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We study bulk fermions in models with warped extra dimensions in the presence of a soft wall.

Fermions can acquire a position dependent bulk Dirac mass that shields them from the deep infrared,

allowing for a systematic expansion in which electroweak symmetry breaking effects are treated

perturbatively. Using this expansion, we analyze properties of bulk fermions in the soft-wall background.

These properties include the realization of nontrivial boundary conditions that simulate the ones

commonly used in hard-wall models, the analysis of the flavor structure of the model and the implications

of a heavy top. We implement a soft-wall model of electroweak symmetry breaking with custodial

symmetry and fermions propagating in the bulk. We find a lower bound on the masses of the first bosonic

resonances, after including the effects of the top sector on electroweak precision observables for the first

time, of mKK * 1–3 TeV at the 95% C.L., depending on the details of the Higgs, and discuss the

implications of our results for LHC phenomenology.
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I. INTRODUCTION

Models with warped extra dimensions [1] offer a rich
new avenue towards our understanding of the stability of
the electroweak (EW) scale against ultraviolet physics. The
AdS/CFT correspondence [2] applied to models compac-
tified on a slice of AdS5 [3], resulted in an AdS5=CFT
dictionary relating the 5D models to their dual 4D strongly
coupled field theories. The intensive effort put into the
study of models with warped extra dimensions has resulted
in a number of realistic models of natural electroweak
symmetry breaking (EWSB) based on them [4].1

Custodial symmetry [6] and a custodial protection of the
Zb �b coupling [7] have proven essential to get realistic
models with light enough new particles to make them
accessible at the LHC.2 Surprisingly, the immense majority
of the models follow the original in the choice of back-
ground, AdS5, and the way the conformal symmetry is
spontaneously broken, by suddenly ending the extra di-
mension in what is called the infrared (IR) brane. This
hard-wall realization of the spontaneous breaking of the
conformal invariance corresponds, in the dual 4D picture to
a breaking by an operator of infinite scaling dimension.
Instead, one could replace the IR brane with a soft wall so
that the extra dimension expands to infinity but there is a
departure from conformality in the IR either by a modifi-
cation of the metric or by the introduction of a dilaton. This
corresponds in the dual picture to conformal breaking by
an operator of finite dimension.

Soft-wall models were introduced in [9] to model the
observed Regge trajectories in hadronic resonances
through five-dimensional duals (hard-wall models in

AdS5 give a mass scaling m2
n � n2 instead of the observed

m2
n � n). Very recently, soft-wall realizations of models of

EWSB were presented in [10,11]. The spectrum of new
resonances is affected by the soft wall, with behaviors that
range from a (modified) discrete spectrum to a continuous
spectrum with or without a mass gap. This provides new
realizations of hidden-valley like models [12] and unpar-
ticle physics [13] (see [14,15]). An analysis of the bosonic
sector of these models shows that the constraints on the
masses of new particles from the S parameter alone can be
relaxed with respect to hard-wall models and new bosonic
resonances as light as 1 TeV, or even lighter, are compatible
with current limits on the S parameter [10,11]. Earlier
attempts [16] used a smooth deviation from AdS in the
IR given by a power law, instead of the exponential form
we will use, and considered the Higgs to be localized at a
fixed position in the bulk (on a nongravitating brane). The
result was that the bound on the mass of the lightest
Kaluza-Klein (KK) modes did not appreciably change
with respect to the case of a hard wall in the family of
parameterizations used.
The fermionic sector, however, was not studied in detail

in either of these works and was not included in the
analysis of the EW constraints. This is fine in general for
the lighter fermions, which can to a good approximation be
considered as fields living in the UV brane. The large mass
of the top quark, however, does not allow us to neglect the
fact that third generation quarks have to propagate in the
bulk. This results, in hard-wall models, in an important
effect of the top sector in EW precision tests through their
contribution mainly to the T parameter and the Zb �b cou-
pling at the loop level. The aim of this work is to system-
atically study bulk fermions in soft-wall models. This
allows us to discuss the impact of the top sector on EW
observables and therefore obtain reliable bounds on the
mass of the new resonances. Also, although considering

1See also [5] for Higgsless models based on the same idea.
2Alternative constructions that do not use these custodial

protections have been explored in [8].
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light fermions as bulk fields is irrelevant regarding EW
observables, it is not regarding the flavor structure of the
model. Our formalism provides the tools to analyze the
flavor constraints in soft-wall models.

The outline of the paper is as follows. In Sec. II we
consider bulk fermions in warped extra dimensions with a
soft wall. We develop tools that allow us to study the
implications of bulk fermions, from the light generations
to the top quark, in EW precision tests and flavor physics.
In Sec. III we use these tools to analyze the EW constraints
in custodial models with a soft wall, including for the first
time the effect of the top sector in such models. Section IV
is devoted to a discussion of our results, including the
distinctive collider implications of soft-wall models, and
to our conclusions. We have included in Appendices A and
B technical details on the background and the expansion of
bosonic fields for completeness.

II. BULK FERMIONS IN THE SOFT WALL

A soft wall can be implemented in models with warped
extra dimensions either through the position dependent
vacuum expectation value (vev) of a dilaton field or by a
modification of the metric in the IR. We choose the former
approach and work in an AdS5 background,

ds2 ¼ aðzÞ2ð���dx
�dx� � dz2Þ; (1)

with �, � ¼ 0; . . . ; 3 and aðzÞ ¼ L0

z . z � L0 is the coordi-

nate along the extra dimension and L0 � M�1
Planck is the

inverse AdS5 curvature scale. The endpoint at z ¼ L0 is
commonly denoted as the ultraviolet (UV) brane. The soft
wall is generated by the z-dependent vev of a dilaton field
�ðzÞ. The matter action reads

Smatter ¼
Z

d5x
ffiffiffi
g

p
e��Lmatter: (2)

The spectrum of bosonic fields is sensitive to the dilaton
profile. In particular, depending on its behavior at large z, it
can lead to a discrete or continuous spectrum (with or
without a mass gap). In the case of a discrete spectrum,
the intermode spacing also depends on the dilaton profile.
In this article we will focus on a quadratic dilaton profile

�ðzÞ ¼
�
z

L1

�
2
; (3)

which gives rise to a discrete spectrum with masses scaling
as m2

n � n as opposed to the usual m2
n � n2 found in hard-

wall models. Note that L1 here is not the position of any
brane but the scale at which the effect of the dilaton
becomes sizable and the solution departs from standard
AdS. Still, L�1

1 determines the mass gap and if we want our
soft-wall model to solve the hierarchy problem, we should
have L�1

1 � TeV. This background can be obtained dy-
namically as a solution to Einstein equations in the pres-
ence of an extra bulk tachyonic scalar, as was shown in

[11]. The solution for bulk bosonic fields were analyzed in
detail in that reference and we just collect the relevant
results in the appendices. Bulk fermions were also dis-
cussed in [11] but they are somewhat problematic in soft-
wall models and not many details could be investigated.
The main result of this article is to develop the tools needed
to analyze in great generality the phenomenological im-
plications of bulk fermions in soft-wall models.

A. The problem with fermions in the soft wall

Consider a five-dimensional fermion, �ðx; zÞ, in our
soft-wall background. Its action reads

S ¼
Z

d5x
ffiffiffi
g

p
e��

�
1

2
ð ��eNA�

AiDN�L � iDN
��eNA�

A�Þ

�M ���

�
; (4)

where N, A ¼ f�; 5g run over five dimensions in the
curved and the tangent spaces, respectively, eNA is the
fünfbein, DN is the gravitationally covariant derivative,
�A ¼ f��;�i�5g are the Dirac matrices in 5 dimensions
and M is a bulk Dirac mass that is left unspecified for the
moment. After integration by parts3 the action can be
written as

S ¼
Z

d5xa4e�� ��

�
i@6 þ

�
@5 þ 2

a0

a
� 1

2
�0

�
�5 � aM

�
�

¼
Z

d5x �c ½i@6 þ @5�
5 � aM�c ; (5)

where in the second equation we have defined

c ðx; zÞ � a2ðzÞe��ðzÞ=2�ðx; zÞ: (6)

The action written in terms of the field c shows the main
problem. The dilaton and the metric have disappeared from
the action, except for the factor of the metric multiplying
the Dirac mass. This latter term is actually very important.
In the absence of a bulk mass, even in hard-wall models,
fermions would know nothing about the background and
their KK expansion would be in terms of trigonometric
instead of Bessel functions. A constant bulk Dirac mass
allows the fermions to have a KK expansion more accord-
ing to the AdS5 background and for a particular valueM ¼
1=ð2L0Þ they behave exactly the same as bulk gauge bo-
sons in the same background. Unfortunately this is not
enough in soft-wall models. If we assume the standard
choice of a constant bulk Dirac mass, then the correspond-
ing zero mode, when allowed by the boundary conditions,
does not go to zero rapidly enough at large z. Even when it
is normalizable, it will invariably have strong coupling

3Integration by parts will result in boundary terms that have to
be properly taken into account. We assume that the required
boundary terms exist to make our choice of boundary conditions
compatible with the variational principle.
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with some gauge boson KK modes. The situation would
not improve if we modeled the soft wall with a modified
metric instead of a dilaton. In that case, the modification of
the metric goes in the direction of making it go to zero
faster than z�2 (for instance exponentially) at large z. The
effect of the bulk mass is then even less important and the
zero mode is simply not normalizable. The authors of [11]
noted that, if the Higgs has a z-dependent profile that grows
towards the IR, as would be expected in a model that solves
the hierarchy problem, its Yukawa coupling to fermions
induces a bulk mass term that shields the fermions from the
deep IR and can thus solve this problem. Unfortunately this
solution is difficult to implement in practice, since the
Yukawa coupling gives a z-dependent mass that mixes
two different 5D fermions. Even neglecting intergenera-
tional mixing, this z-dependent mixing makes it impossible
to get analytic solutions except in the very particular case
of common bulk Dirac mass for the two five-dimensional
fermion fields coupled through the Higgs. This idea has
been further explored recently, for common bulk Dirac
masses and different values of the Higgs profile in [17].

B. Our solution

A full analysis of the implications of bulk fermions in
EWand flavor physics requires, however, to go beyond the
particular case of common bulk Dirac masses. Recall that
the only link that bulk fermions have to the background
they live in comes from the mass term. A constant mass
term gives information about the metric but it does not
about the dilaton. A natural assumption is therefore to
consider that, besides the constant bulk Dirac mass, bulk
fermions acquire a z-dependent mass that comes from a
direct coupling to the dilaton. This mass provides the
missing link with the soft wall, shielding the fermions
from the deep IR without the need of the Yukawa coupling.
In the most general case, this mass can mix different
generations, which would make the coupled first order
equation impossible to solve analytically. However, we
can neglect intergenerational mixing in the bulk Dirac
masses and introduce it through Yukawa couplings.
Provided we do not introduce too large 5D Yukawa cou-
plings we can treat EWSB perturbatively in which case the
intergenerational mixing given by the Yukawa couplings
does not represent any technical problem.

Our starting point is the action in Eq. (5) with a bulk
Dirac mass given by

MðzÞ ¼ c0
L0

þ c1
L0

z2

L2
1

; (7)

where c0;1 are dimensionless constants expected to be

order one. The equations of motion derived from the
fermionic action read

i@6 c L;R þ ð�@5 � aMÞc R;L ¼ 0; (8)

where L and R stand for the left-handed (LH) and right-

handed (RH) components, respectively, �5c L;R ¼ �c L;R.

A standard expansion in KK modes,

c L;Rðx; zÞ ¼
X
n

fL;Rn ðzÞc ðnÞ
L;RðxÞ; (9)

with i@6 c ðnÞ
L;RðxÞ ¼ mnc

ðnÞ
R;LðxÞ gives the equations for the

fermionic profiles

ð@5 � aMÞfL;Rn ¼ �mnf
R;L
n : (10)

The orthonormality conditionZ 1

L0

fLnf
L
m ¼

Z 1

L0

fRnf
R
m ¼ �nm; (11)

then gives the action as a sum over four-dimensional Dirac
KK modes and possibly massless zero modes,

S ¼
Z

d4x
X
n

�c ðnÞ½i@6 �mn�c ðnÞ: (12)

The first order coupled equations for the fermionic profiles
can be iterated to give two decoupled second order differ-
ential equations

½@25 � ðaMÞ0 � ðaMÞ2 þm2
n�fL;Rn ðzÞ ¼ 0: (13)

Inserting the expression of the metric and the mass, we get
for the LH profile,�

@25 �
c0ðc0 þ 1Þ

z2
þ c1

L2
1

ð1� 2c0Þ þm2
n � c21z

2

L4
1

�
fLn ¼ 0;

(14)

while the RH solution is identical to the LH one with the
identification c0;1 ! �c0;1. This equation can be put in the
form of Kummer’s equation

½x@2x þ ðb� xÞ@x � a�gðxÞ ¼ 0; (15)

by means of the following changes of variables

fðzÞ ¼ e�ðjc1jz2=2L2
1Þz�c0gðzÞ; x ¼ jc1jz2

L2
1

; (16)

where

a ¼ 1� 2c0
4

� c1ð1� 2c0Þ þ L2
1m

2
n

4jc1j ; b ¼ 1

2
� c0:

(17)

The normalizable solutions of the coupled linear equations
can then be written as

fLn ðzÞ ¼ Nnz
�c0e�ðc1z2=2L2

1
ÞU

�
� L2

1
m2

n

4c1
; 12 � c0;

c1z
2

L2
1

�
;

fRn ðzÞ ¼ Nn
mn

2 z1�c0e�ðc1z2=2L2
1
ÞU

�
1� L2

1m
2
n

4c1
; 32 � c0;

c1z
2

L2
1

�
;

9>>=
>>;

) for c1 > 0; (18)
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fLn ðzÞ¼�Nn
mn

2 z
1þc0eðc1z2=2L2

1
ÞU

�
1þL2

1
m2

n

4c1
;32þc0;�c1z

2

L2
1

�
;

fRn ðzÞ¼Nnz
c0eðc1z2=2L2

1
ÞU

�
L2
1
m2

n

4c1
;12þc0;�c1z

2

L2
1

�
;

9>>>=
>>>;

) for c1<0; (19)

where Uða; b; zÞ is the confluent hypergeometric function
and the normalization constants Nn are fixed by normaliz-
ing either the LH or the RH profile. The linear equations of
motion guarantee that once one of the two profiles is
normalized, the other one also is.

The masses and the possible presence of zero modes is
determined by the boundary conditions (bc). Model build-
ing in hard-wall models makes use of four different com-
binations of bc for fermions. ½�;��where aþ (� ) means
that the RH (LH) chirality has Dirichlet bc (it vanishes) at
the corresponding brane. The first and second signs corre-
spond to the UV and IR branes, respectively. More com-
plicated bc are sometimes needed, but they can be
constructed in general from these basic building blocks,
that we would like to be able to realize in soft-wall models.
The bc at the UV brane can be imposed in exactly the same
fashion as in hard-wall models. On the other hand, the IR
bc in the soft wall are fixed to the normalizability condition
and we cannot impose further bc in the IR. As we will see,
however, the choice of the sign of c1 allows us to simulate,
in the soft wall, the effect that different IR bc have in hard-
wall models.

Let us start with the analysis of zero modes. If we set
m0 ¼ 0, the two first order differential equations decouple
and we can solve for them immediately,

fL;R0 ¼ AL;Re
�
R

aM ¼ AL;Rz
�c0e�ðc1z2=2L2

1
Þ: (20)

If we choose ½þ� UV bc, then AR ¼ 0 and similarly ½��
implies AL ¼ 0. Thus we can only have at most one chiral
zero mode. This chiral zero mode will be normalizable
only if c1 > 0, for a LH zero mode, or c1 < 0 for a RH
mode. The corresponding normalized zero mode reads,

fL;R0 ¼
�
L
1�2c0
0

2
E�c0þð1=2Þ

�
�c1

L2
0

L2
1

���ð1=2Þ
z�c0e�ðc1z2=2L2

1Þ;

(21)

where E�ðzÞ ¼
R1
1 dte�zt=t� is the exponential integral E

function. A LH zero mode exists if c1 > 0 and the UV bc is
½þ�, whereas a RH zero mode exists if c1 < 0 and the UV
bc is ½��. Thus, at least at the level of the zero mode
content, we have the equivalence

½�;��hard , ½�; signðc1Þ�soft: (22)

Once the right boundary conditions for the existence of a
chiral zero mode are imposed, we see that c1 controls the
exponential die-off in the IR whereas c0 controls the
localization of the zero mode.

Let us now see that this identification also works at the
quantitative level for the massive modes. Using the small z
limit of the confluent hypergeometric functions,
Eqs. (13.5.6–13.5.12) of [18],

Uða; b; zÞ �
8<
:

�ðb�1Þ
�ðaÞ z1�b; b > 1;
�ð1�bÞ

�ð1þa�bÞ ; b < 1;
(23)

and assuming L0=L1 	 1, we obtain the approximate ex-
pressions for the masses of the KK modes for different
values of the UV bc and signs of c1 as shown in Table I. In
the case of ½þ�� and ½�þ� boundary conditions sublead-
ing terms, which are particularly important for the lightest
mode, have been neglected in the table. Including those
terms, we obtain the following approximate expressions
for the masses

m2
1 �

4jc1j
L2
1

jc1jc0�ð1=2Þ

�ðc0 � 1=2Þ
�
L0

L1

�
2c0�1

; for ½þ��;

c0 > 1=2þ �; (24)

and

m2
1 �

4c1
L2
1

c
�c0�ð1=2Þ
1

�ð�c0 � 1=2Þ
�
L0

L1

��2c0�1
; for ½�þ�;

c0 <�1=2� �; (25)

with � � 0:1. These are ultralight modes for ½þ��, c0 >
1=2 and ½�þ�, c0 <�1=2 similar to the ones that appear
in hard-wall models with the corresponding twisted bound-
ary conditions [19]. The accuracy of these approximations
can be checked in Fig. 1, where we show the exact masses
for the different boundary conditions. The asymptotic lim-
its, the scaling mn �

ffiffiffi
n

p
and the presence of ultralight

modes for twisted boundary conditions is apparent from
the figure.
The z-dependent Dirac mass shields the fermions from

the deep IR. Of course, the heavier a particular KK mode
is, the less it is shielded from the IR. This can be seen in

TABLE I. Approximate values of the fermion KK masses in
the limit L0 	 L1 for different boundary conditions. Note that in
the soft wall, the second sign in the boundary condition gives the
sign of c1 and that n ¼ 1; 2; . . . . The lightest modes (n ¼ 1) for
½þ�� and ½�þ� boundary conditions require subleading terms
that have been neglected in this table, see text for details.

c0 	 1
2 c0 
 1

2

½þþ�soft L2
1
m2

n

4jc1j � n
L2
1
m2

n

4jc1j � nþ c0 � 1
2

½þ��soft L2
1
m2

n

4jc1j � n� 1
2 � c0

L2
1
m2

n

4jc1j � n� 1

c0 	 � 1
2 c0 
 � 1

2

½���soft L2
1
m2

n

4jc1j � n� 1
2 � c0

L2
1
m2

n

4jc1j � n

½�þ�soft L2
1
m2

n

4jc1j � n� 1
L2
1
m2

n

4jc1j � nþ c0 � 1
2
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Fig. 2, where we show the profiles of a LH zero mode and
its first three massive KK modes for ½þþ� boundary con-
ditions, with heavier modes propagating deeper in the IR.
This has important phenomenological consequences. It has
been shown that fields propagating sufficiently deep in the
IR become eventually strongly coupled [9,10]. This strong
coupling does not affect the standard model (SM) fields, as
they do not propagate deep enough in the IR (not even the
top), but will signal the loss of perturbativity for heavy
enough KK modes. In fact, we will see in the next section
that, due to this effect, the contribution of fermionic KK
modes to some EW observables decouples more slowly
than one might naively expect.

The KK expansion of bulk fermions with a bulk Dirac
mass of the form in Eq. (7) makes perfect sense indepen-
dently of the Yukawa couplings to the bulk Higgs. Our goal
in the rest of this article is to use this expansion to analyze
the phenomenological implications of bulk fermions in
soft-wall models. We will do that by treating EWSB per-
turbatively, an approximation that will be carefully
checked. This approach has the advantage that we can
now trivially implement all the complications involved in
fermion masses, from the generation of a large top mass to
the generation of light fermion masses and their implica-
tion in flavor constraints of the model without having to
resort to common bulk Dirac masses.

C. Fermion couplings

The KK expansion we have performed in the previous
section allows us to compute the couplings we will need to
investigate the EW and flavor implications of bulk fermi-
ons in the soft wall. One of the most relevant couplings is
the Yukawa coupling between two fermions and a scalar. In
the approximation we are considering, these couplings give
the main contribution to SM fermion masses and mixings
and also fix the mixings among fermion KK modes. These
mixings in turn determine the fermion effects on EW
precision observables and on flavor violating processes.
Let us consider two bulk fermions Qðx; zÞ and Tðx; zÞ
coupled to a bulk scalar �ðx; zÞ. We assume the scalar
acquires a z dependent vev h�i ¼ f�ðzÞv, with v a con-

stant with dimension of mass and f�ðzÞ normalized as

1 ¼
Z 1

L0

dza3e��f2�ðzÞ: (26)

When we identify the scalar with the Higgs responsible for
EWSB, this normalization ensures that v ¼ 174 GeV, up
to corrections of order v2L2

1. The part of the action involv-
ing the coupling between these three fields reads

�SYuk ¼
Z

d5x
ffiffiffi
g

p
e��½�5

�Q�T þ H:c:�

¼
Z

d5xa½�5 �q�tþ H:c:�

¼
Z

d5xa½�5vf� �qtþ H:c:�

þ ðL $ RÞ þ H:c:

�

¼
Z

d4xv
X
mn

�
�qt
mn �q

ðmÞ
L tðnÞR þ �tq

mn �t
ðmÞ
L qðnÞR þ H:c:

�
;

(27)

where �5 is a five-dimensional Yukawa coupling with mass
dimension ½�5� ¼ �1=2, naturally expected to be of order
�5 �

ffiffiffiffiffiffi
L0

p
. In the last equality we have defined the effective

(dimensionless) four-dimensional Yukawa couplings be-
tween the different fermion KK modes. These are given

-1

-0.5

 0

 0.5

 1

 1.5

 0  1  2  3  4  5

fL n

z/L1

n=0 n=1 n=2 n=3

FIG. 2 (color online). Left-handed profiles of the zero mode
and first three massive KK modes of a bulk fermion with ½þþ�
boundary conditions, c0 ¼ 0:4 and c1 ¼ 1. Heavier KK modes
propagate deeper in the IR.
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-0.6 -0.4 -0.2  0  0.2  0.4  0.6

m
n 

L
1 

(f
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 c
1=

1)

c0

FIG. 1 (color online). Masses of the first three massive modes
in units of L�1

1 as a function of c0 for L0=L1 ¼ 10�15 and c1 ¼
1. The solid (dotted) lines correspond to ½þþ� (½�þ�) boundary
conditions. Opposite boundary conditions have identical masses
with the replacement c0;1 ! �c0;1.
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by the five-dimensional Yukawa coupling times the overlap
of the corresponding fermion KK modes with the scalar
profile. Following the procedure in the KK expansion of

fermions, we have defined qðx; zÞ � a2e��=2Qðx; zÞ and

tðx; zÞ � a2e��=2Tðx; zÞ. Assuming a power-law scalar
profile (see Appendix B)

f�ðzÞ ¼ L1

L3=2
0

�
2

�ð	� 1; L2
0=L

2
1Þ
�
1=2

�
z

L1

�
	
; (28)

and identical localization for the LH and RH fermion zero
modes (cL0;1 ¼ �cR0;1), we show the effective zero mode

Yukawa coupling for different values of the Higgs profile
in Fig. 3. The result is sensitive to the Higgs profile for	 &
1:5 but becomes essentially insensitive and very similar at
the qualitative and quantitative level to the result in the
hard wall for 	 * 1:5.

Another very important coupling for the phenomeno-
logical implications of bulk fermions is the coupling of
fermion and gauge boson KK modes. It comes from the
gauge covariant derivative in the kinetic term of fermions
and can be written as

SAc c ¼
Z

d5xg5 �cA6 c

¼
Z

d4x
X
mnr

g5

�Z
dzfLmf

L
nf

A
r

�
�c ðmÞ
L A6 rc

ðnÞ
L

þ ðL ! RÞ
¼

Z
d4x

X
mnr

gmLnLr
4

�c ðmÞ
L A6 rc

ðnÞ
L þ ðL ! RÞ; (29)

where g5 is the five-dimensional coupling constant, with

mass dimension ½g5� ¼ �1=2 and in the last equality we
have defined the effective four-dimensional coupling be-

tween the fermionic modes c ðmÞ
L , c ðnÞ

L and the rth gauge
boson KK mode. Of particular relevance is the coupling of
fermion zero modes to gauge boson KK modes,

gnðc0; c1Þ � g0L0Ln4 ¼ g5
Z

dzðfL0 Þ2fAn ; (30)

which we show, in units of g0 for the first three gauge boson
KKmodes, as a function of c0 in Fig. 4 for c1 ¼ 1. The KK
expansion of gauge bosons in our soft-wall background is
discussed in Appendix B. It is related to the fermionic
expansion with the identification

fLn ðc0 ¼ 1=2; c1 ¼ 1; zÞ ¼ ffiffiffi
a

p
e��=2fAn : (31)

In particular we have

gnðc0 ¼ 1=2; c1 ¼ 1Þ ¼ g5f
A
0

Z
dzae��fA0 f

A
n ¼ g0�n0;

(32)

where we have used the fact that fA0 is z independent,

g5f
A
0 ¼ g0 and orthonormality of the gauge boson KK

modes, see Eq. (B9). Thus, for c0 ¼ 1=2 and c1 ¼ 1 the
couplings to all the gauge boson KK modes vanish.
Similarly, for c0 * 1=2, the fermion zero modes are effec-
tively localized towards the UV brane and their coupling to
the gauge boson KK modes becomes independent of the
exact localization (the value of c0;1). For instance, the

coupling to the first gauge boson KK mode becomes

g1

�
c0 >

1

2
þ �

�
� � g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 logL1

L0

q � �0:12g0;

ðfor L0=L1 � 10�15Þ; (33)

which is a factor�1=
ffiffiffi
2

p
smaller than in the hard-wall case.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

λ 0
0

c0

FIG. 3 (color online). Effective four-dimensional Yukawa cou-
pling for fermion zero modes with �5 ¼

ffiffiffiffiffiffi
L0

p
and cL1 ¼ �cR1 ¼

1 as a function of cL0 ¼ �cR0 � c0 for different Higgs profiles.

The different curves correspond, from bottom to top on the left
hand side, to 	 ¼ 1, 1.33, 1.66, 2. For 	 * 1:5 the zero mode
spectrum is almost insensitive to the exact value of the Higgs
profile.
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FIG. 4 (color online). Coupling of a LH fermion zero mode to
the first three gauge boson KK modes in units of the coupling to
the gauge boson zero mode, as a function of c0 for fixed c1 ¼ 1.
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This universality of couplings for fermions localized to-
wards the UV brane is the basis of the success of flavor
physics in models with warped extra dimensions with a
hard wall. The so called RS GIM mechanism in hard-wall
models stands for the fact that flavor-changing neutral-
current (FCNC) processes involving light quarks are sup-
pressed by either light quark masses or by small Cabibbo-
Kobayashi-Maskawa (CKM) mixing angles. The origin of
such suppression comes from the fact that the deviation
from universality of the couplings to the gauge boson KK
modes scale like the Yukawa couplings

gL;Rn

g0
� constþ f2cL;R�ðcL;RÞ; (34)

where cL;R is the localization parameter of the correspond-

ing LH or RH fermion zero mode, �ðcÞ is a slowly varying
function of c, expected to be of order

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logL1=L0

p � 5–6 in
the hard wall and fcL;R determine the effective Yukawa

couplings as

�00 � fcLfcR : (35)

To test how close to this property we are in our soft-wall
models, we computed the following quantity

�ðc0Þsoft � ½gnðc0; c1Þ � gnðc0 ! 1; c1Þ�=g0
�qt
00ðcq0 ¼ �ct0 ¼ c0; c

q
1 ¼ �ct1 ¼ c1Þ

; (36)

which is the equivalent of �ðcÞ in the hard wall for identical
localization of left and right components. The result for the
coupling to the first gauge boson KK mode, for c1 ¼ 1 and
�5 ¼

ffiffiffiffiffiffi
L0

p
is displayed in Fig. 5, for different values of the

Higgs profile. It is obvious that for 	 * 1:5, for which we

can obtain hierarchical fermion masses through wave func-
tion localization, similar scaling with the masses as the one
that leads to a RS GIM protection occurs in the soft wall.
Thus, onewould expect that models with a soft wall behave
in a very similar way as hard-wall models do regarding
flavor physics [20,21].

D. Validity of the approximation

The validity of the approximation we are employing in
this work, namely, a perturbative treatment of EWSB, has
been recently subject to debate in hard-wall models (see for
instance [21,22]). In such models, it is clear that, if one was
able to include the full tower of KK modes and diagonal-
ized the infinite resulting mass matrix, the results should be
equivalent to including EWSB effects exactly through the
equations of motion. The rapid increase in KK masses also
guarantees that in general, except in certain cases in which
the induced off-diagonal masses are very large, the first few
modes give a good enough approximation for the required
level of precision. A perturbative treatment of EWSB is not
useful only for soft-wall models. In fact, even in hard-wall
models, there is only a few special cases, notably a brane
localized Higgs and models of gauge-Higgs unification, in
which EWSB effects can be included analytically. The
validity of a perturbative treatment of EWSB is not so
obvious in soft-wall models, since the extra dimension
extends to infinity and Higgs effects in the deep IR could
modify the equations of motion in a way that cannot be
reproduced with a finite number of modes computed in the
absence of EWSB and a perturbative inclusion of the latter.
This is in fact what happens in the case that the fermion
Dirac mass is constant in the extra dimension so that the
KK expansion in the absence of EWSB lacks a zero mode
that should make up for most of the lightest mode in the
full solution. With our assumption of fermion Dirac
masses, however, the KK expansion in the absence of
EWSB is well defined and all fields, including the zero
modes are shielded from the deep IR. We can therefore
expect, in general, EWSB effects to be a small perturbation
and a finite number of KK modes to give a good enough
approximation. Nevertheless, it is important to check the
validity of the approximation at the quantitative level,
especially in the case of the top quark, which is expected
to suffer the strongest deviations. Even more so in soft-wall
models due to the fact we mentioned above that heavier
KK modes propagate deeper in the IR and therefore get
larger mass mixings.
We have checked the validity of the approximation both

analytically and numerically. First, we have considered the
case that can be solved analytically of common constant
bulk Dirac masses and a quadratic Higgs profile. Let us
consider again two bulk fermionsQðx; zÞ and Tðx; zÞ but let
us include the effect of the Yukawa coupling, Eq. (27) in
the KK expansion. The equations of motion derived from
the corresponding action read
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FIG. 5 (color online). �ðc0Þsoft as defined in Eq. (36). This
quantity measures the scaling of the nonuniversality of couplings
of light fermions to gauge boson KK modes with the masses of
the light fermions. We have fixed cq1 ¼ �ct1 ¼ c1, c

q
0 ¼ ct0 ¼ c0,

�5 ¼
ffiffiffiffiffiffi
L0

p
and shown different lines for different Higgs profiles.
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i@6 qR;L
tR;L

� �
� @5

qL;R
tL;R

� �
� a

MqðzÞ mðzÞ
mðzÞ MtðzÞ

� �
qL;R
tL;R

� �
¼ 0;

(37)

where Mq;t are our constant plus z dependent mass for the

bulk fermions (with parameters cq;t0;1) and mðzÞ �
�5vf�ðzÞ. Assuming a quadratic profile for the scalar and

cq0 ¼ ct0 � c0, the mass matrix reads

a
MqðzÞ mðzÞ
mðzÞ MtðzÞ

� �
¼ c0

z

1 0
0 1

� �
þ z

L2
1

cq1 cm
cm ct1

� �
: (38)

Let us now define the 2� 2 unitary matrix that diagonal-
izes the second term

Uy cq1 cm
cm ct1

� �
U ¼ cþ1 0

0 c�1

� �
: (39)

Then the equations of motion for the rotated fields

cþ
c�

� �
� Uy q

t

� �
; (40)

are decoupled

i@6 c i
L;R � @5c

i
R;L �

�
c0
z
þ ci1z

L2
1

�
c i

R;L ¼ 0; i ¼ þ;�;

(41)

which can be solved analytically. One has to be careful that
the boundary conditions mix both fields and therefore the
physical modes live in the expansion of both of them

c i
L;R ¼ X

n

fiL;Rn c ðnÞ
L;R; (42)

where c ðnÞ is independent of i. The orthonormality condi-
tion is thenZ 1

L0

dz½fþL
n fþL

m þ f�L
n f�L

m � ¼
Z 1

L0

dz½fþR
n fþR

m

þ f�R
n f�R

m �
¼ �nm: (43)

We have compared the exact fermion masses and the
couplings to gauge bosons with the ones we obtain using
our perturbative treatment of EWSB. We have compared

them for different values of c0 and cq;t1 , with �5 (equiv-
alently cm) fixed to reproduce the top mass for the lightest
mode. The result of such comparison is that both the
masses and the couplings agree to better than per mille
level for values of �5 below the strong coupling limit, with
the inclusion of just a few KK modes. Only when �5 is so
large that the theory becomes nonperturbative close to the
scale of the mass of the first KK mode the departure gets
close to �10%.

We have been able to test the accuracy of our approxi-
mation in the case of common constant bulk Dirac masses.
However, this is not the most general situation we will deal

with in the study of the phenomenological implications of
bulk fermions. We have also checked the case of different
Dirac masses by numerically solving the set of coupled
differential equations. Again the result for both masses and
couplings is in excellent agreement with our approxima-
tion for perturbative values of �5.

III. ELECTROWEAK CONSTRAINTS ON
SOFT-WALL MODELS

As an application of our formalism, we investigate in
this section the EW constraints on soft-wall models. We
consider a minimal realistic setup with a custodially sym-
metric SUð2ÞL � SUð2ÞR �Uð1ÞX bulk gauge symmetry
broken to the SM gauge group SUð2ÞL �Uð1ÞY on the UV
brane.
The bosonic action is given by

Sb ¼
Z

d5x
ffiffiffi
g

p
e��

�
� 1

4
La
MNL

aMN � 1

4
Ra
MNR

aMN

� 1

4
XMNX

MN þ Tr½ðDMHÞyDMH� � VðHÞ
�

�
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffi�gUV

p
e��VUVðHÞ; (44)

where a ¼ 1, 2, 3, La
M, R

a
M and XM are the SUð2ÞL, SUð2ÞR

and Uð1ÞX gauge fields, respectively, and H is the bulk
Higgs boson that transforms as an SUð2ÞL � SUð2ÞR bi-
doublet

Hðx; zÞ ¼ 1ffiffiffi
2

p ��
0ðx; zÞ �þðx; zÞ

���ðx; zÞ �0ðx; zÞ
� �

: (45)

VðHÞ and VUVðHÞ are the bulk and UV brane Higgs
potentials. Choosing appropriately these potentials we
can obtain a powerlike profile for the Higgs vev (see
Appendix B)

hHi ¼ f�ðzÞffiffiffi
2

p v 0
0 v

� �
; (46)

where f�ðzÞ has been defined in Eq. (28) and, as we show

below, v ¼ 174 GeV up to corrections of order v2L2
1. The

UV boundary conditions satisfied by the gauge fields are

@5L
a
�jL0

¼ @5B�jL0
¼ R1;2

� jL0
¼ Z0

�jL0
¼ 0; (47)

where we have defined

B� ¼ gXR
3
� þ g5X�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g25 þ g2X

q ; Z0
� ¼ g5R

3
� � gXX�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g25 þ g2X

q ; (48)

with B� the hypercharge gauge boson, g5 the gauge cou-

pling of SUð2ÞL and SUð2ÞR which are taken equal to
maintain the the L $ R symmetry that protects the Zb �b
coupling [7] and gX the Uð1ÞX gauge coupling. The gauge
couplings associated to B� and Z0

� are, respectively
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g05 ¼
g5gXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g25 þ g2X

q ; gZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g25 þ g2X

q
; (49)

whereas the associated charges are

Y ¼ T3
R þQX; QZ0 ¼ g25T

3
R � g2XQX

g25 þ g2X
: (50)

A. Bosonic contribution to electroweak precision
observables

In this section we review the bosonic contribution to EW
precision observables in soft-wall models [10,11]. If the
light SM fermions are localized towards the UV brane,
models with warped extra dimension, including soft-wall
models, fall in the class of universal new physics models
[23]. In that case, all relevant constraints can be obtained in
terms of four oblique parameters, which are computed
from the quadratic terms in the effective Lagrangian of
the interpolating fields that couple universally to the SM
fermions. The holographic method [24] gives the most
straight-forward calculation of the oblique parameters as
it gives directly the effective Lagrangian for the interpolat-
ing fields. In the spirit of the approximations we have used
with fermions, we will include EWSB effects perturba-
tively, which allows us to consider arbitrary Higgs profiles.
The leading order in the expansion in the EWSB scale v
does not give the correction to the T parameter (which
requires v4 terms) but we nevertheless know that the tree
level contribution to the T parameter vanishes due to the
custodial symmetry.4 The leading correction to all other
three oblique parameters can be safely computed
perturbatively.

The procedure can be performed as follows. First we set
to zero the fields that are not sourced on the UV brane,
leaving only the SM gauge bosons. The relevant part of the
action reads

S ¼
Z

d5x
ffiffiffi
g

p
e��

�
� 1

4g25
La
MNL

aMN � 1

4g025
BMNB

MN

þ v2f2�
4

½ðLb
MÞ2 þ ðL3

M � BMÞ2�
�
; (51)

where in this section, we are using noncanonically normal-
ized fields. The term in square brackets is the mass term
due to EWSB, that we will treat as a perturbation.5 Going
to 4D momentum space, and considering the � compo-
nents of the gauge fields, we define

La
�ðp; zÞ ¼ fðp; zÞ �La

�ðpÞ; B�ðp; zÞ ¼ fðp; zÞ �B�ðpÞ;
(52)

with fðp; zÞ fixed by the bulk equations of motion, which
are identical for La and B. With the boundary condition
fðp; L0Þ ¼ 1,

fðp; zÞ ¼ U

�
�p2L2

1

4
; 0;

z2

L2
1

�
=U

�
�p2L2

1

4
; 0;

L2
0

L2
1

�
: (53)

Integrating out the bulk we obtain an effective action for
the 4D interpolating fields

Shol: ¼ � 1

2

Z d4p

ð2
Þ4 �
��f �Lb

��þ�ðp2Þ �Lb
� þ �L3

��33ðp2Þ �L3
�

þ �B��BBðp2Þ �B� þ 2 �L3
��3B

�B�g þ . . . (54)

where the different form factors read

�þ�ðp2Þ ¼ �33ðp2Þ ¼ 1

g25
�0ðp2Þ ���ðp2Þ; (55)

�BBðp2Þ ¼ 1

g025
�0ðp2Þ ���ðp2Þ; (56)

�3Bðp2Þ ¼ ��ðp2Þ; (57)

with the EW symmetry preserving term

�0ðp2Þ � e��@5fðp; zÞjz¼L0

� p2L0

�
log

L1

L0

� �E

2

�
þ p4

2
L0


2L2
1

24
þ . . . ;

(58)

where �E � 0:577 is the Euler-Mascheroni constant. In the
second expression we have expanded in powers of p2 and
assumed L0=L1 	 1. The EWSB term is

��ðp2Þ ¼ v2

2

Z
dza3e��f2�f

2ðp; zÞ ¼ v2

2
þOðp2Þ:

(59)

The gauge couplings and the EWSB scale are fixed by the
following conditions

�0þ�ð0Þ ¼
1

g2
; �0

BBð0Þ ¼
1

g02
;

�þ�ð0Þ ¼ � ð174 GeVÞ2
2

;

(60)

where a prime here denotes derivative with respect to p2.
They imply, up to corrections Oðv2L2

1Þ,
g5
g

¼ g05
g0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0

�
log

L1

L0

� �E

2

�s
; (61)

and

v ¼ 174 GeV: (62)

4This can be checked for particular Higgs profile [11].
5If we were to include the EWSB effects exactly, it would be

advantageous to go the the vector and axial basis, V; A ¼ ðL�
RÞ= ffiffiffi

2
p

, but this is not necessary if EWSB is treated as a
perturbation.
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The oblique parameters are defined in terms of these form
factors. Recall that the first equality in Eq. (55) does not
give the leading correction to the T parameter, which
appears at order v4 in the form factors. The other three
relevant oblique parameters are defined by

S ¼ 16
�0
3Bð0Þ ¼ �16
g2�0

�ð0Þ; (63)

W ¼ g2m2
W

2
�00

33ð0Þ; (64)

Y ¼ g02m2
W

2
�00

BBð0Þ: (65)

Inserting the corresponding coefficients we obtain, for W
and Y,

W ¼ Y ¼ g2
2

96ðlogL1

L0
� �E

2 Þ
ðvL1Þ2 þ . . . (66)

which is volume ( logðL1=L0Þ � �E=2) suppressed and
therefore leads to a very mild constraint on L1. The S
parameter on the other hand can in general only be com-
puted numerically, except for particular values of the Higgs
localization parameter 	. In general it is not volume sup-
pressed so it gives a stronger constraint thanW and Y. This
is easy to understand in an alternative derivation in which
one integrates out the physical heavy KK modes to obtain
an effective Lagrangian that is not oblique but has correc-
tions to the gauge boson masses, which are volume en-
hanced, to vertex fermion-gauge couplings, which are
order one, and to four-fermion interactions, which are
volume suppressed. If one then introduces field redefini-
tions so that an oblique Lagrangian is obtained, all three
types of corrections affect the T parameter (which would
be the leading constraint if it were not for the custodial
symmetry that makes the total contribution to cancel).
Only vertex corrections and four-fermion interactions enter
in the S parameter, which is therefore not expected to have
any volume enhancement or suppression. Finally only the
four-fermion interactions enter W and Y, which explains
why they are volume suppressed and therefore less con-
straining in general. We have computed the S parameter as
a function of the Higgs localization parameter 	. In Fig. 6
we show, as an example, the value of L�1

1 that will result in
a value S ¼ 0:2 as a function of 	. We have checked that
our numerical result agrees exactly with the analytic results
given in [11] for the cases 	 ¼ 1 and 	 ¼ 2 to leading
order in v2L2

1. For 	 ¼ 1, the Higgs profile times the
metric is flat in the extra dimension and no vertex correc-
tions are generated. Thus, the S parameter only receives the
volume suppressed contribution from four-fermion inter-
actions, which results in a very mild constraint.

B. Fermionic contributions to electroweak observables

Our calculation in the previous section showed that the
bosonic sector is less constrained by EW precision tests in
soft-wall models than in hard-wall models. The large top
mass however makes it reasonable that fermionic contri-
butions to EW precision observables, most notably the T
parameter and the Zb �b coupling, which have been ne-
glected so far can be relevant. In fact, they are needed for
light KK modes to be allowed, as the zero value of the tree
level T parameter is not compatible with a relatively large
value of S.
We consider a minimal fermionic content compatible

with the custodial and LR symmetry that protect the T
parameter and Zb �b coupling, respectively. Ignoring the
bottom or lighter quark masses, the relevant fermionic
sector consists of an SUð2ÞL � SUð2ÞR bidoublet c ð2;2Þ ¼
ðX;QÞ and an SUð2ÞL � SUð2ÞR singlet T, both withQX ¼
2=3,

c ð2;2Þ ¼ Xu½�þ� Qu½þþ�
Xd½�þ� Qd½þþ�

� �
; T½���2=3; (67)

where the subscript denotes the Uð1ÞX charge and we have
written explicitly the boundary conditions in soft-wall
notation so that the second sign corresponds to the sign
of the corresponding c1. From the SM point of view X and
Q are SUð2ÞL doublets with hypercharges 7=6 and 1=6 and
they have T3

R ¼ 1=2 and �1=2, respectively. The bc are
chosen such that Q has a left-handed and T has a right-
handed zero mode which correspond to the SM top sector
qL and tR. X have no zero modes but have the IR bc fixed
by the bulk gauge symmetry.
The couplings of the fermions to the gauge fields and the

Yukawa couplings are given in Eq. (29) and Eq. (27). The
latter are given in terms of the fermion profiles by
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FIG. 6 (color online). L�1
1 as a function of the Higgs localiza-

tion parameter 	 such that S ¼ 0:2 using Eq. (63).
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� SYuk ¼
Z

d4xv
X
mn

f½�qt
mn �q

uðmÞ
L þ �xt

mn �x
dðmÞ
L �tðnÞR

þ �tðmÞ
L ½�tq

mnq
uðnÞ
R þ �tx

mnx
dðnÞ
R � þ H:c:g: (68)

These terms, together with the gauge couplings and KK
masses allow us to compute the physical masses and
physical couplings to the EW gauge and would-be
Goldstone bosons. These are the required ingredients to
compute the one loop fermionic contribution to the T
parameter and the Zb �b coupling. We use the calculation
of these two observables presented in [25], which extended
previous calculations [26] to a general enough set-up able
to accommodate our fermionic spectrum.

We have investigated the dependence of the T parameter
and Zb �b coupling as a function of our input parameters,

cq;t0;1, with �5 adjusted so that the physical top mass is mt ¼
172 GeV. Before discussing the results, we should make
two important comments. First, we are using as an example
a very minimal fermionic spectrum, with no particularly
light fermion KK modes. This is enough to prove that
models of EWSB with a soft wall are compatible with
EW precision tests for relatively light KK gauge boson
modes. However, one could expect a richer behavior, simi-
lar to the one observed in hard-wall models, if a more
complicated fermionic spectrum, including twisted bc and
bulk mixing terms is considered. Second, we have men-
tioned above that heavy KK modes propagate deeper in the
IR and therefore they couple more strongly to the Higgs.
This results in a slower decoupling of heavy modes regard-
ing their contribution to the T parameter (the Zb �b coupling
is less sensitive to this effect). In fact, we have observed
that the T parameter is quite unstable against the addition
of new fermion KK modes for the first few modes and it
stabilizes into a fixed value only after the inclusion of a
relatively large �10 number of KK levels. Note that,
because of the scaling mn �

ffiffiffi
n

p
, the addition of many

modes does not mean that we have to go to very high
scales before the T parameter is stable. This effect worsens
the more towards the IR the Higgs is localized (i.e. the
larger 	 is). For values 	 * 2, the number of modes
required to stabilize the T parameter gets close to the limit
of strong coupling and it is difficult to make precise
quantitative predictions. Thus, we will show most of our
results for 	 ¼ 1:5, although we have checked that these
results do not change qualitatively when 	 gets closer to 2.

The results we have obtained for the T parameter and the
Zb �b coupling can be summarized as follows.

(i) The T parameter is negative in a large portion of
parameter space, as was already observed in hard-
wall models with the same fermionic quantum num-
bers [4]. It is negative, with a very mild dependence

on cq;t0 for values ct0 * �0:35, whereas it develops a

strong dependence on the two parameters cq;t0 for

values of ct0 * 0:35 becoming quickly positive and

of order one. This behavior can be clearly seen in

Fig. 7 where we plot the T parameter as a function of
ct0 for different values of cq0 . The behavior shown

extends to positive values of ct0 without any signifi-

cant change.
(ii) The Zb �b coupling is much less sensitive to the

different localization parameters, cq;t0;1. In fact, it is

not even very sensitive to the particular value of L1

(provided it is of �TeV�1 size) for a fixed value of
the Higgs profile. The reason is that, increasing L�1

1 ,
which makes the KKmodes more massive and there-
fore should decouple them, also makes the Higgs
more IR localized, which increases the required
value of �5 and the coupling among the heavy KK
modes in such a way that both effects almost cancel
each other giving rise to an essentially constant value
of the Zb �b coupling �gbL � �ð1–1:5Þ � 10�3. This

effect is in principle also present in the T parameter
but it is overcome by the larger number of heavy
modes that contribute in that case and the strong

dependence on cq;t0 .

C. Fit to electroweak observables

Our analysis of the contribution to EW precision ob-
servables from the fermionic sector showed two main
features for the class of models we have considered: the
Zb �b coupling receives a non-negligible, almost constant
correction �gbL � �ð1–1:5Þ � 10�3, and the T parameter

can get essentially any value for ct0 & �0:35. Using these

features we have performed a three parameter fit to all
relevant electroweak precision observables, using an up-
dated version of the code in [27]. We compute the �2 as a
function of T, S and �gbL and consider the difference with

respect to its minimum value
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FIG. 7 (color online). T as a function of ct0 for different values
of cq0 with fixed 1=L1 ¼ 1:2 TeV, cq1 ¼ 1:2, ct1 ¼ �1 and 	 ¼
1:5.
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�2
min � �2ðT ¼ 0:06; S ¼ �0:005; �gbL

¼ �2:5� 10�4Þ: (69)

The value of �2
min per degree of freedom is similar to the

one in the SM for a Higgs mass mH � 80 GeV (see [25]
for more details on the fit). The result is summarized in
Fig. 8 in which we show the minimum value of the ��2 �
�2 � �2

min obtained in our model as a function of L�1
1 for

different values of the Higgs profile. In the figure we also
show the values of ��2 that correspond to 95% and 99%
C.L. limits for a fit to three variables. The corresponding
bounds on L�1

1 read, at 95% C.L.

L�1
1 ðin TeVÞ & 0:85; 1:2; 1:55 for 	 ¼ 1:2; 1:5; 2; (70)

which translate into the following values for the gauge
boson KK modes

mGB
n �

8><
>:
1:7; 2:4; 3; . . . ð	 ¼ 1:2Þ;
2:4; 3:4; 4:2; . . . ð	 ¼ 1:5Þ;
3:1; 4:4; 5:4; . . . ð	 ¼ 2Þ:

(71)

Note that, even for	 close to 1, the bound is more stringent
than one would naively get from the S parameter alone.
The main reason is the almost constant contribution to the
Zb �b coupling that creates some tension in the fit. Of
course, a richer fermionic spectrum than we have consid-
ered in our minimal model could result in a different value
of this coupling and therefore a smaller bound.

IV. DISCUSSION

Models with warped extra dimensions and a soft IR wall
represent a more general approach to EWSB than hard-
wall models. The spectrum of KK excitations is sensitive to
the details of the soft wall and an analysis of the bosonic

sector, assuming the SM fermions to be localized at the UV
brane, shows that current EW constraints are compatible
with very light �TeV new resonances. UV localized fer-
mions are a good approximation regarding the implications
on EW observables of the light fermions. However, flavor
constraints and top dependent contributions to EWobserv-
ables cannot be studied in that approximation. We have
developed the tools to analyze bulk fermions in soft-wall
models with great generality. By assuming a position de-
pendent Dirac mass for the bulk fermions, which could be
generated by a direct coupling to the soft wall, we can
perform the KK expansion of bulk fermions in a very
general set-up. Our construction reproduces well the
most relevant features of bulk fermions present in hard-
wall models, like the effect of nontrivial IR boundary
conditions, the presence of ultralight modes for twisted
boundary conditions, flavor universality of couplings of
UV localized fermions to KK gauge bosons or hierarchical
Yukawa couplings through wave function localization.
Using these techniques we have studied the flavor structure
of realistic models with the result that a similar flavor
protection as the one observed in hard-wall models can
be expected. Similarly, we have computed the contribution
of the top sector to EW precision observables and shown
that simple realistic models with custodial symmetry and
KK excitations as light as

m1 * 1:7 TeV; (72)

can be compatible with all EW precision tests.
Furthermore, the particular realization of the soft wall we
have considered predicts a linear scaling of the mass
squared of the KK excitations. As an example, for certain
Higgs profile (	 ¼ 1:5) we can have, at the 95% C.L., the
following spectrum of new gauge boson KK masses

mn � 2
ffiffiffi
n

p � 1:2 TeV � ð2:4; 3:4; 4:2Þ TeV: (73)

Detailed analyses in hard-wall models showed that masses
mG

KK & 4–5 TeV in the case of KK gluons [28] andmEW
KK &

2 TeV in the case of KK excitations of the EW bosons [29]
could be reached at the LHC with �100–300 fb�1. It
would therefore seem that the first and maybe even the
second mode of KK gluons could be observable at the LHC
although a detailed analysis, taking into account the details
of the spectrum in our model, is required to fully assess the
LHC reach.
Regarding the fermionic sector, we have chosen a very

minimal set-up, with just the minimal number of five-
dimensional fields to reproduce the observed spectrum.
In that case no particularly light KK fermions are present
in the spectrum. Because of the boundary conditions, the
KK excitations of X, which from the SM point of view is an
SUð2ÞL doublet of hypercharge 7=6 are among the lightest
new fermions with a massmX

1 � 2–2:5 TeV. This multiplet
includes a charge 5=3 quark that was shown to be easily
reachable in an early LHC run through pair production
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the text as a function of L�1
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provided it is light enough [30]. The analysis in that
reference only considered 0.5 and 1 TeV masses. Most
likely, masses as heavy as the ones we obtain are not
reachable at the LHC through pair production. Single
production is a more likely possibility but again a detailed
analysis would be required to understand the real reach.
This simple fermionic spectrum was chosen for simplicity.
It is not a constraint coming from the soft wall. Richer
structures are easy to implement. For instance, one could
simulate the spectrum used in hard-wall realistic models of
gauge-Higgs unification [4,31] by introducing further bulk
fermions with twisted boundary conditions and a position
dependent mass termmixing them. In that case we can only
solve analytically for a common z-independent mass,
which is still tolerable for the top quark. This richer fer-
mionic spectrum would lead to lighter quarks associated to
the top and could make new regions in parameter space
compatible with EW precision data through their contri-
bution to EW precision observables. Bulk fermions can be
also implemented in actual composite Higgs models in the
soft wall [10] using the techniques developed in this work.

Our results show that soft-wall models have the potential
to become realistic models of EWSB readily accessible at
the LHC.We have gone a step forward towards this goal by
including with great generality bulk fermions in these
models. However, several further steps need to be taken
before we can consider these models a full satisfactory
solution to the hierarchy problem. One of the most pressing
open questions is that of the stability of the soft wall and
the corresponding L1=L0 � TeV=MPl hierarchy. Also,
given the new bounds and the different patterns of masses
and mixings that can be obtained in soft-wall models, a
new analysis of the LHC reach would be welcome. Finally,
soft-wall models open the possibility to study a priori
completely different physics, like unparticles, and their
relation to EWSB. It has been recently shown that the
Higgs itself could be part of the conformal sector (un-
Higgs). It can be modeled by a continuum of resonances
in a 5D soft-wall model [15,32], being (partly) responsible
for EWSB and longitudinal gauge boson scattering and
even being able to reproduce the quantum contributions of
a standard Higgs to the oblique parameters despite having
modified (suppressed) couplings to the SM fields. It would
be very interesting to use the formalism we have developed
here to analyze the effect of the top quark propagating in
such background.
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APPENDIX A: BACKGROUND SOLUTION

The soft-wall model that we have considered in this
article can be obtained dynamically from a five-

dimensional gravitational model [11,33]. We collect the
relevant results in this appendix. More details can be found
in the original references. The action describes gravity
coupled to two scalars, the dilaton � and the tachyon T,

S ¼
Z

d5x
ffiffiffi
g

p �
M3R� 1

2
gMN@M�@N�� 1

2
gMN@MT@NT

� Vð�; TÞ
�
�

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi�gUV

p
�UVð�; TÞ; (A1)

where M is the 5D Planck mass and Vð�; TÞ and
�UVð�; TÞ are the scalar bulk and UV boundary potentials
for the dilaton and the tachyon and are given by

Vð�; TÞ ¼ 18

��
@W

@�

�
þ

�
@W

@T

��
� 12

M3
W2;

�UVð�; TÞ ¼ 6½Wð�0; T0Þ þ @�Wð�0; T0Þð���0Þ
þ @TWð�0; T0ÞðT � T0Þ þ . . .�; (A2)

where W is

Wð�; TÞ ¼ M3

L0

�
ð�� 1ÞeT2=ð24ð1þ1=�ÞM3Þ

� �

�
1� �ffiffiffi

6
p

M3=2

�
e�=ð ffiffi

6
p

M3=2Þ
�
: (A3)

Solutions for the equations of motions for the dilaton and
the tachyon using the above potentials can be found as

�ðzÞ ¼
ffiffiffi
8

3

s
M3=2

�
z

L1

�
�
;

TðzÞ ¼ �4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=�

p
M3=2

�
z

L1

�
�=2

;

(A4)

where the background metric is chosen to be

gMN ¼ a2ðzÞe�4=3ðz=L1Þ��MN: (A5)

Note that one can recover the metric in Eq. (1) and the
action in Eq. (2) by the redefinitions

� !
ffiffi
3
8

q
M�3=2� gMN ! e4=3ðz=L1Þ�gMN: (A6)

Throughout this paper, we considered the case with � ¼ 2
only.

APPENDIX B: BULK BOSONIC FIELDS IN THE
SOFT WALL

In this appendix we review the Kaluza-Klein expansion
of bulk bosonic fields in the soft wall. Further details can be
found in [11].

1. Bulk higgs

Let us assume the following form for the bulk and
the UV boundary Higgs potentials VðHÞ and VUVðHÞ in
Eq. (44)
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VðHÞ ¼ m2
HðzÞTrjHj2; VUVðHÞ ¼ �0L

2
0ðTrjHj2 � v2

0Þ2;
(B1)

where the effective mass for the bulk Higgs is defined to
have the form

mHðzÞ2 ¼ 1

L2
0

�
	ð	� 4Þ � 2	

z2

L2
1

�
: (B2)

The above mass term is assumed to arise from a coupling to
another scalar which gets a background vev. The UV
boundary potential is added to the action in Eq. (44) so
that the solutions of the equations of motion for the Higgs
field satisfy nontrivially the UV boundary conditions.
Solving for the equation of motion for the bulk Higgs using
VðHÞ and demanding that the solution is finite in the soft-
wall background, one finds

fhðzÞ ¼ chz
	; (B3)

where ch is a normalization constant and we have defined
the Higgs vev as

hHi ¼ fhðzÞffiffiffi
2

p v 0
0 v

� �
; (B4)

with v a constant with mass dimension 1. The UV bound-
ary condition satisfied by the above solution is given in
Ref. [11]. Properly normalizing the bulk Higgs field and
solving for the mass of the W boson in terms of the over-
laps of the bulk Higgs profile with the gauge field zero
modes for the W we find that

ch ¼
ffiffiffiffiffiffiffiffi
2L2

1

L3
0

vuut 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð	� 1; L2

0=L
2
1Þ

q (B5)

with � the incomplete Gamma function, and v ¼
174 GeV, up to corrections Oðv2L2

1Þ. It was shown in
[11] that this solution is indeed the ground state of the
theory.

2. Gauge bosons

The expansion of gauge bosons in our background was
also considered in [11] and we collect here the main
results. The action for a bulk Uð1Þ gauge field reads

S ¼ � 1

4

Z
d5x

ffiffiffi
g

p
e��AMNA

MN: (B6)

We perform the standard KK decomposition

A�ðx; zÞ ¼
X
n

fAn ðzÞAðnÞ
� ðxÞ; (B7)

where the four-dimensional fields AðnÞ
� ðxÞ satisfy the four-

dimensional equations of motion for a gauge massive
gauge boson with mass mn. The profile functions fAn ðzÞ
satisfy then the following equation

�
@25 þ

�
a0

a
��0

�
@5 þm2

n

�
fAn ¼ 0; (B8)

and normalization condition

Z 1

L0

dzae��fAmf
A
n ¼ �mn: (B9)

Applying the change of variable

x ¼ z2

L2
1

; (B10)

and inserting the explicit form of the metric and the dilaton
field, the equation for the bosonic profile reads

�
x@2x � x@x þ L2

1m
2
n

4

�
fnAðzÞ ¼ 0; (B11)

which is the same equation gðzÞ of Eq. (16) satisfied with
the special values of fermionic parameters c0 ¼ 1=2 and
c1 ¼ 1. The normalizable solution is given in terms of
confluent hypergeometric function

fAn ðzÞ ¼ NA
nU

��m2
nL

2
1

4
; 0;

z2

L2
1

�
; (B12)

where the normalization constantsNA
n are determined from

Eq. (B9). The masses for the massive gauge bosons are
found by applying the corresponding boundary conditions.
Applying Neumann boundary conditions for the UV brane
one finds that the masses for the heavy modes are given
approximately by

m2
n � 4

L2
1

n: (B13)

Uð0; 0; z2Þ ¼ 1 so the profile for a massless gauge boson
zero mode is given entirely by its normalization constant,

f0AðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

L0E1ðL2
0=L

2
1Þ

s
; (B14)

where E�ðzÞ ¼
R1
1 dte�zt=t� is the exponential integral E

function.
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