞ ��cdð�PÞi ¼ 1

ðPabÞ2 P
ab;cd; (38)

and the gluon propagator,

hBab
� ðPÞBcd

� ð�PÞi ¼
�
��� � ð1� 
ÞP

ab
� Pab

�

ðPabÞ2
�

� 1

ðPabÞ2 P
ab;cd: (39)

These are illustrated in Fig. 6.

There are several matters of notation to attend to. All of
these sound more complicated than is true after drawing
the corresponding double line diagram. In Eqs. (34) to (39),
we adopt the convention that color indices shared between
momenta and projection operators are not summed over.
Implicitly, a quark line carries two arrows: one as a

Dirac particle, and one for color. Either Pa
0 ¼ p0 þQa,

if the directions coincide, or ðPaÞ0 ¼ p0 �Qa, if they do
not. As long as one is consistent with directions, though,
this does not really matter. For the quark propagator, this
leads to the obvious identity

�ab

�i~6Pa þm
¼ �ab

�i~6Pb þm
: (40)

Similarly, for fields in the adjoint representation, where
Pab
0 ¼ p0 þQa �Qb, we define the left index so that it is

in the direction of the momentum. Thus, if we change the
direction, P0 ¼ �P, then we must also reverse the order of
indices, and ðP0Þba ¼ �Pab. For the ghost propagator, for
example,

1

ðPabÞ2 P
ab;cd ¼ 1

ðPdcÞ2 P
ab;cd: (41)

The same is true for the gluon propagator.
The vertices between quantum fluctuations, B� and c ,

are also simple, taking care of indices and the like. The
vertex between a quark, antiquark, and a gluon is obtained
by taking the derivative of the action, S ¼ R

d4xL, as

� �S
�c bðRÞ�Bdc

� ðQÞ� �c aðPÞ ¼ igðtcdÞab	�: (42)

The order of the gluon indices flip, from the left- to the
right-hand side, because B� ¼ tcdBdc

� . The vertex between

a ghost, antighost, and a gluon is

� �S
��feðRÞ�Bdc

� ðQÞ� ��baðPÞ ¼ igfðab;cd;efÞðPabÞ�: (43)

The three gluon vertex is

� �S

�Bfe
� ðRÞ�Bdc

� ðQÞ�Bba
� ðPÞ

¼ �igfðab;cd;efÞ���ðPab;Qcd; RefÞ; (44)

FIG. 6. Quark, ghost, and gluon propagators.
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where

���ðPab;Qcd; RefÞ ¼ ðPab
� �Qcd

� Þ��� þ ðQcd
� � Ref

� Þ���

þ ðRef
� � Pab

� Þ���: (45)

These are all the usual vertices, with the replacement of
ordinary momenta by momenta that carry color indices.
Again, in Eqs. (43) and (45), color indices shared by
momenta are not summed over.

Momenta with colored indices satisfy momentum con-
servation as usual, so in Eq. (45),

Pab
� þQcd

� þ Ref
� ¼ 0: (46)

Now consider one of the external momenta, say Ref
� ,

contracted with the three gluon vertex. This satisfies the
identity

Ref
� ����ðPab;Qcd; RefÞ ¼ ��1

��ðQcdÞ � ��1
��ðPabÞ; (47)

where ��1 is the transverse piece of the inverse gluon
propagator

��1
��ðPÞ ¼ ���P

2 � P�P�: (48)

This is the same identity as for Q ¼ 0, Eq. (2.50) of
Ref. [24]. This is useful because as for Q ¼ 0 [24], it can
be used to show that hard thermal loops are independent of
the gauge fixing condition.

The four gluon vertex has the usual form, a sum over
products of structure constants

� �S

�Bhg
� ðSÞ�Bfe

� ðRÞ�Bdc
� ðQÞ�Bba

� ðPÞ

¼ �g2
XN
i;j¼1

ðfðab;cd;ijÞfðef;gh;jiÞð������ � ������Þ

þ fðab;ef;ijÞfðgh;cd;jiÞð������ � ������Þ
þ fðab;gh;ijÞfðcd;ef;jiÞð������ � ������ÞÞ: (49)

We conclude by noting that Eq. (41) can be used to
simplify insertions of ghost or gluon lines in loop dia-
grams. If a gluon ties onto a quark line, then in Feynman
gauge this enters as

tba
P ab;cd

ðPabÞ2 t
dc; (50)

where we neglect the rest of the diagram. The projection
operator in the gluon propagator is a sum of two terms,
Eq. (3). Since the gluon appears inside the loop, the c and d
indices are summed over. Unlike the a and b indices, which
also enter through Pab, this is the only place where c and d
indices enter. Since the generators are traceless, though,
Eq. (13), any contribution from the second term in the
projection operator, ��ab�cd=N, vanishes. Hence, in the
gluon line, we can replace the projection operator by the
first term, which is just a Kronecker delta, P ab;cd !

�ad�bc, so Eq. (50) becomes

tba
1

ðPabÞ2 t
ab: (51)

The same is true in any gauge. It is also true for a gluon tied
to either a three gluon or four gluon vertex, since in each
case, Eqs. (45) and (49), the projection operator in the

gluon propagator ties onto a factor fðcd;ef;ghÞ, and that
any such structure constant involves a commutator of tcd,
Eq. (23). The same holds for a ghost propagator tied onto a
ghost antighost gluon vertex. This useful simplification
was first seen in Eq. (21) in Sec. II: generators can be
contracted not with projection operators, but just with
ordinary Kronecker deltas.

B. Propagators in a mixed representation

In this section we discuss a useful trick for computing
scattering amplitudes, starting in the imaginary time. To
avoid unnecessary complication, we replace the color ma-
trices, either Qa or Qab, by a single background field, Q.
This is identical to considering the propagation of an
electron in QCD, in the presence of a background field
A0 �Q=e. The extension to QCD is automatic, as will be
clear from the examples which follow in later sections.
We then introduce a mixed representation for the propa-

gators [23–25]. For the spatial directions, one works as
usual in momentum space, but for the time direction,
instead one stays in coordinate space. For example, con-
sider a propagator,

�Qð�; EÞ ¼ T
Xþ1

n¼�1

e�iðp0þQÞ�

ðp0 þQÞ2 þ E2
; (52)

E is the energy, typically E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

p
. We assume the

field is bosonic, so the Euclidean energy p0 ¼ 2�nT, for
integral n. For the time being, we also assume that 0 �
� � 1=T. The sum is performed by contour integration in
the complex p0 plane. There are two poles, for p0 ¼
�Q� iE, which give

�Qð�; EÞ ¼
X
s¼�

s

2E
ð1þ nðsE� iQÞÞe�sE�: (53)

Here, nðEÞ is the usual Bose-Einstein statistical distribu-
tion function,

nðEÞ ¼ 1

eE=T � 1
; (54)

so the only change forQ � 0 is the change in the statistical
distribution function,

nðE	 iQÞ ¼ 1

eðE	iQÞ=T � 1
: (55)

Notice that this is the only place where Q enters into
Eq. (53): the propagators in Euclidean time,
� expð	E�Þ=2E, are identical to that for Q ¼ 0.
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This can be understood by recognizing that the parame-
ter iQ enters exactly like a chemical potential, albeit one
that is imaginary. Because of this, the associated statistical
distribution functions, nðE	 iQÞ, are complex valued. It
helps to rewrite Eq. (53) in a less compact form,

�Qð�; EÞ ¼ 1

2E
ðð1þ nðE� iQÞÞe�E� þ nðEþ iQÞeþE�Þ:

(56)

This form is physically more transparent. The first term,
with propagator e�E�=2E, is proportional to 1þ nðE�
iQÞ. The 1 is the contribution in vacuum, while nðE�
iQÞ represents the induced emission of a particle, with
energy E and chemical potential þiQ, into the thermal
bath. The second term, with propagator expðþE�Þ=2E, is
proportional to�nðEþ iQÞ. This represents absorption of
a field with energy E, and chemical potential for the
antiparticle, �iQ, from the thermal bath.

This expression for the propagator is the same as for a
real chemical potential,�, except that� is replaced by iQ.
As when � � 0, the statistical distribution functions are
modified, but the energies of the system remain unchanged.
The same is then true for an imaginary chemical potential,
iQ. This is why the form of the propagators in imaginary
time, expð�E�Þ=2E, are unaffected by Q. We argue in the
next subsection that this remains valid for propagation in
real time as well.

We make some remarks to help illuminate the meaning
of the statistical distribution functions when 0<Q<�T.
First, when Q ¼ 0, the Bose-Einstein distribution function
is singular as E ! 0, nðEÞ � T=E. This singularity is
related to the phenomenon of Bose-Einstein condensation
at low temperature. In contrast, whenever Q � 0, the dis-
tribution function is regular as the energy vanishes, nð0�
iQÞ ¼ 1=ðexpð�iQ=TÞ � 1Þ. This includes ordinary fer-
mions, when Q ¼ �T, and nð�i�TÞ ¼ �1=2.

It is also helpful to consider adding a real chemical
potential,�, in addition to iQ. For ordinary fermions,Q ¼
�T, the Fermi-Dirac distribution function with � � 0 is

~nðE��Þ ¼ �nðE� i�T ��Þ ¼ 1

eðE��Þ=T þ 1
: (57)

In the limit of zero temperature, if E>�, ~n ¼ 0, while if
E<�, ~n ¼ 1. For antiparticles, ~nðEþ�Þ ¼ 0 for any E
as T ! 0. This is just a Fermi sea, and represents a net
excess of particles over antiparticles.

WhenQ � �T, if there is also a real chemical potential,
�, the associated statistical distribution function is

nðE��� iQÞ ¼ 1

eðE���iQÞ=T � 1
: (58)

Taking Q ¼ 2�Tq, as T ! 0, if E>�, n ¼ 0. However,
if E<�, n ¼ �1; the negative sign of n is natural, see
Eq. (57). For antiparticles, nðEþ�þ iQÞ, one finds n ¼
0 for all energies. Thus, a real chemical potential introdu-

ces an asymmetry between particles and antiparticles for
all Q � 0.
Speaking loosely, when 0<Q<�T particles behave

with something like fractional statistics. This analogy is
not precise, though, merely suggestive. In particular, for
both cases in whichQ arises, a givenQ is not physical. For
a ZðNÞ interface, Q is a function of z, and one integrates
over all QðzÞ. In the semi-QGP, there is a distribution of
Q’s, and it is only integrals over the distribution that are
physically meaningful. In both cases, after summing over
all Q’s, the usual relationship between spin and statistics is
recovered.
We conclude with some useful identities. The first is

1þ nðE� iQÞ ¼ eðE�iQÞ=TnðE� iQÞ: (59)

This is well known for Q ¼ 0, and by construction, must
then be true for Q � 0, by simply replacing E ! E� iQ.
It applies for either sign of Q.
The propagator in Eq. (52) is defined for positive �, 0 �

� � 1=T. The extension to negative values, �1=T � � �
1=T, is

�Qð�; EÞ ¼
X
s¼�

s

2E
ð1þ nðsE� iQ signð�ÞÞÞe�sEj�j:

(60)

From this, or directly from Eq. (52),

�Qð��; EÞ ¼ ��Qð�; EÞ: (61)

From this it also follows that

�Qð�� 1=T; EÞ ¼ eiQ=T�Qð�; EÞ: (62)

This is the generalization of the Kubo-Martin-Schwinger
condition [25] to a background field Q.
In practice we will start with diagrams in momentum

space, and then transform a sum over p0 to an integrals
over �’s. This is done by using the Fourier transform of
Eq. (52), which is

1

ðp0 þQÞ2 þE2
¼
Z 1=T

0
d�

eiðp0þQÞ�

2E
ðð1þnðE� iQÞÞe�E�

þnðEþ iQÞeþE�Þ: (63)

In computation we also require

p0 þQ

ðp0 þQÞ2 þ E2
¼
Z 1=T

0
d�

�i

2E

�
@

@�
eiðp0þQÞ�

�
� ðð1þ nðE� iQÞÞe�E�

þ nðEþ iQÞeþE�Þ: (64)

Integrating by parts, this equals

� iðeiðp0þQÞ=T�Qð1=T; EÞ � �Qð0; EÞÞ
þ
Z 1=T

0
d�eiðp0þQÞ�i

@

@�
�Qð�; EÞ: (65)
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The first term vanishes, since p0 is bosonic, so eip0=T ¼ 1,
and by the condition of Eq. (62), for � ¼ 1=T. The second
term is easy to evaluate, and gives

p0 þQ

ðp0 þQÞ2 þ E2
¼
Z 1=T

0
d�

eiðp0þQÞ�

2E
ðð1þ nðE� iQÞÞ

� ð�iEÞe�E� þ nðEþ iQÞðþiEÞeþE�Þ:
(66)

Integrals with higher powers of p0 þQ are not required,
since they can be reduced as

ðp0 þQÞ2
ðp0 þQÞ2 þ E2

¼ 1� E2

ðp0 þQÞ2 þ E2
; (67)

which can be handled by previous results.

C. Amplitudes in real time

In this section we follow Furuuchi [41] and discuss how
to proceed from amplitudes, computed in imaginary time,
to scattering amplitudes.

We remark that Smilga [15] has argued that ZðNÞ do-
main walls are entirely a construction valid only in imagi-
nary time, and have no relevance for scattering amplitudes.
If ZðNÞ domain structure is a natural consequence of the
system in thermal equilibrium—i.e., in imaginary time—
then it is difficult to see how they could not be relevant for
small fluctuations about thermal equilibrium, which is
what amplitudes in real time represent. Notably, lattice
simulations of the dynamical evolution of ZðNÞ domains
have been performed [11], and as one might expect, are
very similar to the evolution in Potts models, to which they
are closely analogous. We do acknowledge, however, that
the lattice time step is not immediately related to a physical
time.

Consider the usual contour in the plane of real and
imaginary time. The imaginary time variable � runs from
0 to 1=T, and represents a thermal ensemble in thermal
equilibrium. The contour also runs in real time, t, from 0 to
1, and then back again, representing fluctuations about the
thermal ensemble. This is illustrated in a standard figure,
Fig. 7. The exact shape of the contour [25] will not matter
for our purposes.

The essential question is on what parts of the contour the
background field A0 is nonzero. The answer is to take the
background A0 field only for the part of the contour in
imaginary time, and not for the part of the contour in real
time. This is absolutely necessary for the integrals to be
well defined. Since the real time runs from�1 toþ1, and
then back again, if there was such a background field, it
would affect the behavior at large times.
This is clearest in considering the background Q field as

a chemical potential for color charge [14]. A real chemical
potential alters the initial statistical distribution of the
particles: for fermions, for example, it represents a net
excess of particles over antiparticles, or a Fermi sea.
While the canonical momenta are shifted by a chemical
potential, the evolution in real time is by the usual
Hamiltonian of the system. Thus, the evolution, in real
time t, of some operator � proceeds by the usual
Heisenberg relation, �ðtÞ ¼ eþiHt�ð0Þe�iHt.
While the Q field represents an imaginary chemical

potential, its effect is only to alter the initial color distri-
bution of particles. The canonical momentum is shifted,
but not the Hamiltonian.
In practice, one computes an amplitude with Q depen-

dent momenta: pab
0 for gluons, pa

0 for quarks. The above

implies that one amplitudes are constructed by taking

pab
0 ¼ p0 þ ðQa �QbÞ ! �i!ab; (68)

for gluons, and similarly for quarks. Here,! is an energy in
real time, and as such, can take arbitrary values.
The division into hard momenta, of order �T, and soft

momenta, �gT, is preserved by this procedure. The usual
Euclidean p0 is a multiple of 2�T for bosons. Thus, the
shift by the fractional amount,�Q, does not change this. In
contrast, the Minkowski energy !ab is a continuous vari-
able, and it is consistent to assume that it is soft.
There is an important subtlety that we ignore. Usual

scattering amplitudes are invariant under arbitrary repar-
ametrizations of the fields. It is far from clear that this is
true for scattering in a fixed Q field. The point is that it is
necessary to compute a physical process. For a ZðNÞ inter-
face, this would be scattering not at a given point, but
integrated over the entire spatial extent of the interface.
Similarly, for the semi-QGP, scattering in a fixed Q field
could well exhibit unphysical behavior. The physical quan-
tity there are amplitudes in which one integrates over the
entire distribution of Q’s, representing the thermal equi-
librium state.

IV. QUARK SELF-ENERGY

With the formalism in place, we proceed to computing
the self-energy for a quark in a background field, Q � 0.
The computations are relatively straightforward, and do
not exhibit complications, which will arise for the gluon
self-energy in the next section. We go through this example
in some detail, so that the reader can develop familiarityFIG. 7. Contour in real and imaginary time.
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with computing in the presence of a background field. It
also helps to understand the novelty of the new terms in the
gluon self-energy.

At one-loop order, the standard diagram is, in our nota-
tion,

� �ð ~PaÞab ¼ �g2ðtdeÞacP de;fgðtfgÞcb
Z d4K

ð2�Þ4

� 	�i
~6Kc	�

ð ~Pa � ~KcÞ2ð ~KcÞ2 : (69)

Here, ~Kc is the momentum of the quark in the loop, and
~Pa � ~Kc the momentum of the gluon. Thus ~Kc is a fermi-
onic momentum, and ~Pa � ~Kc ¼ Pa � Kc is bosonic.

In Eq. (69) the integral is that appropriate for a bosonic
field at nonzero temperature,

Z d4K

ð2�Þ4 ¼ T
Xþ1

n¼�1

Z d3k

ð2�Þ3 ; k0 ¼ 2�nT: (70)

Remember that we can take p0 and k0 to be bosonic, by

using a background field that is ~Qa ¼ Qa þ �T.
The color structure reduces immediately. By Eqs. (50)

and (51), the gluon projection operator can be replaced by
an ordinary Kronecker delta

� �ð ~PaÞab ¼ ig2P ac;cb

Z d4K

ð2�Þ4
~6Kc

ðPa � KcÞ2ð ~KcÞ2 : (71)

The color structure is illustrated by the diagram of Fig. 8.
This is a sum of the planar diagram, minus 1=N times a
diagram in which all indices are equal.

We wish to extract the hard thermal loop, �T2, from
Eq. (71). Instead, to simplify the discussion, we consider
the integral

I ð ~PaÞ ¼
Z d4K

ð2�Þ4
1

ðPa � KcÞ2ð ~KcÞ2 ; (72)

in full generality.
To perform the sum over n, it is useful to use the mixed

representation, Sec. III B. Using Eq. (63), we write

1

ð ~KcÞ2 ¼
Z 1=T

0
d�

eiðk0þ ~QcÞ�

2Ek

ðð1þ nðEk � i ~QcÞÞe�Ek�

þ nðEk þ i ~QcÞeþEk�Þ (73)

for the quark-like propagator, Ek ¼
ffiffiffiffiffi
~k2

p
, and

1

ðPa � KcÞ2 ¼
Z 1=T

0
d�0

eiðp0�k0þQacÞ�0

2Ep�k

� ðð1þ nðEp�k � iQacÞÞe�Ep�k�
0

þ nðEp�k þ iQacÞeþEp�k�
0 Þ (74)

for the gluon propagator, Ep�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~p� ~kÞ2

q
.

The sum over n, where k0 ¼ 2�nT, can then be per-
formed immediately, and gives a delta function in time,

T
Xþ1

�1
eik0ð���0Þ ¼ �ð�� �0Þ: (75)

We divide this up into four integrals,

I ¼
Z d3k

ð2�Þ3
1

ð2EkÞð2Ep�kÞ ðI1 þ I2 þ I3 þ I4Þ: (76)

All of the terms are integrals over �. The first is

I1ð ~Qc;QacÞ ¼
Z 1=T

0
d�eðip0þiQacþi ~Qc�Ek�Ep�kÞ�

� ð1þ nðEk � i ~QcÞÞð1þ nðEp�k � iQacÞÞ;
(77)

with the other three of a similar form. The integral is easy
to do,

I1ð ~Qc;QacÞ ¼
�
eðip0þiQacþi ~Qc�Ek�Ep�kÞ=T � 1

ip0 þ i ~Qa � Ek � Ep�k

�

� ð1þ nðEk � i ~QcÞÞð1þ nðEp�k � iQacÞÞ:
(78)

In the energy denominator, we rewrite

Qac þ ~Qc ¼ Qa �Qc þQc þ �T ¼ ~Qa: (79)

For the other terms, though, it is better not to use this. Since
p0 is a bosonic momentum, expðip0=TÞ ¼ 1, and we group

e ðip0þiQacþi ~Qc�Ek�Ep�kÞ=T ¼ e�ðEk�i ~QcÞ=Te�ðEp�k�iQacÞ=T:
(80)

This is useful because the identity of Eq. (59) can now be
brought to bear, so that

FIG. 8. One-loop diagram for the quark self-energy.
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I 1ð ~Qc;QacÞ ¼ nðEk � i ~QcÞnðEp�k � iQacÞ � ð1þ nðEk � i ~QcÞÞð1þ nðEp�k � iQacÞÞ
ip0 þ i ~Qa � Ek � Ep�k

¼ �1

i~pa
0 � Ek � Ep�k

ð1þ nðEk � i ~QcÞ þ nðEp�k � iQacÞÞ: (81)

This is the exact same expression as for Q ¼ 0, with the
replacement

Ek ! Ek � i ~Qc; Ep�k ! Ep�k � iQac: (82)

This holds for the energy denominator as well: that for
Q ¼ 0, ip0 � Ek � Ep�k, becomes i~pa

0 � Ek � Ep�k after
the shift of Eq. (82), using Eq. (79). Note, however, that
this substitution is not universal, and holds only for the I’s:
in Eq. (76), the residues for the propagators remain
1=ð2EkÞ and 1=ð2Ep�kÞ, respectively.

We went through this derivation in detail, because the
chemical potentials are imaginary, so that some care is in
order. Even so, the manipulations for Q � 0 are very
similar to those for Q ¼ 0. For example, in going from
the first line in Eq. (81) to the second line, that
terms involving two statistical distribution functions,

nðEk � i ~QcÞnðEp�k � iQacÞ, drop out is just the usual

cancellation between stimulated emission and absorption
in a thermal bath.

The other integrals can be done similarly, and follow
from the result for Q ¼ 0, by shifting the energies, as in
Eq. (82), using the identity of Eq. (79):

I2ð ~Qc;QacÞ ¼ 1

i~pa
0 � Ek þ Ep�k

� ðnðEk � i ~QcÞ � nðEp�k þ iQacÞÞ; (83)

I3ð ~Qc;QacÞ ¼ �1

i~pa
0 þ Ek � Ep�k

� ðnðEk þ i ~QcÞ � nðEp�k � iQacÞÞ; (84)

I4ð ~Qc;QacÞ ¼ 1

i~pa
0 þ Ek þ Ep�k

� ð1þ nðEk þ i ~QcÞ þ nðEp�k þ iQacÞÞ:
(85)

The extension to the original integral of Eq. (71) is

immediate. The term � ~k 
 ~	 is the same as above. That

�~kc0	0 is evaluated using the identity of Eq. (66). In this

context, this tells us to replace ~kc0 ! 	iEk. For the terms
with positive energy, I1 and I2, �iEk enters; for those
with negative energy, I3 and I4, þiEk.

We next extract the hard thermal loop from Eq. (71).
These are terms where the external momenta are soft, p�
gT, and are as large as the corresponding term at tree level.

In the quark self-energy, then, the hard thermal loops are
�g2T2=p.
The loop momenta in a hard thermal loop are hard, k�

T. In the statistical distribution functions we can then
approximate Ep�k � Ek ¼ k. The dominant terms arise

from the energy denominators with Landau damping, I2

and I3. These terms are dominant because the energy
denominators are a difference of large energies, and thus
are small:

i~pa
0 � ðEk � Ep�kÞ � i~pa

0 � p cos�; (86)

where cos� ¼ k̂ 
 p̂.
Notice that these terms are only dominant if—and only

if—the energy i~pa
0 is small after analytic continuation,

Sec. III C. If only ip0, and not i~pa
0 , were small after

analytic continuation, then i ~Qa would be a hard momen-
tum, and there would be no hard thermal loop in the
diagram: everything would be a correction that is sup-
pressed by at least �g relative to the propagator at tree
level.

Introducing the vector K̂ ¼ ði; k̂Þ, k̂2 ¼ 1, the hard ther-
mal loop in the quark self-energy becomes

� �ð ~PaÞab �HTLðm2
qkÞab��ð ~PaÞ; (87)

where the �HTL sign indicates that the hard thermal loops
are equal, but not (necessarily) terms beyond that order,
and

��ðPÞ ¼
Z d�

4�

i ^6K
P 
 K̂ ; (88)

the angular integral is over all directions of the unit vector

k̂. The function ��ðPÞ is identical to that for Q ¼ 0. In the
quark self-energy, this function is multiplied by a thermal
quark ‘‘mass,’’ which is a function of Q:

ðm2
qkðQÞÞab ¼ g2T2

24

XN
c¼1

P ac;cbðAðQacÞ �Að ~QcÞÞ

¼ �ab

g2T2

24

�XN
c¼1

ðAðQacÞ �Að ~QcÞÞ

� 1

N
ðAð0Þ �Að ~QaÞÞ

�
; (89)

where

A ðQÞ ¼ 3

�2T2

Z 1

0
dkkðnðk� iQÞ þ nðkþ iQÞÞ: (90)
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We normalizeAðQÞ in anticipation of the final result. For
ordinary hard thermal loops, the integrals over the hard,
loop momenta decouple into an angular integral times an
integral over the statistical distribution functions. Equa-
tion (87) shows that this remains true for the quark hard
thermal loop when Q � 0. The same is also true for the
gluon hard thermal loop.

For the quark self-energy, in the end the color structure
is no different than the propagator at tree level,��ab. New
color structures do arise for the hard thermal loop in the
gluon self-energy.

The integrals over statistical distribution functions when
Q � 0 are not much more difficult than for Q ¼ 0 [6]. We
write

Q ¼ 2�Tq: (91)

Then

6

�2T2

Z 1

0
dkknðk� iQÞ ¼ 6

�2

Z 1

0
dkk

e�kþ2�iq

1� e�kþ2�iq

¼ 6

�2

X1
j¼1

1

j2
e2�iqj

¼ 1� 6qð1� qÞ þ iCl2ð2�qÞ;
(92)

where Clnð�Þ is the Clausen function. As is typical of
similar expressions for a ZðNÞ interface, this is valid only
for 0< q< 1, but the extension to other values is direct.
The imaginary term Cl2ð2�qÞ cancels in the sum, which
enters into A, so that

A ðQÞ ¼ 1� 6qð1� qÞ: (93)

The hard thermal loop in the quark self-energy is iden-
tical to that for Q ¼ 0, up to the change in the thermal
quark mass. To check that one obtains the usual value for

Q ¼ 0, remember that when all Q ¼ 0, ~Qc ¼ �T, or q ¼
1=2. Since Að0Þ ¼ 1 and Að1=2Þ ¼ �1=2,

m2
qkð0Þab ¼ N2 � 1

2N

g2T2

8
�ab: (94)

There is a simple interpretation of the function AðQÞ.
Although classically there is no potential for Q, in the
presence of a background field Q, a potential is generated
at one-loop order. For convenience we normalize this
potential as

V ðQÞ ¼ 1
2q

2ð1� qÞ2: (95)

Then

A ðQÞ ¼ d2

dq2
V ðQÞ: (96)

Hence, the thermal quark mass is naturally the second
derivative of a potential, as one would expect.

V. GLUON SELF-ENERGY

A. Gluonic hard thermal loops: tadpoles

From the example of the quark self-energy, one might
expect that the hard thermal loop in the gluon self-energy
when Q � 0 is just like that when Q ¼ 0, with the same
functional form, and the only change a relatively trivial
redefinition of the thermal mass.
We shall see that this is not true: there are new terms that

arise uniquely for non-Abelian gauge fields. These are not
present either for fermions, coupled to either Abelian or
non-Abelian gauge fields, nor for Abelian gauge fields.
Before delving into the details of the computation in a

non-Abelian gauge theory, in the next two subsections we
discuss the differences between hard thermal loops in the
gluonic self-energy whenQ � 0, versus Q ¼ 0. Hopefully
this will make the origin of the new terms less obscure.
Hard thermal loops are one-loop diagrams that are as

large as the corresponding terms at tree level when the
external momenta are soft, P� gT. For the gluon self-
energy in zero field, at tree level the inverse propagator is
�P2 � ðgTÞ2 for soft P. Thus, the hard thermal loops are
diagrams that are�g2T2 times a dimensionless function of
the energy, ip0 ¼ !, divided by the spatial momentum, p.
The simplest hard thermal loop is present in (massless)

scalar field theories, and is just a tadpole integral,

Z d4K

ð2�Þ4
1

K2
¼ T2

12
: (97)

Consider the extension of this integral to Q � 0:

Z d4K

ð2�Þ4
1

ðk0 þQÞ2 þ ~k2
: (98)

We use the representation of the propagator in Eq. (66).
The sum over k0 generates �ð�Þ, so the � integral is trivial,

and we are left with a single integral over k ¼
ffiffiffiffiffi
~k2

p
, so that

Eq. (98) becomes

1

4�2

Z 1

0
dkkðnðk� iQÞ þ nðkþ iQÞÞ ¼ T2

12
AðQÞ:

(99)

By comparison with Eq. (90), this is the functionAðQÞwe
found for the quark self-energy, Eq. (93). [An ultraviolet
divergent term at zero temperature, �R

kdk has been

dropped. For a scalar field, this is part of a mass diver-
gence. For a gauge field, the sum of all such terms vanishes
at zero temperature by gauge invariance.]
A less trivial example is given by the integral

Z d4K

ð2�Þ4
k0 þQ

ðk0 þQÞ2 þ ~k2
¼ �T3

3
A0ðQÞ: (100)

As we shall see in Sec. VC, there is a contribution to the
one point function of the gluon from such a term, where
k0 þQ arises from the three gluon vertex. We stress that
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such a diagram does not arise for the two point gluon
function.

This integral vanishes when Q ¼ 0 because it is odd in
k0, and one sums over both negative and positive values of
k0. Using the same tricks as above,

A 0ðQÞ ¼ 3

4i�3T3

Z 1

0
dkk2ðnðk� iQÞ � nðkþ iQÞÞ:

(101)

A term �R
d3k at zero temperature is dropped, and cer-

tainly vanishes when all such terms are summed together.
Expanding as in Eq. (92), with Q ¼ 2�Tq,

A 0ðQÞ ¼ 3

�3

X1
j¼1

1

j3
sinð2�qjÞ ¼ qð1� qÞð1� 2qÞ:

(102)

We recognize this as the first derivative of the potential in
Eq. (95),

A 0ðQÞ ¼ d

dq
V ðQÞ: (103)

Notice that this term manifestly vanishes when Q ¼ q ¼
0. It also vanishes for q ¼ 1, because this is a vacuum
equivalent to q ¼ 0, and for q ¼ 1=2, because this is an
extremal point of the potential.

B. Gluonic hard thermal loops: Landau damping

We next turn to the nontrivial hard thermal loops,
which have discontinuities, as a function of the external
momenta. These arise from energy denominators with
Landau damping.

We start by deriving, briefly, how such hard thermal
loops arise for the gluon (or photon) self-energy whenQ ¼
0. Consider, as a prototype, the integral

Z d4K

ð2�Þ4
kikj

K2ðP� KÞ2 : (104)

For the quark contribution to the gluon self-energy, the
factors ki and kj arise from the quark propagators. For the
gluon contribution, these momenta arise from the momen-
tum dependence of the three gluon vertices. There are, of
course, other contributions, with momenta ðk0Þ2 and k0ki,
but these can be treated similarly. We take the momenta in
the numerator to be�k because the loop momenta for hard
thermal loops are hard momenta, k� T, and dominate over
soft loop momenta, �gT.

This integral is done as for Eq. (72) in Sec. IV. There are
two terms that persist at zero temperature, I1 and I4, with
energy denominators ip0 	 ðEk þ Ep�kÞ. If k� T is hard,

and p� gT is soft, then these energy denominators are
hard,�2k. Such terms are independent of p0 and p, so that
I1 þ I4 � 2nðkÞ=k, which just produce a tadpole term as
in Eq. (97):

1

8�2

Z d�

4�
k̂ik̂j

Z 1

0
dkk2

2nðkÞ
k

¼ �ijT2

72
: (105)

Instead, concentrate on the terms I2 and I3, which arise
from the denominators with Landau damping:

1

8�2

Z d�

4�
k̂ik̂j

Z 1

0
dkk2ðnðEkÞ � nðEp�kÞÞ

�
�

1

ip0 � Ek þ Ep�k

� 1

ip0 þ Ek � Ep�k

�
: (106)

For the residues of the propagators we have taken Ep�k �
k, but this approximation cannot be made so cavalierly in
the rest of the expression. Indeed, notice that without any
cancellation, these terms are nominally larger than we
expect, �R

dkk2nðkÞ � T3, and not �T2. However, what

enters into Eq. (106) is only the difference of the statistical
distribution functions. For k� T and p� gT,

nðEp�kÞ � nðEkÞ � ~p 
 k̂
T

nðkÞð1þ nðkÞÞ: (107)

Because of this cancellation in the statistical distribution
functions, the diagram is not �T3, but only �T2. It is a
product of an integral over k,

1

4�2T

Z 1

0
dkk2nðkÞð1þ nðkÞÞ; (108)

and an angular integral,

� 1

2

Z d�

4�
k̂ik̂jðp̂ 
 k̂Þ

�
1

ip0=p� p̂ 
 k̂�
1

ip0=pþ p̂ 
 k̂
�
:

(109)

This is the usual hard thermal loop. The integral over k
generates the thermal mass for the gluon. This is multiplied
times an angular integral, which generates a dimensionless
function of ip0=p. This function has discontinuities on the
light cone from the Landau damping of massless particles.
We write the angular integral in Eq. (109) as we do to

emphasize its behavior as a function of

x ¼ cos� ¼ p̂ 
 k̂: (110)

The integral over x is from �1 to þ1, so a nonzero result
must be even in x. In Eq. (109), this happens because the
difference of statistical distribution functions, and the dif-
ference of energy denominators, are each odd in x, so the
product is even.
Now consider the analogous integral when Q � 0. As a

typical example, consider

J ijðP;Q1; Q2Þ ¼ 1

4

Z d4K

ð2�Þ4
ð2ki � piÞð2kj � pjÞ

ðK þQ1Þ2ðP� K þQ2Þ2
:

(111)

Here, k0 and p0 are both taken to be bosonic momenta,
while Q1 and Q2 are arbitrary background fields. The
numerator is chosen to ð2ki � piÞð2kj � pjÞ, which differs
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terms proportional to pi and pj from Eq. (104). We need
this term to keep a symmetry, Q1 $ Q2. This symmetry
can be checked by shifting of integration variables, K !
P� K, since both k0 and p0 are, by assumption, bosonic
momenta. In the numerator we take�kikj as a term which
generates the largest terms for hard k; terms �kipj are
down by �g to this term, those �pipj by �g2. We keep
the numerator of order p because the existence of the
background field makes the new leading order, which we
will see in the following, of order g2T3=p. If one neglects
the terms proportional to pi and pj in the numerator of
Eq. (111), one find a new term that is odd under Q1 $ Q2.
To see this symmetry in another way, note that the relevant
external momentum is P12 ¼ PþQ1 þQ2. Then the hard
thermal loops in Eq. (111) can be rewritten as

1

4

Z d4K

ð2�Þ4
ð2ki � piÞð2kj � pjÞ
ðK1Þ2ðP12 � K1Þ2

¼ 1

4

Z d4K

ð2�Þ4
ð2ki � piÞð2kj � pjÞ
ðK2Þ2ðP12 � K2Þ2 ; (112)

where K1 ¼ K þQ1 and K2 ¼ K þQ2. This is not a
Q-dependent shift of momenta, which would be invalid
for arbitrary Q. Instead, K1 ! P12 � K2 is just a shift of
purely bosonic momenta, K þQ1 ! P� K þQ1.

In Eq. (111) there are terms that persist at zero tempera-
ture, I1 and I4, with energy denominators ip12

0 	 ðEk þ
Ep�kÞ. These are really no different than for Q ¼ 0,

Eq. (105); the dependence on the external momenta drops
out, and one is left with integrals

�
Z d3k

ð2�Þ3
kikj

4k2
1

2k
ðnðk� iQ1Þ þ nðkþ iQ1Þ

þ nðk� iQ2Þ þ nðkþ iQ2ÞÞ

¼ T2�ij

144
ðAðQ1Þ þAðQ2ÞÞ; (113)

where we have dropped pi on the numerator, which is a
higher order of the hard thermal loop approximation. This
is just like the integral of Eq. (98). The angular integral is
trivial, ��ij, and the Q dependence is only through terms
�T2AðQÞ. [As noted before, tadpole integrals such as
Eq. (100) arise only for the one point gluon function, and
not in the gluon propagator. This is clear just on dimen-
sional grounds, as that diagram has dimensions of ðmassÞ3.]
We then turn to the terms with energy denominators that

correspond to Landau damping, I2 and I3. This part of the
integral is

J ijðP;Q1; Q2Þ ¼ 1

8�2

Z 1

0
dk

k4

EkEp�k

Z d�

4�

�
k̂i � pi

2k

�

�
�
k̂j � pj

2k

�
ðI2 þ I3Þ: (114)

The statistical distribution functions, and energy denomi-
nators, which represent Landau damping are the general-
ization of that for Q ¼ 0, Eq. (106), to Q � 0. These are
just modifications of Eqs. (83) and (84), replacing the Q’s
there by Q1 and Q2:

I 2 þ I3 ¼
nðEk � iQ1Þ � nðEp�k þ iQ2Þ

ip12
0 � Ek þ Ep�k

þ nðEp�k � iQ2Þ � nðEk þ iQ1Þ
ip12

0 þ Ek � Ep�k

; (115)

p12
0 ¼ p0 þQ1 þQ2. Now we symmetrize each term with

respect to then interchange of Q1 and Q2:

I 2 ¼ 1

2

nðEk � iQ1Þ � nðEp�k þ iQ1Þ þ nðEk � iQ2Þ � nðEp�k þ iQ2Þ
ip12

0 � Ek þ Ep�k

; (116)

I 3 ¼ 1

2

nðEp�k � iQ1Þ � nðEk þ iQ1Þ þ nðEp�k � iQ2Þ � nðEk þ iQ2Þ
ip12

0 þ Ek � Ep�k

: (117)

After symmetrization it is then easy to pick out both the
leading, and next to leading terms from (116) and (117).

The leading term is easy. In every term, we approximate
Ep�k � Ek ¼ k, and neglect pi and pj in the numerator, so

we find that J ijðP;Q1; Q2Þ factorizes into a product of an
integral over

R
dk, and an angular integral. The former is

1

16�2

Z 1

0
dkk2ðnðk� iQ1Þ � nðkþ iQ1Þ þ nðk� iQ2Þ

� nðkþ iQ2ÞÞ ¼ �T3

12
ðA0ðQ1Þ þA0ðQ2ÞÞ; (118)

using the function A0 of Eq. (102). In all,
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J ijðP;Q1; Q2Þ ¼ �T3

12p
ðA0ðQ1Þ þA0ðQ2ÞÞ

Z d�

4�
k̂ik̂j

�
�

1

ip12
0 =p� p̂ 
 k̂þ

1

ip12
0 =pþ p̂ 
 k̂

�
:

(119)

In the angular integral, k̂ik̂j produce terms �1 and x2,

where x ¼ p̂ 
 k̂, Eq. (110). The angular integral is mani-
festly even in x, and so does not vanish. This expression
can be rewritten in a form similar to that of Eq. (87),

J ijðP;Q1; Q2Þ �HTL�T
3

6
ðA0ðQ1Þ þA0ðQ2ÞÞ�ijðP12Þ

þ . . . : (120)

We introduce the function

���ðPÞ ¼
Z d�

4�

�
K̂�K̂�

P 
 K̂
�
; (121)

K̂ ¼ ði; k̂Þ, with d� the integral over k̂. The hard thermal
loop is g2 times J ij. Since � � 1=P, this is �g2T3=p
times a dimensionless function of ip12

0 =p. This is rather

different from the hard thermal loops for Q ¼ 0, which are
�g2T2 times a dimensionless function of ip0=p.

The origin for this difference is natural, when one con-
siders the propagator in a background field, Eq. (30). There
are the ordinary terms, �ðDcl

�Þ2, which becomes ðPab
� Þ2 in

momentum space. In addition, however, there is also a term
�2ig½Gcl

��; :�. For a ZðNÞ interface,

gGcl
0z � g@z

�
TqðzÞ
g

�
� T@zqðzÞ � gT2; (122)

where we use the fact that the typical spatial momenta for a
ZðNÞ interface is small, �gT. Thus, this term is larger by
�1=g than the ordinary terms, �P2 � g2T2.

The hard thermal loop in Eq. (119) is �g2T3=p, which
for soft p is�gT2. Thus, the new hard thermal loop can be
viewed as a modification of the term in the background
field propagator for a gluon. Like any other hard thermal
loop, it is as large as the term at tree level for soft external
momenta. It is just that in a background field, this term is
larger than expected.

The term�2ig½Gcl
��; :� is special to a non-Abelian gauge

field, since it involves the commutator in group space. It
also has no analogy for a fermion field, either Abelian or
non-Abelian. This explains why it did not appear in pre-
vious examples.

Having such a term is special to computing for a back-
ground field with a nonzero color field; for a ZðNÞ inter-
face, it is a nonzero color electric field. Thus, for the semi-
QGP, one does not expect a nonzero color field in vacuum,
and such terms should not appear. We admit that at present,
we do not have a fully self-consistent theory of the semi-
QGP, which would allow us to demonstrate this.

We turn to subleading terms in the gluon self-energy,
�T2. In this, it helps greatly to recognize that the integral
must be even in x ¼ cos�, Eq. (110). The measure is even
in x, as are terms �kikj, which produce contributions �1
or �x2.
There are several ways that corrections �T2 can arise.

The first is a numerator proportional to pi and pj:

� 1

32�2

Z 1

0
dkkðnðk� iQ1Þ � nðkþ iQ1Þ þ nðk� iQ2Þ

� nðkþ iQ2ÞÞ
Z d�

4�
ðk̂ipj þ pik̂jÞ

�
�

1

ip12
0 =p� p̂ 
 k̂þ

1

ip12
0 =pþ p̂ 
 k̂

�
: (123)

This vanishes, because the integrand is odd in k̂. The
second is expanding 1=Ep�k, which arises in the measure

of the integral, as the residue of the propagator,

1

Ep�k
� 1

k
þ ~p 
 k̂

k2
þ . . . : (124)

Again, since ~p 
 k̂ ¼ px, this is odd in x, and so vanishes.
The third is by expanding Ep�k in the energy denomi-

nators

1

ip12
0 � ðEk � Ep�kÞ

� 1

ip12
0 � ~p 
 k̂	

~p2 � ð ~p 
 k̂Þ2
2kðip12

0 � ~p 
 k̂Þ2
þ . . . (125)

The numerator of the second term on the right-hand side is
p2ð1� x2Þ, which is even in x. Because of the 	 sign in
front of the second term, though, this is in all odd in x, and
so vanishes.
Thus, the only way that corrections �T2 arise is by

expanding Ep�k in the statistical distribution functions

nðEp�k � iQÞ � nðk� iQÞ

þ ~p 
 k̂
T

nðk� iQÞð1þ nðk� iQÞÞ
þ . . . (126)

This is exactly the same sort of expression as at Q ¼ 0.
Now this term is odd in x, but note that �nðEp�k þ iQ1;2Þ
enters in I2, Eq. (116), andþnðEp�k � iQ1;2Þ enters in I3,

Eq. (117). Thus, the result is even in x, as it must be if not to
vanish. Explicitly, the terms�T2 in J ij are a product of an
integral over k,

1

16�2T

Z 1

0
dkk2ðnðk� iQ1Þð1þ nðk� iQ1ÞÞ

þ nðkþ iQ1Þð1þ nðkþ iQ1ÞÞ þ ðQ1 $ Q2ÞÞ; (127)

and an integral over the angular variables,

YOSHIMASA HIDAKA AND ROBERT D. PISARSKI PHYSICAL REVIEW D 80, 036004 (2009)

036004-16



Z d�

4�

�
k̂ik̂j ~p 
 k̂
P 
 K̂

�
: (128)

The angular integral in Eq. (128) is identical to that for
ordinary hard thermal loops. The momentum integral is
also a minor modification. Consider

1

T

Z 1

0
dkk2ðnðk� iQÞð1þ nðk� iQÞÞ

þ nðkþ iQÞð1þ nðkþ iQÞÞ; (129)

which we can rewrite as

� i
@

@Q

Z 1

0
dkk2ðnðk� iQÞ � nðkþ iQÞÞ: (130)

This integral arose previously in Eq. (102), and involves
the function A0ðQÞ, which is the first derivative of the
potential V ðQÞ, Eq. (95). Since in Eq. (130) we take a
derivative of this function with respect to Q, however, the
momentum integral in Eq. (129) involves not the first
derivative of V ðQÞ, but the second, through the function
AðQÞ, Eq. (96):

2�2T2

3
AðQÞ: (131)

In summary, the terms �T3 in J ijðP;Q1; Q2Þ are those of
Eq. (120); the terms �T2 are

T2

24
ðAðQ1Þ þAðQ2ÞÞ

�
�ij

6
þ
Z d�

4�

k̂ik̂j ~p 
 k̂
P12 
 K̂

�
: (132)

For completeness, we have added the tadpole terms,
��ij=6. This expression can be rewritten as

T2

24
ðAðQ1Þ þAðQ2ÞÞ

�
�ij

2
� ip12

0

Z d�

4�

k̂ik̂j

P12 
 K̂
�
:

(133)

It is direct to show that these are the only terms �T3 or
�T2. The one concern is terms where the numerator is
�kipj or �pikj: while the single power of pi brings in a
suppression by a soft momenta, �p=T, this times a term
�T3=p could produce a result �T2. However, a single
power of ki or kj is manifestly odd in the angular variable
x, Eq. (110). In contrast, the terms that produce contribu-
tions �T3, Eq. (109), are even in x. Thus, these possible
terms�T2 vanish when integrated over x. Therefore, in the
hard thermal loop equation, terms proportional to pi and pj

in Eq. (111) may simply be dropped

J ijðP;Q1; Q2Þ �HTL
Z d4K

ð2�Þ4
kikj

ðK þQ1Þ2ðP� K þQ2Þ2
:

(134)

For the gluon self-energy, the general integral required is

~J ��ðP12; Q1; Q2Þ ¼ 1

4

Z d4K

ð2�Þ4
�
����

�
1

ðK þQ1Þ2
þ 1

ðK þQ2Þ2
�
þ ð2K � PþQ1 �Q2Þ�ð2K � PþQ1 �Q2Þ�

ðK þQ1Þ2ðP� K þQ2Þ2
�
;

(135)

where Q� ¼ u�Q, u� ¼ 1 if � ¼ 0, and zero otherwise.
The first term on the left-hand side, ����, is added in
anticipation of the integrals which arise for hard thermal
loops, and is obviously independent of the external mo-
mentum, P.

Momentum dependence arises from the second term on
the left-hand side. Its numerator involves 2K � PþQ1 �
Q2 ¼ 2K1 � P12; under a shift of the loop momentum,
K ! P� K, this becomes �ð2K2 � P12Þ. Comparing
with Eq. (112) shows that Eq. (135) is symmetric under
interchange of Q1 and Q2.

When Q ¼ 0, the computation of hard thermal loops is
simplified by keeping only powers of the hard loop mo-
mentum K� in the numerator, and dropping those of the
soft external momenta, P� [23–25]. When Q � 0, the
analogous approximation is to keep powers of K1 or K2,
and drop powers of P12, as we saw in J ij. It is essential to
remember that whileQ1 andQ2 are each hard, that the real
energy P12 is soft, Sec. III C. Thus, we can write the second
term on the left-hand side of Eq. (135) as

Z d4K

ð2�Þ4
ðK1Þ�ðK1Þ�

ðK1Þ2ðP12 �K1Þ2 �HTL
Z d4K

ð2�Þ4
ðK2Þ�ðK2Þ�

ðK2Þ2ðP12 �K2Þ2 :
(136)

This simplification will help greatly in computing the
gluon self-energy in Secs. VD and VE.
Computations similar to those above show that this

integral equals

~J ��ðP12;Q1;Q2Þ �HTL�T
3

6
ðA0ðQ1ÞþA0ðQ2ÞÞ���ðP12Þ

þT2

24
ðAðQ1ÞþAðQ2ÞÞ����ðP12Þ;

(137)

where the momentum dependence enters through the func-
tions ���ðP12Þ, Eq. (121), and

����ðPÞ ¼
�
�u�u� � ip0

Z d�

4�

K̂�K̂�

P 
 K̂
�
: (138)
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Again, K̂ ¼ ði; k̂Þ, so K̂2 ¼ 0, and the angular integral is

over all directions of k̂.
Previously, we computed �ij and ��ij. Given this

result, it is immediate to show that �i0 and �00 are
correct. The only effort necessary is to establish the cor-
rectness of ��i0 and ��00. However, the derivation of
��ij above shows that the terms �T2 arise in precisely
the same way when Q � 0 as for Q ¼ 0, entirely from the
change in the statistical distribution functions, Eq. (126).
Thus, we can be certain that the only change is that of the
thermal gluon mass in a background field. That is, the
momentum dependence, which enters through ����ðPÞ,
is unchanged. For this, the previous computation suffices.

The function ����ðPÞ is the same function as arises in
the hard thermal loops whenQ ¼ 0. The function ���ðPÞ
enters only when Q � 0, since it is multiplied byA0, and
A0ð0Þ ¼ 0. From Eqs. (121) and (138), the two functions
are simply related to one another,

���ðPÞ ¼ �1

ip0

ð����ðPÞ þ u�u�Þ: (139)

The function ����ðPÞ is transverse,
P�����ðPÞ ¼ 0: (140)

Thus, the new hard thermal loop is not,

P����ðPÞ ¼ iu�: (141)

As discussed following Eq. (122), the new hard thermal
loop is the modification of the propagator in a background
field. Thus, it is not necessary for the term to be transverse.
We shall also see this in the next section, where we
compute the one point function for a gluon.

C. One point gluon function

With these results in hand, the diagrams can be com-
puted directly. In this subsection we begin with the one
point function for a gluon. The integral which enters is that
of Eq. (100), and generates the functionA0, Eq. (102). As
can be seen from Eq. (101), this function vanishes when
Q ¼ 0, as then the integral is odd in k0.

Consider a gluon loop tied onto a gluon line. By an
argument similar to that which lead to Eqs. (50) and (51), if
the gluon propagator in the loop is P cd;ef=ðKcdÞ2, Eq. (39),
we can replace this by �cf�de=ðKcdÞ2. Since the external
gluon has zero momentum, the three gluon vertex involves
one momentum, which we choose as Kcd; from Eq. (45),
the three gluon vertex is

� igfðab;cd;efÞð�Kcd
� ��� þ 2Kcd

� ��� � Kcd
� ���Þ: (142)

This is transverse in Kcd
� and Kcd

� , so the gauge dependent

term in the gluon propagator, �ð
� 1ÞKcd
� Kcd

� , Eq. (39),

drops out. The term in the gluon propagator ���� acting
upon Eq. (142) gives 2ðd� 1Þ in d ¼ 4 spacetime dimen-
sions. Including an overall 1=2 for the gluon loop,

� 6

2
igfab;cd;dc

Z d4K

ð2�Þ4
ðKcdÞ�
ðKcdÞ2

¼ �u�ig�T3
XN

c;d¼1

fab;cd;dcT3A0ðQc �QdÞ: (143)

Here, u� ¼ ð1; ~0Þ. The contribution from a ghost loop is
similar, with a coefficient of�1 instead ofþ3 in Eq. (143);
thus, the sum is þ2, which reflects for the two transverse
degrees of freedom of a gluon.
The contribution of Nf flavors of massless quarks is

ð�ÞigNfðtabÞcc
Z d4K

ð2�Þ4 tr
	�

�i~6Kc

¼ 4�

3
u�gNfT

3ðtabÞccA0ð ~QcÞ: (144)

Using Eqs. (7) and (24), the sum of the gluon, ghost, and
quark contributions is

hJab� i �HTL�u��ab 4�gT
3

3
ffiffiffi
2

p
�XN
c¼1

�
A0ðQacÞ þ Nf

N
A0ð ~QcÞ

�

� NfA0ð ~QaÞ
�
: (145)

In obtaining this, we have used the fact that A0 is odd in
Q ! �Q. This is clear from its definition in Eq. (101); its
form in Eq. (102) is only valid for 0< q< 1.
For a ZðNÞ interface, this current is part of the equation

of motion for the gluon, corrected to one-loop order. There
it is natural: the interface arises from a balance of the
Lagrangian at tree level, and a potential for the Q’s at
one-loop order. Equation (145) is precisely the derivative
of the one-loop potential.
For the semi-QGP, a term must be added to the

Lagrangian to cancel the contribution of this current.
This is natural; if such a term is not added, the minimum
would be at Q ¼ 0, or equivalent points; i.e., the usual
ZðNÞ minima.

D. Quark contribution to the gluon self-energy

With the previous examples in hand, the computation of
the gluon self-energy is mainly a matter of putting things
together. Even so, because theQ’s are nontrivial, what is of
interest is to see how new color structures arise at one-loop
order from quantum corrections to the propagators at tree
level. This is unlike the case of the quark self-energy,
Eq. (87), where the only change from Q ¼ 0 was the value
of the thermal quark mass.
We start with the contribution of the quark loop. For Nf

flavors, this is

YOSHIMASA HIDAKA AND ROBERT D. PISARSKI PHYSICAL REVIEW D 80, 036004 (2009)

036004-18



� ð�ab;cd
�� ÞqkðPabÞ ¼ ð�ÞðigÞ2Nf

Z d4K

ð2�Þ4 tr	�ðtabÞef

� 1

�ið~6KeÞ	
�ðtcdÞfe 1

�ið~6Ke � P6 abÞ :
(146)

Keeping only the terms �~6Ke
in the numerators, the hard

thermal loop in this contribution is

ð�ab;cd
�� ÞqkðPabÞ �HTL 8g2Nf

XN
e;f¼1

ðtabÞefðtcdÞfe

� ~J ��ðPab; ~Qe;Qab � ~QeÞ: (147)

Because ~Qe appears in the function ~J ��, what enters is not
simply the trace of two projection operators, Eq. (8). The
sum over the color index e and f is easy, and gives

ð�ab;cd
�� ÞqkðPabÞ �HTL 4g2Nf

�
�ad�bc ~J ��ðPab; ~Qa;� ~QbÞ

� 1

N
�ab�cd

�
~J ��ðP; ~Qa;� ~QaÞ

þ ~J ��ðP; ~Qc;� ~QcÞ

� 1

N

XN
e¼1

~J ��ðP; ~Qe;� ~QeÞ
��

: (148)

This is illustrated in Fig. 9. There is the usual planar
diagram, plus three contributions from diagrams in which
one or both of the gluon indices are traced. Notice that as
usual, the color structure is far more clear from the dia-
gram, than from the detailed expression in Eq. (148).

The last three terms, ��ab�cd, are like the photon
propagator for QED, where the fermions propagate in a
background Q field. In all, the quark contribution is trace-

less,

XN
a¼1

ð�aa;cd
�� ÞqkðPÞ ¼

XN
c¼1

ð�ab;cc
�� ÞqkðPÞ ¼ 0: (149)

which is necessary for self-consistency. Note that the quark
contribution is not simply proportional to a projector op-
erator,�P ab;cd. Instead, because theQ’s can be unequal, at
one-loop order the color structure is more complicated,
Eq. (148).

E. Ghost and gluon contributions to the gluon
self-energy

To compute the contributions of gluons and ghosts to the
hard thermal loop in the gluon self-energy, we first com-
pute in background Feynman gauge, 
 ¼ 1 in Eq. (39). We
then show that the results are independent of 
, in complete
analogy to when Q ¼ 0.
The simplest contribution is the tadpole diagram, which

is independent of the external momentum. This involves
the four gluon vertex of Eq. (49). For the gluon in the loop,
we can use the simplification of Eq. (51) to take the gluon
propagator as a Kronecker delta. The result is

� g2

2
6fðab;ef;ghÞfðcd;fe;hgÞ

Z d4K

ð2�Þ4 �
�� 1

ðKfeÞ2 : (150)

The coefficient 6 ! 2ðd� 1Þ in d spacetime dimensions;
the 1=2 is for a bosonic loop.
The gluon and ghost loops are, generally, involved.

However, we can use the simplification of Eqs. (136): write
the momenta in terms of the external momentum, Pab, and
a loop momentum, which we can define as Kfe. Then
although the Q’s are hard to begin with, we can consis-
tently treat Pab as soft, and Kfe as hard. This allows us to

FIG. 9. One-loop diagram for the quark loop in the gluon self-energy.

HARD THERMAL LOOPS, TO QUADRATIC ORDER, IN . . . PHYSICAL REVIEW D 80, 036004 (2009)

036004-19



drop powers of Pab uniformly. (This is only valid in
Feynman and Coulomb gauges [23–25]).

With this approximation it is then easy to read off the
hard thermal loops in the gluon self-energy. The ghost loop
is given by taking Kfe at each vertex, and so is

ð�Þg2fðab;ef;ghÞfðcd;fe;hgÞ
Z d4K

ð2�Þ4
ðKfeÞ�ðKfeÞ�

ðKfeÞ2ðPab � KfeÞ2 :
(151)

For the contribution to the gluon self-energy from the
diagram with two three gluon vertices, in each vertex we
can neglect the external momentum, as in Eq. (142). This
gives

g2

2
fðab;ef;ghÞfðcd;fe;hgÞ

Z d4K

ð2�Þ4

� 10ðKfeÞ�ðKfeÞ� þ 2ðKfeÞ2���

ðKfeÞ2ðPab � KfeÞ2 : (152)

The coefficient 10 ! 2ð2d� 3Þ in d spacetime
dimensions.

In all, the sum of Eqs. (150)–(152) is

�ð�ab;cd
�� ÞglðPabÞ �HTL 4g2fðab;ef;ghÞfðcd;fe;hgÞ

� ~J ��ðPab;Qfe; QhgÞ: (153)

From Eq. (135),

ð�ab;cd
�� ÞglðPabÞ �HTL�4g2

�
�ad�bc

XN
e¼1

~J ��ðPab;Qae; QebÞ

� �ab�cd ~J ��ðPab;Qca; QacÞ
�
: (154)

Like the quark self-energy, Eq. (149), this is traceless, as it
must be, to represent a matrix in SUðNÞ.

The color structure is illustrated in the diagram of
Fig. 10. There is the planar diagram, minus a diagram in
which the indices are summed over.

In all, the hard thermal loop in the gluon self-energy is
the sum of Eqs. (148) and (154). Each term is a product of a
color dependent factor, times a function of the soft mo-
mentum

�ab;cd
�� ðPabÞ �HTL�Kab;cdðQÞ���ðPabÞ � ðm2

glÞab;cdðQÞ
� ����ðPabÞ: (155)

The thermal gluon mass in a background field is

ðm2
glÞab;cdðQÞ ¼ g2T2

6

�
�ad�bc

�XN
e¼1

ðAðQaeÞ þAðQebÞÞ

� NfðAð ~QaÞ þAð ~QbÞÞ
�

� 2�ab�cd

�
AðQacÞ � Nf

N

�
Að ~QaÞ

þAð ~QcÞ � 1

N

XN
e¼1

Að ~QeÞ
���

: (156)

In zero field, Að0Þ ¼ 1, Að ~QaÞ ¼ Að�TÞ ¼ �1=2, and

ðm2
glÞab;cdð0Þ ¼ P ab;cd

�
N þ Nf

2

�
g2T2

3
: (157)

The new hard thermal loop in the gluon self-energy
involves the color matrix

Kab;cdðQÞ ¼ 2g2T3�ad�bc

�XN
e¼1

ðA0ðQaeÞ þA0ðQebÞÞ

� NfðA0ð ~QaÞ þA0ð� ~QbÞÞ
�
: (158)

The terms proportional to �ab�cd vanish becauseA0ðQÞ is
odd in Q, Eq. (102). As necessary, the matrixKab;cdðQÞ is
traceless.
Comparing Eq. (158) with Eq. (145), we find

K ab;cdðQÞ ¼ �igfab;cd;efhJfe0 i: (159)

This is natural; the background field induces a color cur-
rent, which couples to the gluon. The self-energy obeys the
Ward-Takahashi identity in the background field

Pab
� �ab;cd

�� ¼ �gfab;cd;efhJfe� i: (160)

These expressions were computed in Feynman gauge,
but the results are independent of the gauge fixing parame-
ter, 
, Eq. (29). Except for the gluon self-energy, where the
tadpole diagram enters, the hard thermal loops in any gluon
amplitude only involve three gluon vertices. This vertex
satisfies an Abelian-type Ward identity, Eq. (47). This

FIG. 10. One-loop diagram for the gluon loop in the gluon self-energy.

YOSHIMASA HIDAKA AND ROBERT D. PISARSKI PHYSICAL REVIEW D 80, 036004 (2009)

036004-20



identity can be used to show that all hard thermal loops are
independent of 
, up to possibly gauge dependence in
terms that are independent of the static momentum.
However, it is known that at one-loop order that the poten-
tial in a background Q field is independent of 
 [6–8].
Thus, the hard thermal loops are independent of 
 when
Q � 0, as for Q ¼ 0.

VI. CONCLUSIONS

In this paper we developed techniques to analyze the real
time response functions for a ’t Hooft loop, or ZðNÞ inter-
face. By introducing the double line notation in Sec. II, we
are able to analyze a much more general problem, as is
appropriate for the semi-QGP phase of a gauge theory [32].

While the final expressions that we obtain appear in-
volved, in fact the physics for Q � 0 is very similar to that
for Q ¼ 0. For the quark self-energy, Eq. (87), the hard
thermal loop is a thermal quark mass times a function
of momentum. The function of momentum, ��ðPÞ in
Eq. (88), is unchanged from Q ¼ 0. What does change
with Q is the thermal quark mass, Eq. (89). It is most
natural that in the presence of a nonzero background field,
that the curvature about the minimum changes with the
background field.

For the gluon self-energy, Eq. (155), there is a piece very
similar to that for Q ¼ 0. There is the same function of
momentum, ����ðPÞ in Eq. (138), as in zero field. This
function is multiplied by a thermal gluon mass, Eq. (156),
which is of course Q dependent.

The surprise is that there is a new function in the gluon
self-energy, ���ðPÞ in Eq. (121). [Note, however, that
this function is linearly related to ����ðPÞ, Eq. (139)].
The usual hard thermal loop in the gluon self-energy is
���� � g2T2, and is smaller than the new hard thermal
loop, ���ðPÞ � g2T3=p. The general principle of hard
thermal loops, however, is that for soft external momen-
tum, they are as large as the terms at tree level. This
remains valid, since for a non-Abelian gauge field, the
propagator in a background field has a new term,
�½G��; �, Eq. (30).

We also note that surely our entire derivation would be
much simpler if we had used kinetic theory in the presence
of a nonzero background field. However, we preferred to
use an ordinary perturbative analysis, since computing at
Q � 0 is an unfamiliar exercise. We do expect that the
derivation of a complete action for all hard thermal loops
for nonzero Q would be much simpler with kinetic theory,
as it is when Q ¼ 0.
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APPENDIX: ZðNÞ AND U(1) INTERFACES

In this appendix we use this opportunity to make some
comments about ZðNÞ [3–7] and U(1) [29] interfaces in
both Abelian and non-Abelian gauge theories.
As discussed in the Introduction, Sec. I, to define an

interface we pick out one of the three spatial directions, say
that in the z direction, and consider it separately from the
two other spatial directions, and from that for imaginary
time, �. It is also necessary to assume that the length in the
z direction, L, is much larger than that for the two trans-
verse dimensions, of size Lt [6]. Lastly, we assume that
both L and Lt are much larger than any physical mass
scale, such as the inverse Debye mass, �1=ðgTÞ.
For a pure gauge theory, without dynamical quarks the

gauge group is SUðNÞ=ZðNÞ. Thus, we can require that the
gauge field at z ¼ L is a gauge transformation of that at
z ¼ 0. We take this gauge transformation to be a constant
element of ZðNÞ [3]:

� ¼ exp

�
2�ik

N

�
1N: (A1)

Since this� commutes with all group elements, the gauge
field at z ¼ L is identical to that at z ¼ 0. In going from
z ¼ 0 to z ¼ L, though, one winds, in a topologically
nontrivial manner, in the configuration space of gauge
potentials [44]. One can show that these boundary condi-
tions are equivalent to inserting a ’t Hooft loop, at z ¼ L=2,
at the boundary of the two transverse dimensions [3,7].
There are k distinct transformations possible, where k ¼

1; 2; . . . ðN � 1Þ. This generates the cyclic group, ZðNÞ,
where k ¼ N is equivalent to the identity. At tree level,
this transformation is implemented by a gauge transforma-
tion which is linear in z,

�ðzÞ ¼ exp

�
2�ikð ffiffiffi

2
p

tNNÞ z
L

�
: (A2)

The factor of
ffiffiffi
2

p
is because of the normalization for tNN in

(10). This gauge transformation is generated by a constant

vector potential in the imaginary time direction, A0 ¼
ð2�ikT=gÞð ffiffiffi

2
p

tNNÞz=L. This is a linear ansatz, and is
only valid for the tree level action. Loop corrections gen-
erate a potential for A0, and turn the true solution into a
domain wall, of width �1=ðgTÞ [6]. At present, however,
we need not trouble ourselves with such details. All that
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matters is that this can be modified to represent a solution
of the quantum equations of motion.

Consider the sum of the following two diagonal gener-
ators:

�3 ¼
ffiffiffi
2

p ððN � 1ÞtN�1;N�1 þ tNNÞ
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðN � 1ÞðN � 2Þp
�N�1
C ; (A3)

Eq. (11).
Consider a gauge transformation generated by this trans-

formation, �ðzÞ ¼ expð2�i�3z=LÞ1N . This is a ‘‘U(1)’’
transformation, in that it is the same on both ends of the
box, �ðLÞ ¼ �ð0Þ ¼ 1N [29]. This is evident from (A3),
where we see that it is a combination of two ZðNÞ trans-
formations: one of strength N � 1, along the tN�1;N�1

direction in group space, plus one of unit strength, along
the tNN direction. The total strength is then N, which for
ZðNÞ is equivalent to the identity; i.e., to no winding.

In [29], U(1) interfaces were suggested as a way to
perform the semiclassical matching between an effective
and an original theory. For the pure gauge theory, the U(1)
interfaces are not necessary: we can use the k possible
ZðNÞ interfaces to perform the matching. We remark,
rather trivially, that if the ZðNÞ interfaces do match, then
so will the U(1) interfaces, since by the above, they are just
a combination of two ZðNÞ interfaces in different direc-
tions in group space, one along tN�1;N�1, and the other
along tNN.

The real use of a U(1) interface, however, is for the
theory with dynamical quarks, where the ZðNÞ invariance
is broken by the presence of quarks. Before considering
this case, consider a simpler example: a Higgs model,
where a charged scalar field, �, acquires a vacuum expec-
tation value, h�i. Then in going from one end of the box, to
the other, one can define a winding number by the number
of times that the phase of h�i winds around 2�. The
topology is elementary, just �1ðUð1ÞÞ ’ Z.

Now consider an Abelian gauge theory at nonzero tem-
perature, such as QED, where the gauge group is unbroken.
Instead of the expectation value of a Higgs field, we con-

sider windings of the thermal Wilson line. The thermal
Wilson line is¼ þ1 at both ends of the box, but it can wind
nontrivially as it goes along the box. The topology remains
�1ðUð1ÞÞ ’ Z. Thus there are thermal interfaces in QED.
This was first pointed out by Smilga [15], who computed
their properties in the Schwinger model.
Thermal U(1) interfaces are of interest in the electro-

weak theory. They are unlike standard domain walls, in
that the interface tension is strongly dependent upon the
temperature. In the high temperature phase, where the
Higgs field is unbroken, the domain walls lie in the
U(1) for hypercharge. As the system cools through the
electroweak phase transition, they then rotate into the
U(1) for electromagnetism. Since the potential is generated
by quantum effects, it vanishes exponentially at low tem-
peratures, expð�me=TÞ, where me is the electron mass.
Thus, while U(1) domain walls dominate the stress energy
tensor while they exist, unlike standard domain walls, they
naturally vanish at low temperature. Whether their pres-
ence, during the period in which they dominate the stress
energy tensor, can lead to characteristic cosmological sig-
nals is an interesting question.
We return to a SUðNÞ gauge theory. For each of the N

diagonal directions, we can define a U(1) winding number.
For example, �3 represents winding once in the first N � 2
directions, �ðN � 2Þ times in the ðN � 1Þth direction, and
no winding in the last, Nth direction.
Semiclassically, one expands about the configuration

along the �3 direction, in both the original and effective
theories. The configuration is a local minimum of each
action, and has no instabilities under small fluctuations.
Thus, such a U(1) interface can be used to match the
parameters of the effective theory to the original theory,
as suggested in Ref. [29].
To define such a configuration nonperturbatively, such as

on the lattice, it is necessary to fix the freedom to perform
global gauge rotations. Only after fixing the freedom to
change overall gauge rotations can one define U(1) wind-
ing numbers for each of the diagonal directions [29].
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