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Low-energy experiments involving kaon, B-meson, D-meson, and hyperon flavor-changing neutral

transitions have confirmed the loop-induced flavor-changing neutral current picture of the standard model.

The continuing study of these processes is essential to further refine this picture and ultimately understand

the flavor dynamics. In this paper we consider deviations from the standard model in the charm sector and

their effect on flavor-changing neutral current processes. Specifically, we parametrize new physics in

terms of left- and right-handed anomalous couplings of the W boson to the charm quark. We present a

comprehensive study of existing constraints and point out those measurements that are most sensitive to

new physics of this type.
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I. INTRODUCTION

One of the outstanding problems for high-energy phys-
ics remains the understanding of the dynamics of flavor.
Existing experimental results on kaon,D-meson, B-meson,
and hyperon decays, as well as neutral-meson mixing, are
all consistent with the loop-induced nature of flavor-
changing neutral currents (FCNC’s) in the standard model
(SM) and also with the unitarity of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix with three genera-
tions. The continuing study of these processes with in-
creased precision will play a crucial role in the search for
physics beyond the SM.

In many types of new physics, the new particles are
heavier than their SM counterparts and their effects can
be described by an effective low-energy theory. A com-
plete set of operators of dimension six describing devia-
tions from the SM has been presented in Ref. [1]. A less
ambitious program is to study only those operators that
appear when the new physics effectively modifies the SM
couplings between gauge bosons and certain fermions [2].
The case of anomalous top-quark couplings has been
treated before in the literature [3,4], and it was found that
they are most tightly constrained by the b ! s� decay.
Interestingly, this mode does not place severe constraints
on anomalous charm-quark couplings due to the relative
smallness of the charm mass.

In this paper we focus on new physics affecting primar-
ily the charged weak currents involving the charm quark.
Including the SM term, the effective Lagrangian in the
unitary gauge for a general parametrization of anomalous
interactions of theW boson with an up-type quarkUk and a

down-type quark Dl can be written as

LUDW ¼ � gffiffiffi
2

p Vkl
�Uk�

�½ð1þ �L
klÞPL þ �R

klPR�DlW
þ
�

þ H:c:; (1)

where g is the weak coupling constant, we have normalized

the anomalous couplings �L;R
kl relative to the usual CKM-

matrix elements Vkl, and PL;R ¼ 1
2 ð1� �5Þ. In general,

�L;R
kl are complex and, as such, provide new sources of

CP violation. In Appendix A we discuss the general pa-
rametrization of the quark-mixing matrix underlying
Eq. (1), paying particular attention to the number of inde-
pendent parameters that are allowed.
In addition to affecting weak decays though tree-level

interactions, the new couplings in Eq. (1) modify effective
flavor-changing and -conserving couplings at one loop. In
this work, we evaluate several one-loop transitions induced
by the new couplings via magnetic-dipole, penguin, and
box diagrams. We include the operators generated this way
in our phenomenological analysis.
We present a comprehensive picture of existing con-

straints which shows that deviations from SM couplings
at the percent level are still possible, particularly for right-
handed interactions. Our study will also serve as a guide as
to which future measurements provide the most sensitive
tests for new physics that can be parametrized with anoma-
lous W-boson couplings to the charm quark. For the
CP-violating (imaginary) parts of the couplings, the elec-
tric dipole moment of the neutron and the hyperon asym-
metry A�� are the most promising channels to probe for
right-handed couplings, whereas more precise measure-
ments of sinð2�Þ and sinð2�sÞ are the most promising
probes for left-handed couplings. Constraints on the real
parts of the right-handed couplings can be further im-
proved with better measurements of semileptonic B and
D decays.
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II. ONE-LOOP PROCESSES

In this section, we collect the main formulas for the
loop-induced processes we are considering. All our calcu-
lations are performed in the unitary gauge, and the results
have been compared to existing ones, where available. We
have summarized our loop calculations in Appendix B.

A. Dipole penguin operators

Of particular interest are the electromagnetic and chro-
momagnetic dipole operators, which can give rise to po-
tentially large corrections to SM processes [5,6] and be
expressed as

Q�
� ¼ e

16�2
ð �d0���PRd� �d0���PLdÞF��; (2)

Q�
g ¼ gs

16�2
ð �d0���taPRd� �d0���taPLdÞG��

a ; (3)

where d and d0 � d are down-type quarks, F�� and G��
a

are the usual photon and gluon field-strength tensors, re-
spectively, with e and gs being their coupling constants,
and TrðtatbÞ ¼ 1

2�ab. The main effect of these operators is

generated at one loop with the W boson coupling to the
left-handed current at one vertex and to the right-handed
current at the other vertex. It corresponds to the terms
linear in the �R’s in Eqs. (B1) and (B2), leading to the
effective Hamiltonian

H�;g ¼ Cþ
� Q

þ
� þ C�

� Q
�
� þ Cþ

g Q
þ
g þ C�

g Q
�
g þ H:c:;

(4)

where at the W-mass scale

C�
� ðmWÞ ¼ � ffiffiffi

2
p

GF

X
q¼u;c;t

V�
qd0Vqdð�R

qd � �R�
qd0 ÞmqF0ðxqÞ;

C�
g ðmWÞ ¼ � ffiffiffi

2
p

GF

X
q¼u;c;t

V�
qd0Vqdð�R

qd � �R�
qd0 ÞmqG0ðxqÞ;

(5)

with GF being the Fermi constant, xq ¼ �m2
qðmqÞ=m2

W , and

F0 and G0 given in Eqs. (B6) and (B7). The contributions
of these operators are potentially enlarged relative to the
corresponding ones in the SM due to the enhancement
factors of mc=ms and mt=mb in s ! d and b ! ðd; sÞ
transitions, respectively, and also due to F0ðxqÞ and

G0ðxqÞ being larger than their SM counterparts. For the

case of anomalous tbW couplings, the formulas above
agree with those found in the literature [3].

B. Electric dipole moments

The flavor-conserving counterparts of Q�;g above con-

tribute to the electric and color dipole-moments of the d
and s quarks. Based on Eqs. (4) and (5), one can write the
effective Hamiltonian for such contributions to the dipole
moments of the d quark as

H dm
d ¼ i

2
dedmd

�d����5dF
�� þ i

2
dcdmd

�d���ta�5dG
��
a ;

(6)

where in our case

dedmd ðmWÞ ¼ �eGF

2
ffiffiffi
2

p
�2

X
q¼u;c;t

jVqdj2 Im�R
qdmqF0ðxqÞ;

dcdmd ðmWÞ ¼ �gsGF

2
ffiffiffi
2

p
�2

X
q¼u;c;t

jVqdj2 Im�R
qdmqG0ðxqÞ

(7)

at the mW scale. These expressions agree with those de-
rived from quark-W loop diagrams in a left-right model
[7], after appropriate changes are made. The corresponding
quantities for the s quark are similar in form. Since the
dipole moments dd;s contribute to the electric dipole mo-

ment of the neutron [8–10], it can be used to place con-
straints on Im�R

qd;qs.

C. Operators generated by Z-penguin, �-penguin, and
box diagrams

The anomalous quark-W couplings also generate flavor-
changing neutral-current interactions via Z-penguin,
�-penguin, and box diagrams. They will therefore affect
other loop-generated processes, such as K ! �� ��, KL !
‘þ‘�, and neutral-meson mixing.
The effective theory with anomalous couplings is not

renormalizable, and this results in divergent contributions
to some of the processes we consider. These divergences
are understood in the context of effective field theories as
contributions to the coefficients of higher-dimension op-
erators. These operators then enter the calculation as addi-
tional ‘‘anomalous couplings,’’ introducing new
parameters to be extracted from experiment. For our nu-
merical analysis, we will limit ourselves to the anomalous
couplings of Eq. (1), ignoring the higher-dimension opera-
tors. In so doing, we trade the possibility of obtaining
precise predictions in specific models for order-of-
magnitude estimates of the effects of new physics parame-
trized in a model-independent way. We will rely on the
common procedure [11] of using dimensional regulariza-
tion, dropping the resulting pole in four dimensions, and
identifying the renormalization scale � with the scale of
the new physics underlying the effective theory. Our results
will thus contain a logarithmic term of the form lnð�=mWÞ
in which we set � ¼ � ¼ 1 TeV for definiteness. In addi-
tion to the logarithmic term representing the new-physics
contribution, we have also kept in our estimates those finite
terms that correspond to contributions from SM quarks in
the loops.1

1Explicit examples of the type of divergence cancellation
resulting in a logarithmic term as described above can be found
in Ref. [12], where the new-physics scale is given by the masses
of non-SM Higgs-bosons.
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We consider the contributions of the anomalous couplings to d �d0 ! � ��, d �d0 ! ‘þ‘�, and d �d0 ! �dd0, relegating the
main results of the calculation to Appendix B. It follows that the effective Hamiltonians generated by the anomalous charm
couplings are at the mW scale

H �
d �d0!� ��

¼ 	GF
cð�L
cd þ �L�

cd0 Þffiffiffi
8

p
�sin2�W

�
�3 ln

�

mW

þ 4X0ðxcÞ
�
�d0��PLd ����PL�

þ 	GF
c�
R
cd�

R�
cd0ffiffiffi

8
p

�sin2�W

�
ð4xc � 3Þ ln �

mW

þ ~XðxcÞ
�
�d0��PRd ����PL�; (8)

H �
d �d0!‘þ‘� ¼ 	GF
cð�L

cd þ �L�
cd0 Þffiffiffi

8
p

�

��
3 ln

�

mW

� 4Y0ðxcÞ
� �d0��PLd �‘��PL‘

sin2�W
þ

�
� 16

3
ln

�

mW

þ 8Z0ðxcÞ
�
�d0��PLd �‘��‘

�

þ 	GF
c�
R
cd�

R�
cd0ffiffiffi

8
p

�

��
ð3� 4xcÞ ln �

mW

þ ~YðxcÞ
� �d0��PRd �‘��PL‘

sin2�W

þ
��

8xc � 16

3

�
ln

�

mW

þ ~ZðxcÞ
�
�d0��PRd �‘��‘

�
; (9)

H �
d �d0! �dd0 ¼

G2
Fm

2
W

8�2

cð�L

cd þ �L�
cd0 Þ

�
�
txt ln

�2

m2
W

�X
q


qB1ðxq; xcÞ
�
�d0�	PLd �d0�	PLd

þG2
Fm

2
W

4�2

c�

R
cd�

R�
cd0

�
�
txt ln

�2

m2
W

�X
q


qB2ðxq; xcÞ
�
�d0�	PLd �d0�	PRd

þG2
Fm

2
W

4�2

2
cxc

�
� ln

�2

m2
W

�B3ðxc; xcÞ
�
½ð�R

cdÞ2 �d0PRd �d0PRdþ ð�R�
cd0 Þ2 �d0PLd �d0PLd� (10)

where d0 � d, we have kept terms linear in �L and qua-
dratic in �R, 
q ¼ V�

qd0Vqd, and �W is the Weinberg angle.
The functions X0, Y0, Z0, ~X, ~Y, ~Z, and B1;2;3 can be found
in Appendix B.

III. TREE-LEVEL CONSTRAINTS

From now on, we focus on the anomalous charm cou-

plings �L;R
cd;cs;cb, neglecting the corresponding u and t

anomalous couplings. To obtain constraints on the cou-
plings, we begin by exploring their tree-level contributions
to three different sets of processes, DðsÞ ! ‘�, exclusive
and inclusive b ! c‘� �� transitions, and mixing-induced
CP violation in B ! J=cK and B ! �cK, where the
couplings may play some interesting roles.

A. D, Ds ! ‘�

From the Lagrangian in Eq. (1), at tree level one derives
the decay rate

�ðD ! ‘�Þ

¼ G2
Ff

2
Dm

2
‘mD

8�

�
1� m2

‘

m2
D

�
2jVcdð1þ �L

cd � �R
cdÞj2;

(11)

where the decay constant fD is defined by

h0j �d��cjDðpÞi ¼ ifDp
�. Changing Vcd, �

L;R
cd , mD, and

fD to Vcs, �
L;R
cs , mDs

and fDs
, respectively, one obtains

the decay width �ðDs ! ‘�Þ.
Recent measurements of D, Ds ! ‘� yield [13,14]

fexpD ¼ ð205:8� 8:9Þ MeV;

fexpDs
¼ ð261:2� 6:9Þ MeV;

(12)

whereas SM calculations give [15,16]

fthD ¼ ð202� 8Þ MeV; fthDs
¼ ð240� 7Þ MeV: (13)

Evidently, for D ! ‘� the data agree with theoretical
predictions well, but for Ds ! ‘� there is deviation at
the 2-sigma level. It has been argued that this deviation
may be due to physics beyond the SM [15], but it is too
early to conclude that new physics is needed.
Nevertheless, one can turn the argument around to con-

strain new physics by assuming that the discrepancy be-
tween the calculated and measured values of the decay
constants arose from the anomalous couplings, as the
�ðDðsÞ ! ‘�Þ formulas would imply. Using the experimen-

tal and theoretical numbers above, one can then extract

jReð�L
cd � �R

cdÞj � 0:04; (14)

0 � Reð�L
cs � �R

csÞ � 0:1: (15)
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B. Semileptonic B decay and extraction of Vcb

The interaction in Eq. (1) will also affect the extraction
of Vcb from semileptonic B decay. At the quark level, the
effect of the new couplings is to scale the hadronic vector
and axial-vector currents by the factors 1þ �L

cb � �R
bc,

respectively. This has the following implications.
First, the semileptonic exclusive decay �B ! De ��e is

sensitive only to the vector form factor, and thus the
differential (and total) decay rate simply gets multiplied
by j1þ �L

cb þ �R
bcj2. To linear order in the �’s, this means

that what is measured in this mode is

Veff
cb ¼ Vcbð1þ Re�L

cb þ Re�R
cbÞ ¼ ð39:4� 4:4Þ � 10�3:

(16)

The number above and the other ones below for Veff
cb are

quoted from Ref. [17], and their errors result from adding
the experimental and theoretical uncertainties given
therein in quadrature.

Second, the semileptonic exclusive decay �B ! D�e ��e is
sensitive to both the vector and axial-vector currents. In the
heavy-quark limit, w ¼ v � v0 ¼ 1 (where v and v0 are the
four-velocities of the B and D�, respectively), only the
axial-vector current survives [18], and so the decay rate
in this limit would simply get multiplied by j1þ �L

cb �
�R
bcj2. One can do better than this by considering the form

factors in the heavy-quark effective theory (HQET) where
they either vanish or can be written in terms of the Isgur-
Wise function ðwÞ with the normalization ð1Þ ¼ 1 [18].
Treating the form factors as constants throughout the kine-
matically allowed range 1 � w � 1:5, one then finds to
linear order in �

Veff
cb ¼ Vcbð1þ Re�L

cb � 0:93Re�R
cbÞ

¼ ð38:6� 1:4Þ � 10�3: (17)

Third, the semileptonic inclusive decay rate can be
easily calculated to be

�ðb ! ce� ��eÞ ¼ G2
Fm

5
b

192�3
jVcbj2fFðrÞðj1þ �L

cbj2 þ j�R
cbj2Þ

þ 2GðrÞRe½ð1þ �L
cbÞ�R�

cb �g; (18)

where r ¼ mc=mb ’ 0:3,

FðrÞ ¼ 1� 8r2 þ 8r6 � r8 � 24r4 lnr;

GðrÞ ¼ �8r½1þ 9r2 � 9r4 � r6 þ 12r2ð1þ r2Þ lnr�:
(19)

It follows that to linear order in �

Veff
cb ¼ Vcbð1þ Re�L

cb � 1:5Re�R
cbÞ

¼ ð41:6� 0:6Þ � 10�3: (20)

From these results it is evident that it is not possible to
extract a bound on �L

cb (as long as quadratic effects are

ignored), but we can extract bounds on �R
cb. For example,

we can do a two-parameter fit to Eqs. (16), (17), and (20) to
find a �2 minimum for

Vcbð1þ Re�L
cbÞ ¼ 0:038; Re�R

cb ¼ �0:057; (21)

with a corresponding 68% C.L. interval (1-� error)

� 0:13 � Re�R
cb � 0: (22)

C. CP violation in B ! J=cK and B ! �cK

One of the decay modes expected to provide a clean
determination of the unitarity-triangle parameter � from
the measurement of time-dependent CP violation is B !
�cK, just like B ! J=cK. The SM predicts the same
sinð2�Þ for the two processes, whereas the current data
for its effective values are [19]

sinð2�eff
cKÞ ¼ 0:657� 0:025;

sinð2�eff
�cK

Þ ¼ 0:93� 0:17;
(23)

which disagree with each other at the 1.5 sigma level. Once
again we can use the difference between the two measure-
ments to constrain the new physics parametrized by the
anomalous couplings. Since sinð2�effÞ measures the dif-
ference between the phase of the B-mixing matrix element
and the phase of the ratio of amplitudes for the B decay and
its antiparticle decay [20], then the discrepancy in �eff

between the two modes must arise from a difference be-
tween the phases of their amplitude ratios.
The effective Hamiltonian for the b ! sc �c transition

including the contribution of anomalous couplings can be
written as

H b!sc �c ¼ 4GFffiffiffi
2

p V�
csVcbðC1 �c�

�PLc�s��PLb

þ C2 �s�
�PLc �c��PLb

þ CLR
1 �sm�

�PLcn �cn��PRbm

þ CLR
2 �s��PLc �c��PRb

þ CRL
1 �sm�

�PRcn �cn��PLbm

þ CRL
2 �s��PRc �c��PLbÞ; (24)

where CðLR;RLÞ
1;2 are the Wilson coefficients, m and n are

color indices, and we have neglected penguin operators. To
linear order in �, the Wilson coefficients at the mW scale
are C2ðmWÞ ¼ 1þ �L�

cs þ �L
cb, CLR

2 ðmWÞ ¼ �R
cb, and

CRL
2 ðmWÞ ¼ �R�

cs . These can be evolved down to a renor-
malization scale �	mb to become [21,22]
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C1ð�Þ ¼ 1
2ð�6=23 � ��12=23ÞC2ðmWÞ;

C2ð�Þ ¼ 1
2ð�6=23 þ ��12=23ÞC2ðmWÞ;

CLR;RL
1 ð�Þ ¼ 1

3ð��24=23 � �3=23ÞCLR;RL
2 ðmWÞ;

CLR;RL
2 ð�Þ ¼ �3=23CLR;RL

2 ðmWÞ (25)

at leading order in QCD, where � ¼ 	sðmWÞ=	sð�Þ,
To determine the amplitudes for �B ! J=c �K, �c

�K, we
adopt the naive factorization approximation. The relevant
matrix elements and parameter values are collected in
Appendix C. It follows that

Mð �B0 ! c �K0Þ ¼ ffiffiffi
2

p
GFV

�
csVcbð1þ�L�

cs þ�L
cbÞ

� a1fcmcF
BK
1 "c �pK;

Mð �B0 ! �c
�K0Þ ¼ iGFffiffiffi

2
p V�

csVcb

�
ð1þ�L�

cs þ�L
cbÞa1

þ ðaLR1 � aRL1 Þm2
�c

mcðmb �msÞ
�
ðm2

B �m2
KÞf�c

FBK
0 ;

(26)

where

a1 ¼ C1 þ C2

Nc

; aLR;RL1 ¼ CLR;RL
1 þ CLR;RL

2

Nc

: (27)

The presence of the second term in the �B ! �c
�K ampli-

tude offers the possibility of sinð2�effÞ in this decay mode
being different from that in �B ! J=c �K. Defining

r�ð�Þ ¼ ðaLR1 ð�Þ � aRL1 ð�ÞÞm2
�c

a1ð�Þmcð�Þðmbð�Þ �msð�ÞÞ ; (28)

we then obtain to first order in �

�eff
�cK

¼ �eff
cK þ argð1þ r�Þ ’ �eff

cK þ Imr�: (29)

Taking � ¼ mb ¼ 4:2 GeV and Nc ¼ 3, we find a1ð�Þ ¼
0:076 and r�ð�Þ ’ 20ð�R

cb � �R�
cs Þ. Since the experimental

numbers in Eq. (23) imply

�eff
�cK

¼ 0:60� 0:23; �eff
cK ¼ 0:358� 0:017; (30)

in view of Eq. (29) we can then impose �0:005 �
Imr�ð�Þ � 0:4, which leads to the bound �2:5� 10�4 �
Imð�R

cb þ �R
csÞ � 0:02.

It is well known, however, that this naive factorization
procedure fails to reproduce the experimental branching
ratios, which can be better fit with Nc ’ 2 [23]. Using this
value we obtain instead r�ð�Þ ’ 8ð�R

cb � �R�
cs Þ. This would

increase the upper bound for Imð�R
cb þ �R

csÞ above by about
a factor of 2, within the intrinsic uncertainty of our calcu-
lation,

� 5� 10�4 � Imð�R
cb þ �R

csÞ � 0:04: (31)

IV. CONSTRAINTS FROM DIPOLE PENGUIN
OPERATORS

We turn next to constraints from the magnetic-penguin
transitions d ! d0� and d ! d0g. The specific processes
we discuss are b ! s�, d ! s�, the CP-violation parame-
ters � and �0 in kaon mixing and decay, and hyperon CP
violation.

A. b ! s�

Including the SM contribution, the effective
Hamiltonian for b ! s� is

H b!s� ¼ �eGF

4
ffiffiffi
2

p
�2

X
q¼u;c;t

�s���ðFq
LPL þ Fq

RPRÞbF��;

(32)

where to Oð�Þ
Fq
L ¼ V�

qsVqb½ð1þ �L�
qs þ �L

qbÞmsF
SM
0 ðxqÞ

þ �R�
qs mqF0ðxqÞ�;

Fq
R ¼ V�

qsVqb½ð1þ �L�
qs þ �L

qbÞmbF
SM
0 ðxqÞ

þ �R
qbmqF0ðxqÞ�;

(33)

following from Eqs. (B1) and (B3). The corresponding
expressions for b ! sg are similar in form and follow
from Eqs. (B2) and (B4).
The experimental data on b ! s� have been found to

impose very strong constraints on �tb;ts, limiting them to

below the few-percent level [3]. Since V�
csVcb ’ �V�

tsVtb

and mt 
 mc, the preceding equations indicate that, if all
the �’s were comparable in size, the top contributions
would be larger than the charm ones by almost 2 orders
of magnitude. All this means that b ! s� offers relatively
weak constraints on �cb;cs, with upper bounds at the level

of Oð1Þ.

B. s ! d�

In an analogous manner, the anomalous couplings con-
tribute to the short-distance transition s ! d�, but in this
case the charm contribution is expected to be more impor-
tant than the top one. At lower energies, C� and Cg mix

because of QCD corrections. At � ¼ 1 GeV we have [22]

C�ð�Þ ¼ ��8C�ðmWÞ þ 8
3ð ��7 � ��8ÞCgðmWÞ; (34)

where

�� ¼
�
	sðmWÞ
	sðmbÞ

�
2=23

�
	sðmbÞ
	sðmcÞ

�
2=25

�
	sðmcÞ
	sð�Þ

�
2=27

: (35)

Numerically, keeping only the charm contributions yields

C�
� ð�Þ ¼ ð�38þ 0:023iÞð�R

cs � �R�
cd Þ � 10�7 GeV�1:

(36)
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Hyperon and kaon radiative-weak decays provide the
relevant constraints, the former being somewhat stronger
and yielding [24]

jCþ
� ð�Þj

8�2GF

� 12 MeV: (37)

This translates into

j�R�
cd þ �R

csj � 3; (38)

which is avery weak bound compared toEqs. (14) and (15).

C. � and �0

The gluonic dipole operators contribute to the
CP-violation parameters � and �0 in kaon mixing and
decay, respectively. Since Qþ

g is parity conserving, it con-

tributes to � via long-distance effects [25,26]. Being parity
violating, Q�

g contributes to �0. One finds [6,26,27]

ð�Þ� ¼ �2:3� 105 GeVB� ImCþ
g ð�Þ;�

�0

�

�
�
¼ 4:4� 105 GeVB�0 ImC�

g ð�Þ;
(39)

where the contributions of the anomalous charm couplings
to C�

g are

C�
g ð�Þ ¼ ��7C�

g ðmWÞ
¼ ð�21þ 0:013iÞð�R

cs � �R�
cd Þ � 10�7 GeV�1

(40)

for � ¼ 1 GeV and the hadronic uncertainties are repre-
sented by

0:2 � jB�j � 1; 0:5 � jB�0 j � 2: (41)

The experimental data are j�j ¼ ð2:229� 0:012Þ � 10�3

and Reð�0=�Þ ¼ ð1:65� 0:26Þ � 10�3 [13]. The SM pre-
dicts j�jSM ¼ ð2:06þ0:47

�0:53Þ � 10�3 [28], but for �0 the SM

calculation still involves a large uncertainty [29].
Consequently, we require that

j�j� < 0:7� 10�3;

�
�0

�

�
�
< 1:7� 10�3: (42)

The resulting constraints on �R
cd;cs are complicated and will

be presented in Fig. 2 in Sec. VII.
There are other loop-generated operators contributing to

�, and hence they provide more constraints on the anoma-
lous charm couplings. These operators will be discussed in
Sec. VI C.

D. Hyperon nonleptonic decays

Hyperon decays provide an additional environment to
study CP-violating j�Sj ¼ 1 interactions. The main ob-
servable of interest in this case is the CP-violating asym-
metry A ¼ ð	þ �	Þ=ð	� �	Þ, where 	 is a decay
parameter in the decay of a hyperon into another baryon

and a spinless meson and �	 is the corresponding parameter
in the antiparticle process [30].
Experimentally, a preliminary value A

exp
��

¼ ð�6�
3Þ � 10�4 for A measured in the decay chain � ! �� !
p�� has recently been reported [31]. The SM prediction is
jASM

��
j & 5� 10�5 [30], which is an order of magnitude

smaller than the central value of the measurement. Since
this is only a 2-sigma disagreement, it is premature to
attribute it to new physics. However, this difference can
also be used to constrain the anomalous charm couplings.
The contribution of the gluonic dipole operators to the

asymmetry A�� has been estimated in Ref. [27]. The result
can be written as

ðA��Þ� ¼ 105Bþ ImCþ
g ð�Þ þ 105B� ImC�

g ð�Þ; (43)

where C�
g ð�Þ due to the anomalous charm couplings are

given in Eq. (40) and

� 1:4 � Bþ � 0:5; �0:9 � B� � 1:3 (44)

reflect the hadronic uncertainties. The preliminary
HyperCP result above suggests that

� 9� 10�4 < ðA��Þ� <�3� 10�4: (45)

The resulting constraints are shown in Fig. 2 in Sec. VII.

V. ELECTRIC DIPOLE MOMENT OF NEUTRON

The flavor-conserving counterparts of the magnetic-
dipole operators discussed above contribute to the neutron
EDM. The latter is described by the effective Lagrangian

Lnedm ¼ � i

2
dn �n�

���5nF��: (46)

The dipole moments dedmd and dcdmd of the d quark in Eq. (7)

contribute to dn. Using the valence quark model, we have
[8]

dðdÞn ¼ 4
3d

edm
d ð�Þ þ 4

9ed
cdm
d ð�Þ; (47)

where at � ¼ 1 GeV

dedmd ð�Þ ¼ ��8dedmd ðmWÞ þ 8
3ð ��7 � ��8Þedcdmd ðmWÞ;

dcdmd ð�Þ ¼ ��7dcdmd ðmWÞ;
(48)

with �� being given in Eq. (35). The anomalous charm
contribution is then

dðdÞn ¼ 6:9 Im�R
cd � 10�22e cm: (49)

Similarly, the electric and color dipole-moments of the s
quark produced by the anomalous charm couplings are
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dedms ð�Þ ¼ �eGF

2
ffiffiffi
2

p
�2

jVcsj2 Im�R
csmc

�
��8F0ðxcÞ

þ 8

3
ð ��7 � ��8ÞG0ðxcÞ

�
;

dcdms ð�Þ ¼ � ��7 gsGF

2
ffiffiffi
2

p
�2

jVcsj2 Im�R
csmcG0ðxcÞ; (50)

and so their contribution to dn is given by

dðsÞn ¼ Bed
edm
s ð�Þ þ Bced

cdm
s ð�Þ

¼ ð82Be þ 46BcÞ Im�R
cs � 10�22e cm; (51)

where�0:35 � Be � �0:01 and 0:01 � Bc � 0:26 reflect

the wide range of estimates for dðsÞn in the literature [10], in

contrast to those for dðdÞn . The combined contribution of

dðd;sÞn is then

ðdnÞ� ¼ dðdÞn þ dðsÞn

¼ ð0:69 Im�R
cd þ Bn Im�R

csÞ � 10�21e cm; (52)

where

� 2:8 � Bn � þ1:1: (53)

From the experimental bound jdnjexp < 2:9� 10�26e cm

at 90% C.L. [13], we will impose the bound

jdnj� < 2:9� 10�26e cm (54)

in Sec. VII to restrict the anomalous couplings further.
The s-quark dipole moments dedms and dedms above also

contribute to the EDM of the� hyperon and therefore may
be constrained directly by experiment. However, the ex-
perimental limit, d� ¼ ð�3:0� 7:4Þ � 10�17e cm [32] or
d� < 1:5� 10�16e cm at 90% C.L. [13], is very weak
compared to Eq. (54) and hence will not be used for
constraining the couplings.

VI. OTHER LOOP CONSTRAINTS

In this section we explore several other processes where
the anomalous charm couplings can contribute via penguin
and box diagrams.

A. Kþ ! �þ� ��

To quantify the contribution of the anomalous charm
couplings to this mode, it is convenient to compare it with
the dominant contribution in the SM. The latter comes
from the top loop and is given by [21,33]

MSMðKþ ! �þ� ��Þ ¼ GFffiffiffi
2

p 	

2�sin2�W
VtdV

�
tsX0ðxtÞ

� h�þj�s��djKþi ����ð1� �5Þ�;
(55)

following from Eq. (B9), without QCD corrections. It is
also convenient to neglect the masses of the leptons asso-
ciated with the neutrinos in the new contribution, as in
Eq. (8), so that we can work with just one of them. The
total amplitude can thus be written in terms of the SM
amplitude above as

M ðKþ ! �þ� ��Þ ¼ ð1þ �ÞMSMðKþ ! �þ� ��Þ; (56)

where to linear order in �

� ¼ VcdV
�
cs

VtdV
�
ts

ð�L
cd þ �L�

cs Þ½�3 lnð�=mWÞ þ 4X0ðxcÞ�
4XðxtÞ :

(57)

In the above expression we have used XðxtÞ ’ 1:4 instead
of X0ðxtÞ in the denominator to incorporate the QCD
corrections in the SM [34]. The SM prediction for the
branching ratio is BSMðKþ ! �þ� ��Þ ¼ ð8:5� 0:7Þ �
10�11 [34], to be compared with its experimental value
Bexp ¼ ð1:73þ1:15

�1:05Þ � 10�10 [35]. Accordingly, we require

�0:2 � Re� � 1, which translates into

�2:5� 10�4 � �Reð�L
cd þ �L

csÞ þ 0:42 Imð�L
cd � �L

csÞ
� 1:3� 10�3: (58)

It is interesting to compare the anomalous charm con-
tribution to the SM charm contribution. Their ratio is

M�ðKþ ! �þ� ��Þ
MðcÞ

SMðKþ ! �þ� ��Þ ¼ ð�L
cd þ �L�

cs Þ½�3 lnð�=mWÞ þ 4X0ðxcÞ�
4XNL

; (59)

where 6� 10�4 & XNL & 1� 10�3 incorporates QCD
corrections and lepton-mass dependence [21]. With the
�L
cd þ �L

cs at the upper end of the range above, the two
contributions are similar in size. This implies that the
current experimental situation admits a 100% uncertainty
in the charm contribution to the branching ratio, much
larger than the theoretical uncertainty within the SM.

Constraints on the anomalous couplings can also be
extracted from the related B-meson modes, B ! X� ��,

but the resulting bounds are about 3 orders of magnitude
weaker due to unfavorable CKM angles. Experimentally,
only upper limits for their decay rates are currently avail-
able [19]. For these reasons, we do not discuss them
further.

B. KL ! �þ��

The dominant part of the short-distance contribution to
the SM amplitude forK0 ! �þ�� is again induced by the
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top loop and can be expressed as [21,33]

MSD
SMðK0 ! �þ��Þ ¼ �GFffiffiffi

2
p 	

2�sin2�W
VtdV

�
tsY0ðxtÞ

� h0j�s���5djK0i �����5�; (60)

from Eq. (9). Combining this with the anomalous charm
contribution in Eq. (9), we arrive at the total short-distance
amplitude

MSDðKL ! �þ��Þ ¼ ð1þ �0ÞMSD
SMðKL ! �þ��Þ;

(61)

where to linear order in �

�0 ¼ Re½V�
cdVcsð�L

cs þ �L�
cd Þ�½�3 lnð�=mWÞ þ 4Y0ðxcÞ�

4ReðV�
tdVtsÞYðxtÞ ;

(62)

with YðxtÞ ’ 0:95 being the QCD-corrected value of Y0ðxtÞ
[36]. Since the measured branching ratio, BðKL !
�þ��Þ ¼ ð6:84� 0:11Þ � 10�9 [13], is almost saturated
by the absorptive part of the long-distance contribution,
Babs ¼ ð6:64� 0:07Þ � 10�9 [37], the difference between
them suggests the allowed room for new physics, BNP &
3:8� 10�10, the upper bound being about one half of the
SM short-distance contribution, BSD

SM ¼ ð7:9� 1:2Þ �
10�10 [36]. Consequently, we demand j�0j � 0:2, which
implies

jReð�L
cs þ �L

cdÞ þ 6� 10�4 Imð�L
cs � �L

cdÞj � 1:5� 10�4:

(63)

One could also carry out a similar analysis as above for
B ! ‘þ‘�, but the CKM angles in that case are such that
the constraints would be much weaker. In addition, only
experimental bounds on the rates are currently available
[19].

C. K- �K mixing

The matrix elementM12 for K
0- �K0 mixing is defined by

[21]

2mKM
K
12 ¼ hK0jH d�s! �dsj �K0i (64)

where the effective Hamiltonian H d�s! �ds consists of
SM and new-physics terms. For the latter, the contribution
of the anomalous charm couplings can be derived from
Eq. (10), where the last line is negligible compared to the
second because of the smallness of xc. Thus

MK;�
12 ¼ G2

Fm
2
W

24�2
f2KmK


ds
c

�
��3BKð�L�

cd þ �L
csÞ

�
�
�
ds

t xt ln
�2

m2
W

�X
q


ds
q B1ðxq; xcÞ

�

þ ��3=2BKm
2
K

ðmd þmsÞ2
�R�
cd�

R
cs

�
�

ds
t xt ln

�2

m2
W

þX
q


ds
q B2ðxq; xcÞ

��

¼ �ð0:090þ 0:031iÞ ps�1ð�L�
cd þ �L

csÞ
þ ð2:1þ 0:58iÞ ps�1�R�

cd�
R
cs; (65)

where 
ds
q ¼ V�

qdVqs, we have included QCD-correction

factors at leading order with �� given in Eq. (35), mdð�Þ þ
msð�Þ ¼ 142 MeV at � ¼ 1 GeV, and the other parame-
ters can be found in Appendix C. Evidently, the inclusion

of the second term in MK;�
12 , albeit quadratic in �R, is

important as it receives large chiral and QCD enhancement
with respect to the first term.
Now, the difference �MK between the KL and KS

masses is related to MK
12 ¼ MK;SM

12 þMK;�
12 by �MK ¼

2ReMK
12 þ �MLD

K , the long-distance term �MLD
K being

sizable [21]. Since the LD part suffers from significant
uncertainties, we constrain the anomalous couplings by
requiring that their contribution to �MK be less than the
largest SM contribution, which comes from the charm loop
and is given by

MK;SM
12 ’ G2

Fm
2
W

12�2
f2KmKBK�ccð
ds

c Þ2S0ðxcÞ; (66)

with the parameter values in Appendix C. The result is

j0:043Reð�L
cd þ �L

csÞ þ 0:015 Imð�L
cd � �L

csÞ
� Reð�R�

cd�
R
csÞ þ 0:28 Imð�R�

cd�
R
csÞj

� 8:5� 10�4: (67)

A complementary constraint on the couplings can be
obtained from the CP-violation parameter �. Its magnitude
is related to MK

12 by [21]

j�j ’ jImMK
12jffiffiffi

2
p

�Mexp
K

; (68)

where �Mexp
K ¼ ð3:483� 0:006Þ � 10�15 GeV [13] and

the small term containing the CP-violating phase in the
K ! �� amplitude has been dropped. Since j�jexp ¼
ð2:229� 0:012Þ � 10�3 [13] and j�jSM ¼ ð2:06þ0:47

�0:53Þ �
10�3 [28], we again demand j�j� < 0:7� 10�3 for the
contribution in Eq. (65). This translates into
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j0:015Reð�L
cs þ �L

cdÞ þ 0:043 Imð�L
cs � �L

cdÞ
� 0:28Reð�R�

cd�
R
csÞ � Imð�R�

cd�
R
csÞj

� 2:5� 10�6: (69)

D. Bd- �Bd mixing

In the SM the matrix element Md
12 for B

0
d-

�B0
d mixing is

dominated by the top-loop contribution and given by [21]

Md;SM
12 ¼ hB0

djH SM
d �b! �db

j �B0
di

2mBd

’ G2
Fm

2
W

12�2
f2Bd

mBd
�BBBd

ðVtbV
�
tdÞ2S0ðxtÞ (70)

following from Eq. (B18), where a QCD-correction factor
�B has been included and the parameter values can be
found in Appendix C. In contrast, since V�

cdVcb and V�
tdVtb

are comparable in size, the anomalous couplings of charm
and top may produce similar effects on Md

12, as can be

inferred from Eq. (10). The anomalous top contributions to
B mixing having been studied before [38], we switch them
off and get, to linear order in �,

Md;�
12 ¼ G2

Fm
2
W

24�2
f2Bd

mBd
�BBBd


db
c ð�L

cb þ �L�
cdÞ

�
�
�
db

t xt ln
�2

m2
W

�X
q


db
q B1ðxq; xcÞ

�

¼ ð1:6þ 0:63iÞ ps�1ð�L
cb þ �L�

cdÞ; (71)

where 
db
q ¼ V�

qdVqb and we have neglected the terms

quadratic in �R because their quark operators do not get
as much chiral and QCD enhancement as those in the kaon-
mixing case.

The difference �Md between the masses of the heavy

and light mass-eigenstates is related to Md
12 ¼ Md;SM

12 þ
Md;�

12 by �Md ¼ 2jMd
12j [21]. The measured value

�M
exp
d ¼ ð0:507� 0:005Þ ps�1 [13] agrees with the SM

prediction, �MSM
d ¼ ð0:563þ0:068

�0:076Þ ps�1 [28]. In the pres-

ence of the anomalous couplings, these numbers are related
by

�Mexp
d ¼ �MSM

d j1þ �dj; �d ¼ Md;�
12

Md;SM
12

: (72)

Accordingly, we impose �0:2 � Re�d � þ0:02, which
leads to

� 0:031 � Reð�L
cb þ �L

cdÞ þ 0:4 Imð�L
cb � �L

cdÞ � 0:003:

(73)

An additional constraint can be extracted from the �
measurement in B ! J=cK. The anomalous couplings
enter �eff via both the mixing and decay amplitudes.
Since the mixing parameters pBd

and qBd
are related to

Md
12 by qBd

=pBd
’ Md�

12=jMd
12j [20], we have

qBd

pBd

’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Md;SM�

12 ð1þ ��
dÞ

Md;SM
12 ð1þ �dÞ

vuut ’ VtdV
�
tb

V�
tdVtb

e�i Im�d : (74)

From the decay amplitude in Eq. (26), we derive

Mð �B0 ! cKSÞ
MðB0 ! cKSÞ

¼ �V�
cdVcbð1þ �L�

cs þ �L
cbÞ

VcdV
�
cbð1þ �L

cs þ �L�
cbÞ

’ �V�
cdVcb

VcdV
�
cb

½1þ 2i Imð�L
cb � �L

csÞ�;
(75)

having incorporated the K-mixing factor qK=pK ¼
V�
cdVcs=ðVcdV

�
csÞ [20]. It follows that

e�2i�eff
cK ¼ qBd

pBd

Mð �B0 ! cKSÞ
MðB0 ! cKSÞ

’ e�2i�SM
e2i Imð�L

cb
��L

csÞ�i Im�d : (76)

Upon comparing the experimental value 2�eff ¼ 2�eff
cK ¼

0:717� 0:033 from Eq. (30) to the SM prediction 2�SM ¼
0:753þ0:032

�0:028 [28], we then require �0:01 � 2 Imð�L
cb �

�L
csÞ � Im�d � 0:08, which implies

� 1:5� 10�3 � 0:4Reð�L
cb þ �L

cdÞ � 0:69 Im�L
cb

þ Im�L
cd � 0:31 Im�L

cs

� 0:012: (77)

E. Bs- �Bs mixing

The SM part of the matrix element Ms
12 for B0

s- �B
0
s

mixing is also dominated by the top contribution [21],

Ms;SM
12 ’ G2

Fm
2
W

12�2
f2Bs

mBs
�BBBs

ðVtbV
�
tsÞ2S0ðxtÞ: (78)

For the anomalous couplings, again the charm contribution
alone is

Ms;�
12 ¼ G2

Fm
2
W

24�2
f2Bs

mBs
�BBBs


sb
c ð�L

cb þ �L�
cs Þ

�
�
�
sb

t xt ln
�2

m2
W

�X
q


sb
q B1ðxq; xcÞ

�

¼ ð53� 0:95iÞ ps�1ð�L
cb þ �L�

cs Þ; (79)

where 
sb
q ¼ V�

qsVqb.

Similarly to the Bd case, we have here

�Mexp
s ¼ �MSM

s j1þ �sj; �s ¼ Ms;�
12

Ms;SM
12

: (80)

The experimental value, �Mexp
s ¼ ð17:77� 0:12Þ ps�1

[13], is in agreement with the SM prediction, �MSM
s ¼

ð17:6þ1:7�1:8Þ ps�1 [28]. These numbers allow us to require
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�0:09 � Re�s � 0:1, leading to

� 0:014 � Reð�L
cs þ �L

cbÞ þ 0:018 Imð�L
cs � �L

cbÞ
� 0:015: (81)

A complementary constraint is provided by the parame-
ter �s in Bs decay, analogously to � in Bd decay. In this
case, the mode of interest is �B0

s ! J=c�, which proceeds
from the same b ! sc �c transition as �B0

d ! J=c �K. For the
mixing factor, we have

qBs

pBs

’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ms;SM�

12 ð1þ ��
sÞ

Ms;SM
12 ð1þ �sÞ

vuut ’ VtsV
�
tb

V�
tsVtb

e�i Im�s ; (82)

and for the ratio of decay amplitudes, as in Eq. (75),

Mð �B0
s ! ðJ=c�ÞfÞ

MðB0
s ! ðJ=c�ÞfÞ

’ �f

V�
csVcb

VcsV
�
cb

½1þ 2i Imð�L
cb � �L

csÞ�;
(83)

where ðJ=c�Þf is one of the CP eigenstates of the J=c�

final-state and �f its CP eigenvalue. It follows that

e2i�
eff
c� ¼ ��f

qBs

pBs

Mð �B0
s ! ðJ=c�ÞfÞ

MðB0
s ! ðJ=c�ÞfÞ

’ e2i�
SM
s e2i Imð�L

cb
��L

csÞ�i Im�s : (84)

The SM yields 2�SM
s ¼ 0:03614þ0:00172

�0:00162 [28], but the mea-

surements of Bs ! J=c� yield the average value 2�eff
s ¼

2�eff
c� ¼ 0:77þ0:37

�0:29 or 2:36
þ0:29
�0:37 [19]. It is again too early to

attribute this difference to new physics, but it can be used
to impose the bound �0:003 � 2 Imð�L

cb � �L
csÞ �

Im�s � 0:4, which yields

� 0:09 � 0:026Reð�L
cb þ �L

csÞ þ Imð�L
cb � �L

csÞ
� 7� 10�4: (85)

VII. SUMMARYAND CONCLUSIONS

We have explored the phenomenological consequences
of anomalous W-boson couplings to the charm quark in a
comprehensive way. Most of the constraints we have ob-
tained are summarized in Table I. In writing them, we have
followed the discussion in Appendix A about the indepen-
dent parameters in the quark-mixing matrices and chosen
arg�L

cd ¼ 0. Consequently, we have used the condition

Im�L
cd ¼ 0 in all the results. All the constraints in this

table are quoted as 1-� errors, but in some cases the
theoretical error is only an order of magnitude and this is
not reflected in the quoted range. The discussion in the text
makes it clear whenever this happens. We leave out from
the table the processes b ! s� and s ! d� since the
resulting bounds are not competitive with the rest.
In Fig. 1 we show the parameter space of the real and

imaginary parts of �L
cs and �L

cb assuming that only one of

them is nonzero at a time. This figure indicates that cur-
rently the phase of �L

cs is only loosely constrained and
ranges from �90� to 90�. In contrast, the phase of �L

cb is

unconstrained if its magnitude is small (at the 10�3 level).
However, larger values of j�L

cbj, at the few percent level,

are also allowed provided its phase lies in a range roughly
between �150� and �56�.
We treat the constraints arising from the contributions of

magnetic-dipole operators to CP-violating observables
separately and display those in Fig. 2. These observables
receive contributions from the anomalous couplings
Im�R

cd;cs that are much larger than SM contributions to

the dipole operators. These enhanced contributions to �,
�0, the neutron EDM, and A�� have been studied before as
they arise within LR models and supersymmetry [6,26,39].
The calculations for all of these CP-violating observ-

ables suffer from large theoretical uncertainties which we
have parametrized with B factors in this paper. For illus-
tration, we display two plots in Fig. 2 resulting from
choosing two representative sample sets of values of the
parameters B�;�0;þ;�;n within their ranges in Eqs. (41), (44),

TABLE I. Summary of constraints, with their equation numbers, from various processes.

Process Eq. Constraint #

D ! ‘� (14) jReð�L
cd � �R

cdÞj � 0:04 1

Ds ! ‘� (15) 0 � Reð�L
cs � �R

csÞ � 0:1 2

b ! c‘ �� (22) �0:13 � Re�R
cb � 0 3

B ! J=cK, �cK (31) �5� 10�4 � Imð�R
cb þ �R

csÞ � 0:04 4

Kþ ! �þ� �� (58) �1:3� 10�3 � Reð�L
cd þ �L

csÞ þ 0:42 Im�L
cs � 2:5� 10�4 5

KL ! �þ�� (63) jReð�L
cs þ �L

cdÞ þ 6� 10�4 Im�L
csj � 1:5� 10�4 6

�MK (67) j0:043Reð�L
cd þ �L

csÞ � 0:015 Im�L
cs � Reð�R�

cd�
R
csÞ þ 0:28 Imð�R�

cd�
R
csÞj � 8:5� 10�4 7

� (mixing) (69) j0:015Reð�L
cs þ �L

cdÞ þ 0:043 Im�L
cs � 0:28Reð�R�

cd�
R
csÞ � Imð�R�

cd�
R
csÞj � 2:5� 10�6 8

�Md (73) �0:031 � Reð�L
cb þ �L

cdÞ þ 0:4 Im�L
cb � 0:003 9

sinð2�Þ (mixing) (77) �1:5� 10�3 � 0:4Reð�L
cb þ �L

cdÞ � 0:69 Im�L
cb � 0:31 Im�L

cs � 0:012 10

�Ms (81) �0:014 � Reð�L
cs þ �L

cbÞ þ 0:018 Imð�L
cs � �L

cbÞ � 0:015 11

sinð2�sÞ (mixing) (85) �0:09 � 0:026Reð�L
cb þ �L

csÞ þ Imð�L
cb � �L

csÞ � 7� 10�4 12
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and (53) and imposing the constraints in Eqs. (42), (45),
and (54). In each of the plots, the very lightly shaded
(yellow) band satisfies the �0=� constraint, the lightly
shaded (pink) band the � constraint, the medium shaded
(green) band the A�� constraint, the heavily shaded (blue)
band the dn constraint, and the dark (red) region all of the
constraints. It is worth noting that there is a significant
amount of the parameter space where all of the constraints
can be simultaneously satisfied and that the values of
Im�R

cd;cs involved are typically of order a few times 10�3

or less. Furthermore, as is obvious from the plots, the
neutron-EDM constraint is the most restrictive. Also, in-
terestingly, the allowed region of parameter space easily
accommodates an A�� much larger than the SM predic-

tion, as hinted at by the preliminary measurement by
HyperCP [31].
In order to gain some insight into the constraints in

Table I and Fig. 2, we have extracted the ranges corre-
sponding to taking only one anomalous coupling at a time
to be nonzero (and only for the cases of a purely real or a
purely imaginary coupling). They are collected in Table II.
This table shows that, in general, the left-handed couplings
are much more constrained than the right-handed cou-
plings. Similarly, the imaginary part of the couplings is
more tightly constrained than the corresponding real part.
The largest deviations allowed by current data appear in
the real part of the right-handed couplings, which can be as
large as 10% of the corresponding SM couplings.

0.0020 0.0015 0.0010 0.0005 0.0000
0.0030

0.0025
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0.0000

Im cd
R

Im
csR

B 0.7, B ' 0.6, B 1.2, B 0.8, Bn 0.2
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Im cd
R
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csR

B 0.9, B ' 0.5, B 0.5, B 1.3, Bn 0.5

FIG. 2 (color online). Parameter space of Im�R
cd and Im�R

cs subject to constraints from the contributions of magnetic-dipole operators
to �, �0, A��, and the neutron EDM for two representative sets of B�;�0;þ;�;n. The various regions are described in the text.

0.0002 0.0001 0.0000 0.0001 0.0002
0.0002

0.0001

0.0000

0.0001

0.0002

Re cs
L

Im
csL

0.04 0.02 0.00 0.02 0.04
0.04
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0.02

0.04

Re cb
L

Im
cbL

FIG. 1 (color online). Parameter space of the real and imaginary parts of �L
cs and �L

cb subject to the relevant constraints in Table I,
under the assumption that only one � is nonzero at a time. The heavily (blue), medium (green), and lightly (yellow) shaded areas in the
left plot satisfy constraints #2, #6, and #8, respectively. The heavily (blue), medium (green), and lightly (yellow) shaded in the right
plot satisfy constraints #9, #10, and #12, respectively. The dark (red) region in each plot satisfies all the constraints in it.
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For specific model building, it is useful to recall that the
new physics in the quark-mixing matrices is being parame-
trized here as the product of the anomalous coupling and
the corresponding CKM matrix element, as can be seen in
Eqs. (A2) and (A3). The allowed new physics in the left-
handed sector is at most of Oð
4Þ for the cb coupling and
of Oð
6Þ for the other two, 
	 0:23 being the usual
Cabibbo parameter. This conclusion also implies that cur-
rent data allow deviations from unitarity in the quark-
mixing matrix only at Oð
5Þ or higher. On the other
hand, new physics affecting right-handed quarks can be
ofOð
3Þ for cd and cb transitions, and as large asOð
Þ for
cs transitions. That is to say that the right-handed cs
matrix-element is the least constrained.

Perhaps surprisingly, we note that the constraints dis-
played in Table II are comparable or tighter than existing
constraints on anomalous W-boson couplings to the top
quark [3]. We can gain more insight into these numbers by
interpreting them in the context of left-right (LR) models
with mixing of the WL and WR gauge bosons. In these
models one predicts �L ’ � 1

2
2
W , where W is theWL-WR

mixing angle. This angle is constrained by b ! s� to be at
the 10�3 level [40], and so �L in these models is only
allowed at the 10�6 level. The additional freedom found in
our study arises from the general decoupling between the
top and charm anomalous couplings.

For the right-handed anomalous charm couplings, the
LR models result in the generic form �R

cD ’
ðgR=gLÞWV

R
cD=VcD for D ¼ d, s, b. The first factor,

ðgR=gLÞW , is allowed to be several times larger than W

[40], whereas the second factor depends on the right-
handed mixing matrix, VR. Our bounds in Table II suggest
within this context that constraints on right-handed
mixing-matrix elements involving charm, VR

cD, are not
very tight at present, with VR

cs being the least constrained
one.

Finally, our study also indicates which future measure-
ments provide the most sensitive tests for new physics that
can be parametrized with anomalous charm-W couplings.
For the CP-violating imaginary parts, the n EDM and the
hyperon asymmetry A�� are the most promising channels
for probing right-handed couplings. To probe CP-violating
left-handed couplings, more precise measurements of
sinð2�Þ and sinð2�sÞ are desired. Constraints on the real
parts of the right-handed couplings can be tightened with
improved measurements of semileptonic B and D decays.
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APPENDIX A: INDEPENDENT PARAMETERS IN
QUARK-MIXING MATRICES

The parametrization we introduced in Eq. (1) reflects

two effective matrices, KL;R
eff , for the charged currents in-

volving left- and right-handed quarks, respectively. In the
effective theory under consideration, these 3� 3 matrices
are complex and nonunitary; the usual unitarity of the
CKM matrix is lost. The general 3� 3 complex matrix
has 18 parameters: 9 magnitudes and 9 phases.
Nevertheless, not all the parameters in the matrix describ-
ing the left-handed charged current are independent. Of the
9 phases, 5 can be removed by redefinitions of the quark
fields. Considering a scenario in which the corrections to
the CKM picture in the SM are small, we find it convenient
to choose these parameters as

KL
eff ¼

Vud Vus Vube
i�ub

Vcdð1þ j�L
cdjei�L

cdÞ Vcsð1þ j�L
csjei�L

csÞ Vcbð1þ j�L
cbjei�L

cbÞ
Vtde

i�td Vts Vtb

0
B@

1
CA: (A1)

More explicitly, four of the five quark phases have been
used to remove the phases in Vud, Vus, Vts, and Vtb. The
remaining quark phase has to be used to remove one of the
phases in the charm row, and for convenience we choose it

to be�cd, thus setting it to zero. Equivalently, only the two
relative phases between the three ðKL

effÞci elements are
physical. These, plus the phases �ub and �td of Vub and
Vtd which become independent, are the four physical

TABLE II. Constraints on each of the anomalous charm couplings, extracted from Table I and Fig. 2.

0 � Re�L
cd � 1:5� 10�4 #6 (Im�L

cd ¼ 0) � � �
0 � Re�L

cs � 1:5� 10�4 #2, #6 �6� 10�5 � Im�L
cs � 6� 10�5 #8

�4� 10�3 � Re�L
cb � 3� 10�3 #9, #10 �0:02 � Im�L

cb � 7� 10�4 #10, #12

�0:04 � Re�R
cd � 0:04 #1 �2� 10�3 � Im�R

cd � 2� 10�3 Figure 2

�0:1 � Re�R
cs � 0 #2 �5� 10�4 � Im�R

cs � 2� 10�3 #4, Fig. 2

�0:13 � Re�R
cb � 0 #3 �5� 10�4 � Im�R

cb � 0:04 #4
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phases in the general (nonunitary) 3� 3 complex matrix.
In this study we only allow for three physical phases by
requiring that the phases of Vub and Vtd be related, as in the
usual CKM picture.

There are also nine independent real parameters, the
magnitudes of each of the elements of KL

eff . For our study

we concentrate on the possibility of new physics in the

charm sector, leading us to reduce the number of free
parameters that we consider from 9 to 6 by simply setting
the other 3 to zero. We choose 3 of the 6 to be the 3 angles
that describe the usual CKM matrix and the rest the 3
anomalous couplings that appear explicitly in KL

eff . We

are thus left with

KL
eff ¼

1� 
2

2 
 A
3ð�� i�Þ
�
ð1þ j�L

cdjÞ ð1� 
2

2 Þð1þ j�L
csjei�L

csÞ A
2ð1þ j�L
cbjei�L

cbÞ
A
3ð1� �� i�Þ �A
2 1

0
B@

1
CA; (A2)

where, for simplicity of notation, we have included here
only the usual terms up to order 
3 in the Wolfenstein
parametrization of the CKM matrix; the complete, unitary
CKM matrix should be understood as remaining in
Eq. (A2) in the limit �ci ! 0 and �cj ! 0. In this paper
we have provided formulas for the relevant observables in
terms of these nine parameters. This set of formulas would
allow us, in principle, to repeat the global fits for this
scenario and constrain the nine parameters. We content
ourselves with a less ambitious analysis in which we
assume, in accord with observation, that the CKM picture
is dominant and deviations are small. We thus use the CKM
parameters as extracted from the global fits of CKMfitter
[28] as input. The subsequent comparison of this global fit
with specific observables then reflects the extent to which
deviations from unitarity are allowed by current data.
Conservatively, we carry out this comparison at the one-
sigma level.

None of the above considerations apply to the right-
handed charged current: all the SM field phases are fixed
by the removal of five phases in KL

eff so that all 18 parame-

ters in the corresponding KR
eff are physical. In this study we

limit ourselves to 6 of them, which we write as

KR
eff ¼

0 0 0
�
j�R

cdjei�R
cd ð1� 
2

2 Þj�R
csjei�R

cs A
2j�R
cbjei�R

cb

0 0 0

0
@

1
A:

(A3)

As pointed out in the conclusion, one needs to keep in mind
with this parametrization that the new physics is not just �ij

but its product with Vij, as explicitly seen in Eq. (A3).

APPENDIX B: AMPLITUDES IN UNITARY GAUGE

The loop diagrams that are relevant to some of the
processes we consider are displayed in Figs. 3 and 4. In
evaluating the diagrams, we use dimensional regulariza-
tion with a completely anticommuting �5 and adopt the
unitary gauge, which implies that they contain only fermi-
ons and W-bosons. Since the theory with anomalous cou-
plings is not renormalizable, some of the one-loop results
are divergent. For these we adopt the prescription to drop
the combination 2=ð4�DÞ � �E þ lnð4�Þ in the
D-dimensional integral, �E being the Euler constant, and
retain the accompanying logarithmic, lnð�=mWÞ, part as
well as other finite terms that depend on the mass of the
quark in the loop. Moreover, we identify the renormaliza-
tion scale � with the scale � of the new physics parame-
trized by the anomalous couplings,� ¼ �. In the SM limit
(�L;R ¼ 0), after the unitarity relation V�

ud0Vud þ
V�
cd0Vcd þ V�

td0Vtd ¼ 0 is imposed, our results are finite

and reproduce those obtained in the literature in R gauges

[33].
We will present the details of our calculation elsewhere

[41]. Here we provide the resulting effective Hamiltonians
relevant to the loop-induced processes dealt with in this
paper.
The effective Hamiltonians for electromagnetic and

chromomagnetic dipole operators involving down-type
quarks d and d0 � d are derived from the four diagrams
in Fig. 3 with up-type quarks q in the loops and can be
expressed as

H d!d0� ¼ �eGF

4
ffiffiffi
2

p
�2

X
q¼u;c;t

�d0���ðFq
LPL þ Fq

RPRÞdF��;

(B1)

FIG. 3. Diagrams contributing to amplitudes for d ! d0V �, with V being a neutral gauge boson. In all diagram figures, straight
lines denote fermions and the loops contain W bosons besides fermions.
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H d!d0g ¼ �gsGF

4
ffiffiffi
2

p
�2

X
q¼u;c;t

�d0���ðGq
LPL þGq

RPRÞtadG��
a ;

(B2)

where ��� ¼ i
2 ½��; ���,

Fq
L ¼ ð
L

qmd0 þ 
R
qmdÞFSM

0 ðxqÞ
þ 
qð1þ �L

qdÞ�R�
qd0mqF0ðxqÞ;

Fq
R ¼ ð
L

qmd þ 
R
qmd0 ÞFSM

0 ðxqÞ
þ 
qð1þ �L�

qd0 Þ�R
qdmqF0ðxqÞ; (B3)

Gq
L ¼ ð
L

qmd0 þ 
R
qmdÞGSM

0 ðxqÞ
þ 
qð1þ �L

qdÞ�R�
qd0mqG0ðxqÞ;

Gq
R ¼ ð
L

qmd þ 
R
qmd0 ÞGSM

0 ðxqÞ
þ 
qð1þ �L�

qd0 Þ�R
qdmqG0ðxqÞ; (B4)

with


q ¼ V�
qd0Vqd; 
L

q ¼ 
qð1þ �L�
qd0 Þð1þ �L

qdÞ;


R
q ¼ 
q�

R�
qd0�

R
qd; xf ¼

�m2
fðmfÞ
m2

W

;
(B5)

FSM
0 ðxÞ ¼ �7xþ 5x2 þ 8x3

24ð1� xÞ3 � 2x2 � 3x3

4ð1� xÞ4 lnx;

F0ðxÞ ¼ �20þ 31x� 5x2

12ð1� xÞ2 � 2x� 3x2

2ð1� xÞ3 lnx;

(B6)

GSM
0 ðxÞ ¼ �2x� 5x2 þ x3

8ð1� xÞ3 � 3x2 lnx

4ð1� xÞ4 ;

G0ðxÞ ¼ �4� x� x2

4ð1� xÞ2 � 3x lnx

2ð1� xÞ3 :
(B7)

We note that the loop calculation for these operators yields
finite results. We also note that different notations, D0

0 ¼
�2FSM

0 , E0
0 ¼ �2GSM

0 , ~F ¼ F0, and ~G ¼ G0, are some-

times used in the literature [21,22].
The process d �d0 ! � �� receives contributions from all

the diagrams in Fig. 3 via d �d0 ! Z� ! � �� and from the
box diagram in Fig. 4(a), the loop fermions in the latter
being an up-type quark and a lepton. After summing over
q ¼ u, c, t and imposing the unitarity condition 
u þ 
c þ


t ¼ 0, we find the effective Hamiltonian

H d �d0!� �� ¼ H SM
d �d0!� ��

þH �
d �d0!� ��

; (B8)

where

H SM
d �d0!� ��

¼ 	GFffiffiffi
8

p
�sin2�W

X
q

4
qX0ðxqÞ �d0��PLd ����PL�;

(B9)

H �
d �d0!� ��

¼ 	GFffiffiffi
8

p
�sin2�W

X
q

ð
L
q�
qÞ

�
�3ln

�

mW

þ4X0ðxqÞ
�

� �d0��PLd ����PL�þ 	GFffiffiffi
8

p
�sin2�W

�X
q


R
q

�
ð4xq�3Þ ln �

mW

þ ~XðxqÞ
�

� �d0��PRd ����PL�; (B10)

with

X0ðxÞ ¼ xðxþ 2Þ
8ðx� 1Þ þ

3xðx� 2Þ
8ðx� 1Þ2 lnx;

~XðxÞ ¼ 2x� 5x� 2x2

1� x
lnx� 4X0ðxÞ:

(B11)

In the expressions for H d �d0!� �� above, we have neglected
the dependence on the mass of the loop lepton in the box
diagram, but it is possible to generalize the formulas to
include the dependence on tau-lepton mass [41].
The amplitude for d �d0 ! ‘þ‘� gets contributions from

all the diagrams in Fig. 3 via d �d0 ! ð��; Z�Þ ! ‘þ‘� and
the diagram in Fig. 4(a), the loop fermions in the latter
being an up-type quark and a neutrino. The resulting
effective Hamiltonian is

H d �d0!‘þ‘� ¼ H SM
d �d0!‘þ‘� þH �

d �d0!‘þ‘� ; (B12)

where

H SM
d �d0!‘þ‘� ¼ 	GFffiffiffi

8
p

�

X
q

4
q

��Y0ðxqÞ
sin2�W

�d0��PLd �‘��PL‘

þ 2Z0ðxqÞ �d0��PLd �‘��‘

�
; (B13)

(a) (b)

FIG. 4. Box diagrams contributing to amplitudes for
(a) d �d0 ! ‘þ‘� or ��� and (a,b) d �d0 ! d �d0.
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H �
d �d0!‘þ‘� ¼ 	GFffiffiffi

8
p

�

X
q

ð
L
q � 
qÞ

��
3 ln

�

mW

� 4Y0ðxqÞ
�

�
�d0��PLd �‘��PL‘

sin2�W
þ

�
� 16

3
ln

�

mW

þ 8Z0ðxqÞ
�
�d0��PLd �‘��‘

�
þ 	GFffiffiffi

8
p

�

X
q


R
q

�
��
ð3� 4xqÞ ln �

mW

þ ~YðxqÞ
�

�
�d0��PRd �‘��PL‘

sin2�W
þ

��
8xq � 16

3

�
ln

�

mW

þ ~ZðxqÞ
�
�d0��PRd �‘��‘

�
; (B14)

with

Y0ðxÞ ¼ xðx� 4Þ
8ðx� 1Þ þ

3x2

8ðx� 1Þ2 lnx;

Z0ðxÞ ¼ 18x4 � 163x3 þ 259x2 � 108x

144ðx� 1Þ3

þ 24x4 � 6x3 � 63x2 þ 50x� 8

72ðx� 1Þ2 lnx;

(B15)

~YðxÞ ¼ �2xþ 5x� 2x2

1� x
lnxþ 4Y0ðxÞ;

~ZðxÞ ¼ 2x� 4x lnxþ 8Z0ðxÞ: (B16)

In H SM;�
d �d0!‘þ‘� above, we have not displayed terms con-

tributed by the magnetic ð���Þ parts of the d �d0 ! ð��; Z�Þ
amplitudes for convenience, but they can be found in
Ref. [41] and do not contribute to the decay KL !
�þ��, which we consider. We note that the SM results
in Eqs. (B9) and (B13) are in agreement with those found
in the literature [21,33].

From the two box diagrams in Fig. 4 with quarks d and
d0 in the external legs and quarks q and q0 in the loops, we
derive the effective Hamiltonian

H d �d0! �dd0 ¼ H SM
d �d0! �dd0 þH �

d �d0! �dd0 ; (B17)

where

H SM
d �d0! �dd0 ¼

G2
Fm

2
W

4�2
ð
2

cS0ðxcÞ þ 
2
t S0ðxtÞ

þ 2
c
tS0ðxc; xtÞÞ �d0�	PLd �d0�	PLd;

(B18)

H�
d �d0! �dd0 ¼

G2
Fm

2
W

16�2

X
q;q0

ð
L
q


L
q0 �
q
q0 Þ

�
ð6�2xqÞln�

2

m2
W

�B1ðxq;xq0 Þ
�
�d0�	PLd �d0�	PLdþG2

Fm
2
W

4�2

�X
q;q0


q

R
q0

�
ð6�xq�xq0 Þln�

2

m2
W

�B2ðxq;xq0 Þ
�

� �d0�	PLd �d0�	PRdþG2
Fm

2
W

4�2

X
q;q0


q
q0
ffiffiffiffiffiffiffiffiffiffiffi
xqxq0

p

�
�
�ln

�2

m2
W

�B3ðxq;xq0 Þ
�
ð�R

qd�
R
q0d

�d0PRd �d0PRd

þ�R�
qd0�

R�
q0d0

�d0PLd �d0PLdÞ; (B19)

with

S0ðx; yÞ ¼ �3xy

4ð1� xÞð1� yÞ �
xyð4� 8xþ x2Þ lnx
4ðy� xÞð1� xÞ2

� xyð4� 8yþ y2Þ lny
4ðx� yÞð1� yÞ2 ; (B20)

B1ðx; yÞ ¼ 3

2
ðxþ yÞ þ 3ðxþ y� xyÞ

ð1� xÞð1� yÞ þ
ð4x2 � 8x3 þ x4Þ lnx

ðy� xÞð1� xÞ2 þ ð4y2 � 8y3 þ y4Þ lny
ðx� yÞð1� yÞ2 ;

B2ðx; yÞ ¼ 3

2
ðxþ yÞ � 9ðxþ y� xyÞ

ð1� xÞð1� yÞ þ
ð4� xÞ2x2 lnx
ðy� xÞð1� xÞ2 þ

ð4� yÞ2y2 lny
ðx� yÞð1� yÞ2 ;

B3ðx; yÞ ¼ xy� x� y� 2

ð1� xÞð1� yÞ þ ð4x� 2x2 þ x3Þ lnx
ðy� xÞð1� xÞ2 þ ð4y� 2y2 þ y3Þ lny

ðx� yÞð1� yÞ2 ;

(B21)

and S0ðxÞ ¼ limy!xS0ðx; yÞ. The expression for H SM
d �d0! �dd0 agrees with that in the literature [21,33].

APPENDIX C: MATRIX ELEMENTS AND PARAMETERS

The matrix elements used in estimating the amplitudes for �B ! J=c �K, �c
�K are
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hc j �cm��cnj0i ¼ �mn

Nc

fcmc"
�; h �K0ðqÞj �smbnj �B0ðpÞi ¼ �mn

Nc

p2 � q2

mb �ms

FBK
0 ;

h �K0ðqÞj�sm��bnj �B0ðpÞi ¼ �mn

Nc

�
ðpþ qÞ�FBK

1 þ ðp� qÞ�
ðp� qÞ2 ðm

2
B �m2

KÞðFBK
0 � FBK

1 Þ
�
;

h�cj �cm���5cnj0i ¼ �mn

Nc

if�c
p
�
�c
; h�cj �cm�5cnj0i ¼ �mn

Nc

if�c
m2

�c

2mc

;

(C1)

where Nc ¼ 3 is the number of colors and m and n are
color indices. The decay constants above are fc ¼
416 MeV extracted from �ðJ=c ! eþe�Þ data [13] and
f�c

¼ 420 MeV calculated in Ref. [42]. The form factors

FBK
0;1 are functions of ðp� qÞ2, with FBK

0 ðm2
�c
Þ ¼ 0:45 and

FBK
1 ðm2

c Þ ¼ 0:65 from Ref. [43]. For meson masses, we
use the values in Ref. [13].

The K, Bd, and Bs decay-constants are [13,28]

fK ¼ 155:5� 0:8; fBd
¼ 191� 15;

fBs
¼ 228� 17;

(C2)

all in units of MeV. All of the following parameter values
are obtained from Ref. [28], the experimental and theoreti-
cal errors given therein having been combined in quadra-
ture. The QCD-correction factors in the K- and
Bd;s-mixing amplitudes are [21,28,44].

�cc ¼ 1:46� 0:22; �B ¼ 0:551� 0:007: (C3)

The bag parameters used in the K-mixing amplitude are
defined by

hK0j �d�	PLs �d�	PLsj �K0i ¼ 2

3
f2Km

2
KBK;

hK0j �d�	PLs �d�	PRsj �K0i ¼ �f2Km
4
KBK

3ðmd þmsÞ2
;

(C4)

and similarly for BBd;s
in the Bd;s-mixing cases, where [28]

BK ¼ 0:72� 0:04; BBd
¼ 1:17� 0:08;

BBs
¼ 1:23� 0:06:

(C5)

The charm and top masses used in the loop functions are
[28,45]

�mcðmcÞ ¼ 1:29� 0:04; �mtðmtÞ ¼ 165� 1; (C6)

both in units of GeV. For the CKM parameters, we adopt in
the Wolfenstein parametrization the central values [28]

A ¼ 0:8116; 
 ¼ 0:225 21;

�� ¼ 0:139; �� ¼ 0:341:
(C7)

In our numerical estimates, we use only the central values
of the parameters above, as their errors being no more than
20% are within the intrinsic uncertainty of our analysis.
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