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Monte Carlo renormalization group (MCRG) methods were designed to study the nonperturbative

phase structure and critical behavior of statistical systems and quantum field theories. I adopt the 2-lattice

matching method used extensively in the 1980’s and show how it can be used to predict the existence of

nonperturbative fixed points and their related critical exponents in many flavor SU(3) gauge theories. This

work serves to test the method and I study relatively well understood systems: the Nf ¼ 0, 4 and 16 flavor

models. The pure gauge and Nf ¼ 4 systems are confining and chirally broken and the MCRGmethod can

predict their bare step scaling functions. Results for the Nf ¼ 16 model indicate the existence of an

infrared fixed point with nearly marginal gauge coupling. I present preliminary results for the scaling

dimension of the mass at this new fixed point.
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I. INTRODUCTION

The Monte Carlo renormalization group (MCRG) meth-
ods, based on Wilson’s renormalization group theory, were
developed and used extensively in the 1980’s to study the
critical properties of spin and gauge models [1–11]. The 2-
lattice matching MCRG proved to be particularly useful to
calculate the � function of asymptotically free theories,
like quenched QCD [4–6]. The approach has all but been
forgotten in the last 20 years as lattice QCD calculations
focused on spectral and other experimentally measurable
quantities. Lately there has been increased interest in
beyond-QCD lattice models [12–25] as they could describe
strongly coupled beyond-standard model physics [26–29].
Ref. [30] is a good summary of the issues and recent lattice
results. A basic discussion of the physical picture with
some remarks on expectations for lattice simulations
were presented in Ref. [31]. In this paper I follow the
Wilson renormalization group RG language used in [31].

SU(3) gauge models with Nf fermions in the fundamen-

tal representation can have very different phase structure
depending on the number of fermions [26]. If Nf > 16

asymptotic freedom is lost, the gauge coupling is irrelevant
and the continuum theory is free. For small Nf the g ¼ 0,

m ¼ 0 Gaussian fixed point (GFP) is the only critical fixed
point (FP). The theory is asymptotically free, confining and
chirally broken. Somewhere around Nf � 10 the gauge

coupling develops a new FP at g� � 0 [29,32]. At g� the
gauge coupling is irrelevant, it is an infrared FP (IRFP).
The continuum limit defined in the basin of attraction of
this IRFP is neither confining not chirally broken; it is
conformal when m ¼ 0. This conformal phase is expected
to exits all the way to Nf ¼ 16. Identifying the lower end

of the conformal window and the critical properties of the

IRFP are the main issues of recent lattice simulations. The
MCRG method was designed to answer these kind of
questions and in this paper I present the first such study
in Nf ¼ 4 and Nf ¼ 16 flavor SU(3) theories. I also in-

vestigate the pure gauge SU(3) model where it is possible
to do high statistics, large volume simulations. I have
chosen these models as the expected phase structure is
rather well known, so I can use them to calibrate and test
the method. My eventual goal is to extend these studies to
other flavor numbers or fermions in different
representations.
Since MCRG has been used very little in the last 20

years, I devote Sec. III to the basic description of the 2-
lattice matching MCRG. The method allows the determi-
nation of a sequence of couplings �0; �1; . . .�n; . . . with
lattice spacings that differ by a factor of s between con-
secutive points, að�nÞ ¼ að�n�1Þ=s. s is the scale change
of the RG transformation, s ¼ 2 in this study. This se-
quence is analogous to the step scaling function defined
in the Schrodinger functional (SF) method [33–35], but in
MCRG it is defined through the bare couplings. To empha-
size this difference I will use the notation sbð�n; sÞ ¼
�n � �n�1 for the bare step scaling function instead of
the more traditional �ðu; sÞ used in the SF approach.
The sequence �0; �1; . . .�n; . . . can be used to deter-

mine the renormalized running coupling in theories that are
governed by the GFP if at the weak coupling end of the
chain a renormalized coupling, like the SF �g2, is calculated
and connected to a continuum regularization scheme,
while at the strong coupling end some physical quantity
is used to determine the lattice scale. I do not pursue this
calculation here, though I will compare results for
sbð�; s ¼ 2Þ from SF and MCRG in Sec. IVA.
The rest of the paper is organized as follows. Sec. II

summarizes the perturbative picture of these many fermion
theories. Sec. III describes the 2-lattice matching method
and defines the RG block transformation used in this work.*anna@eotvos.colorado.edu
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The numerical simulations and results are discussed in
Sec. IV. The technical aspects of MCRG are described in
detail for the pure gauge SU(3) theory in Sec. IVA as it
serves to justify the approach used for the Nf ¼ 4 and

Nf ¼ 16 models in Secs. IVB and IVCI use nHYP

smeared staggered fermions in this work. I present some
basic properties of 4 flavor staggered fermions, together
with the MCRG calculation of the bare step scaling func-
tion in Sec. IVB. The existence of an IRFP requires the
reevaluation of the MCRG method. This, together with
preliminary results for the scaling exponent of the mass
in the Nf ¼ 16 model are presented in Sec. IVC.

II. THE PERTURBATIVE PICTURE

Before discussing the MCRG method and the numerical
results I briefly summarize the perturbative picture. The
universal 2-loop � function for SU(3) gauge with Nf

fermions in the fundamental representation is

�ðg2Þ ¼ dg2

d logð�2Þ ¼
b1

16�2
g4 þ b2

ð16�2Þ2 g
6 þ . . . ;

b1 ¼ �11þ 2

3
Nf; b2 ¼ �102þ 38

3
Nf:

(1)

For Nf < 16:5 the 1-loop coefficient b1 is negative, the

gauge coupling is relevant at the g ¼ 0 Gaussian FP, the
theory is asymptotically free. Dimensional transmutation is
responsible for mass generation. The energy scale changes
by a factor of 2 between couplings g1 and g2 if

lnð2Þ ¼ �
Z g2

g1

g

�ðg2Þdg: (2)

At one loop level this leads to a constant shift in � ¼ 6=g2

and the bare step scaling function is

sbð�1; s ¼ 2Þ ¼ �1 � �2 ¼ � 3 lnð2Þ
4�2

b1ð1-loopÞ: (3)

For small fermion numbers the higher order terms are
small, the � function is expected to remain negative.
Lattice simulations indicate that for Nf � 8 the system is

confining and chiral symmetry is spontaneously broken.
ForNf > 8 the 2-loop� function develops a zero at g� � 0

Banks-Zaks FP [26]. At this new FP g is irrelevant, it is an
IRFP for the gauge coupling. The infinite cutoff limit in the
vicinity of g� is conformal.

When the perturbatively predicted g� is large, higher
order or nonperturbative effects can destroy the existence
of the IRFP. Analytical considerations and numerical simu-
lations suggest that the bottom of the conformal window is
around Nf � 10 [29,32]. At Nf ¼ 16, the largest flavor

number that is still asymptotically free, the Banks-Zaks FP
occurs at a small value g� � �, perturbation theory could
correctly describe the conformal phase. At the IRFP there
is only one relevant operator, the mass. Its scaling dimen-
sion (critical exponent) is close to its engineering one ym �

1þOð�Þ, while the scaling dimension of the gauge cou-
pling is yg ���2. The slope of the � function at g�

predicts the exponent

�ðg2Þ ¼ �ygðg2 � g�2Þ þOððg2 � g�2Þ2Þ; (4)

yg ¼ �b21
b2

: (5)

Equation (2) now gives

g21 � g�2 ¼ ðg22 � g�2Þ2�2yg ; (6)

sbð�1; s ¼ 2Þ ¼ �1 � �2 ¼ ð�2 � ��Þð2�2yg � 1Þ; (7)

if �1 � ��, �2 � �� � 1. For 16 flavors perturbatively
yg � �0:01, the gauge coupling is almost marginal. For

smaller Nf or higher representation fermions jygj can be

larger, though both numerical and analytical considera-
tions find that jygj remains small even at the bottom of

the conformal window [18,31,36].
The mass is a relevant operator both at the GFP and at

the IRFP, with critical value m� ¼ 0. Under a scale change
s ¼ 2 it changes as

m1 ¼ m22
�ym ; (8)

where 1=ym ¼ � is the critical index of the mass.

III. THE MCRG METHOD

The Wilson RG description of statistical systems is a
very effective approach to describe the phase diagram,
calculate critical indices, and in case of lattice discretized
quantum field theories, understand the infinite cut-off con-
tinuum limit of these models. There are many books and
review articles written about the subject. I do not attempt to
explainWilson RG here, I only summarize the main points.
Two reviews that could be useful for other parts of this
paper are Refs. [7,31].
In the inherently nonperturbative Wilson RG approach

one considers the evolution of all the possible couplings
under an RG transformation that preserves the internal
symmetries of the system but integrates out the cutoff level
UV modes. The fixed points of the transformation are
characterized by the number of relevant operators, i.e.
couplings with positive scaling dimensions that flow
away from the FP. Irrelevant couplings have negative scal-
ing dimensions and they flow towards the FP. The IR values
of irrelevant operators are independent of their UV values.
Continuum (or infinite cut-off) limits can be defined by
tuning the relevant couplings towards the FP, thus control-
ling their IR value. The number of relevant operators and
their speed along the RG flow lines are universal, related to
the infrared properties of the underlying continuum limit.
On the other hand the location of the FP is not physical, in
fact different RG transformations have different fixed
points.
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In quantum field theories the best understood fixed
points are at vanishing couplings (Gaussian FPs) as they
can be treated perturbatively. For example the GFP of the 4
dimensional SU(3) pure gauge model has one relevant
operator, the gauge coupling, and no other FP of the model
is known to exist. The Gaussian FP of 2-flavor QCD has
two relevant operators, the mass and the gauge coupling.
Gauge theories with many flavors can develop, in addition
to the GFP, a new fixed point where only the mass is
relevant (Banks-Zaks infrared fixed point) [26]. These
new FPs are rarely in the perturbative region and to study
their existence and properties is the main motivation for
this paper.

A. The 2-lattice matching MCRG method

Consider a d-dimensional lattice model with action
SðKiÞ. fKig denotes the set of all possible couplings, though
in a typical lattice simulation only a few of them are
nonzero. The system is characterized by one or more
length scales, like the correlation length �, inverse quark
masses, etc. In numerical simulations we always deal with
finite volume and for now I assume a hypercubic geometry

with linear size L ¼ L̂a. The first step of a real space
renormalization group block transformation is to define
block variables. These new variables are defined as some
kind of local average of the original lattice variables and

for a scale s > 1 transformation they live on an L̂=s lattice.
By integrating out the original variables while keeping the
block variables fixed one removes the ultraviolet fluctua-
tions below the length scale sa. The action that describes
the dynamics of the block variables is usually much more
complicated than the original one, but if s is much smaller
than the lattice correlation length, the long distance infra-
red properties of the system are unchanged. After repeated
block transformation steps the blocked actions describe a
flow line in the multidimensional action space

fKig � fKð0Þ
i g ! fKð1Þ

i g ! fKð2Þ
i g ! . . . :; (9)

where fKðnÞ
i g denotes the couplings after n blocking steps.

While the physical correlation length is unchanged, the
lattice correlation length after n blocking steps is

�ðnÞ ¼ s�n�ð0Þ: (10)

The RG can have fixed points only when � ¼ 1 (critical)
or � ¼ 0 (trivial). We are, of course, interested in the
former one. Near the critical fixed point the linearized
RG transformation predicts the scaling operators and their
corresponding scaling dimensions.

It is easy to visualize the renormalization group flow
lines when there is only one relevant coupling at the fixed
point, as illustrated in Fig. 1. The sketch depicts the flow
lines in the parameter space fK0; K1g, where for simplicity I
assume that the critical surface is at K0 ¼ 0. Flow lines
starting near the critical surface approach the fixed point in

the irrelevant direction(s) but flow away in the relevant
one. After a few RG steps the irrelevant operators die out
and the flow follows the unique renormalized trajectory
(RT), independent of the original couplings. If we can
identify two sets of couplings, fKig and fK0

ig, that end up
at the same point along the RT after repeated blocking
steps, we can conclude that their correlation lengths are
identical. If they end up at the same point along the RT but
one requires one less blocking steps to do so, according to
Eq. (10) their lattice correlation lengths differ by a factor of
s. This is also illustrated in Fig. 1. From K0 one needs 3
while from K one needs 4 RG steps to reach the same point
of the RT [up to small corrections in the irrelevant direction
(s)], therefore �0 ¼ �=s. This gives the bare step scaling
function with scale change s. The two lattice matching
[4,5] is a numerical method to identify ðK;K0Þ pairs.
In order to identify a pair of couplings ðK;K0Þ with �0 ¼

�=swe have to show that after n and (n� 1) blocking steps

their actions are identical, SðKðnÞ
i Þ ¼ SðK0ðn�1Þ

i Þ. It is quite
difficult to calculate the blocked action, but fortunately we
do not need to know the actions explicitly to shows that
they are identical. It is sufficient to show that the expecta-
tion values of every operator measured on configurations
generated with one or the other action are identical.
Furthermore it is possible to create a configuration en-
semble with Boltzman weight of an RG blocked action
by generating an ensemble with the original action and
blocking the configurations themselves [1]. This suggests
the following procedure for the 2-lattice matching:
(1) Generate a configuration ensemble of size Ld with

action SðKÞ. Block each configuration n times and
measure a set of expectation values on the resulting
ðL=snÞd set.

FIG. 1 (color online). Sketch of the RG flow around a FP with
one relevant operator. The coupling pair ðK;K0Þ indicates
matched couplings whose correlation length differ by a factor
of s.
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(2) Generate configurations of size ðL=sÞd with action
SðK0Þ, where K0 is a trial coupling. Block each
configuration n� 1 times and measure the same
expectation values on the resulting ðL=snÞd set.
Compare the results with that obtained in step 1
and tune the coupling K0 such that the expectation
values agree.

A few basic comments are in order:
(a) Since we always compare measurements on the

same lattice size, the finite volume corrections are
minimal and even very small lattices can be used.

(b) It is not necessary to work on lattices that are larger
than the correlation length of the system, nor does it
matter if we are in the confined or deconfined phase
of the system.

(c) If the flow lines follow the unique RT, even one
operator expectation value is sufficient to find the
matching coupling, all other operators should give
the same prediction. In practice we can do only a
few blocking steps and the flow lines might not
reach the RT. That will be reflected by different
operators predicting different matching values. The
spread of these predictions measure the goodness of
the matching. Increasing the number of blocking
steps improves the matching, and when the RT is
reached, consecutive blocking steps predict the
same matching couplings.

(d) The location of the fixed point and its renormalized
trajectory in the irrelevant directions depend on the
block transformation. Block transformations that
have free parameters can be optimized so their RT
is reached fast and the matching is reliable after a
very few RG steps. This optimization proved essen-
tial in previous applications [4–6,8,37].

(e) Since we can match by comparing local operators,
the statistical accuracy is usually acceptable even
with small configuration sets.

If the FP has two relevant operators, the matching pro-
ceeds similarly but one has to tune 2 operators. In practice
this is much more difficult than the tuning of a simple
coupling. It is frequently easier to fix one of the relevant
couplings to its FP value and proceed with the matching in
the second relevant coupling as described above.

I will illustrate the above points in Sec. IV.

B. The renormalization group block transformation

I chose a scale s ¼ 2 block transformation, similar to
what was used in Refs. [2,5]

Vn;� ¼ Proj½ð1� �ÞUn;�Unþ�;�

þ �

6

X
���

Un;�Unþ�;�Unþ�þ�;�U
y
nþ2�;��; (11)

where Proj indicates projection to SU(3). The parameter �
is arbitrary and can be used to optimize the blocking. The

block transformation used in Refs. [5,6,37] had � fixed,
1� � ¼ �=6, but instead of projecting to SU(3) the
blocked link was allowed to fluctuate around Vn;�, depend-

ing on a free parameter. In my experience the two block
transformations are very similar.
In principle one can define an RG transformation for

fermions as well. However it is easier to do the RG trans-
formation after the fermions are integrated out, i.e. when
the action depends on the gauge fields only.
The role of the parameter � is to optimize the block

transformation. While the critical surface of a system is
well defined, the location of the fixed point itself is not
physical, it can be changed by changing the RG trans-
formation. It is important to optimize the blocking so its
FP and RT can be reached in a few steps. The optimal
blocking is characterized by
(1) Consistent matching between the different opera-

tors: along the RT all expectation values should
agree on the matched configuration sets. Any devia-
tion is a measure that the RT has not been reached.

(2) Consecutive blocking steps should give the same
matching coupling. When they predict different val-
ues, one can try to extrapolate to the FP using the
first nonleading critical exponent.

In the next section, I will show that both of the above
conditions can be satisfied in numerical simulations if the
blocking parameter is optimized.

IV. SIMULATIONS

A. SU(3) pure gauge theory

At the Gaussian g ¼ 0 FP of the pure gauge SU(3)
model the gauge coupling is relevant, the theory is asymp-
totically free. According to Eq. (3) 1-loop perturbation
theory predicts that the bare step scaling function is con-
stant, independent of the gauge coupling. The 2-loop cor-
rections are small in a wide range of coupling,

sðpertÞb � 0:59 is a good approximation. The bare step scal-

ing function was studied in Refs. [4–6,10] with the 2-lattice
matching method. Here I repeat some of those calculations
with a different block transformation and extend them to
larger volumes and statistics. Where they overlap, the
results I present below are consistent with the original
calculations. This section mainly serves as a test of the
method.
I generated 200–300 independent configurations at sev-

eral coupling values with the Wilson plaquette gauge ac-
tion and calculated the bare step scaling function
sbð�; s ¼ 2Þ matching 324 volumes on to 164, and also
164 volumes to 84. The 324 volume can be blocked up to 4
times and compared to the 164 volume that is blocked up to
3 times. At each blocking level I measured 5 operators: the
plaquette, the 3 6-link loops and a randomly chosen 8-link
loop.
Figure 2 illustrates the 2-lattice MCRG. The plot shows

the matching of the plaquette with the s ¼ 2 renormaliza-
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tion group transformation of Eq. (11) and blocking pa-
rameter � ¼ 0:65. The 324 volume simulations were
done at � ¼ 7:0, and the cyan, blue and red symbols are
the values of the blocked plaquette after 2, 3 and 4 blocking
steps. The solid curves interpolate the plaquette values,
measured at many couplings on 164 volumes, after 1, 2 and
3 blocking steps. The 324 data match the 164 values at

�0 ¼ 6:49 for all blocking levels. The final blocked volume
is 24, but finite size effects are minimal as one always
compares observables on the same volume.
The matching can be repeated with different operators

and RG transformations. Figure 3 shows the difference
between the matched couplings,

�� ¼ �� �0; (12)

as the function of the blocking parameter � for the 5
different operators at the last 3 blocking levels for � ¼
7:0. The plots show two trends. First, the spread of the
predicted �� values from the different operators decrease
with increasing blocking level, signaling that the RG flow
lines are approaching the RT of the block transformation.
Second, the dependence of �� on the blocking parameter
decreases with increasing blocking levels suggesting a
unique value for �� in the nb ! 1 limit.
Figure 4 summarizes the plots of Fig. 3. The average

matching�� values are plotted as the function of � for the
last three blocking levels. The ‘‘error bars’’ show the
standard deviation (spread) of the predicted values, there-
fore they represent the systematic errors of the matching
procedure. The statistical errors are small, comparable to
the systematic errors only at the last blocking level at the
best matching around � ¼ 0:65. The 3 different blocking
levels converge around� ¼ 0:65, the same value where the
spread from the different operators is minimal, predicting
the relation between the lattice spacings að�0 ¼ 6:485Þ ¼
2að� ¼ 7:0Þ. In the nb ! 1 limit the quantity ��ð�Þ ¼
�� �0 is the bare step scaling function sbð�; s ¼ 2Þ,
analogue to the step scaling function of the renormalized
coupling used in the SF formalism. In the following I will
use the intersection of the last two blocking levels to
identify sbð�Þ as it is usually less sensitive to the statistical
errors than the spread of the individual operators.

FIG. 2 (color online). The matching of the plaquette for pure
gauge SU(3) theory. The simulations were done on 324 volumes
at � ¼ 7:0 (symbols) and 164 volumes at many coupling values
(solid interpolating lines). The configurations were blocked with
s ¼ 2, � ¼ 0:65 parameter block transformation 2(1) (cyan), 3
(2) (blue) and 4(3) times (red).

FIG. 3. Matching at � ¼ 7:0 from 324 to 164 lattices. The matching values �� as the function of the blocking parameter � are
shown for the 5 different operators measured. Left panel: blocking level nb ¼ 2ð1Þ; middle panel nb ¼ 3ð2Þ; right panel nb ¼ 4ð3Þ.
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Table I summarizes the results at different couplings and
volumes, together with the optimal blocking parameters �.
The data indicate consistency between the different vol-
umes and increasing blocking levels. This observation will
be important in the study of the Nf ¼ 4 and 16 systems

where matching is done on 164 ! 84 lattices only. The
uncertainty of the predictions from the 164 ! 84 are con-
siderably larger than from the larger volumes. This is not
statistical, rather reflects the fact that the systematical
errors of the matching after 3(2) blocking steps are larger
than after one more blocking level. It is possible that a
different block transformation would give better matching.
I have not been able to modify the scale s ¼ 2 transforma-

tion to make it better. Adding HYP smearing [38] before
constructing the blocked links pulls the RT closer, but at
the same time reduces the dependence of the expectation
values on the couplings, thus increasing the errors. It would
be worthwhile to try combining the block transformation
with a simple APE smearing, or use a variation of the scale

s ¼ ffiffiffi
3

p
transformation of Refs. [10,11] that would allow

more blocking steps from the same lattice size.
The quantity sbð�; sÞ is the bare step scaling function for

scale change s ¼ 2. One can predict its value using physi-
cal observables like the Sommer parameter r0 [39] or the
critical temperature Tc. The SF calculation or the recently
proposed new method to calculate the renormalized cou-
pling based on Wilson loop matching (WL) [40] can also
predict sbð�Þ.
In Fig. 5 I compare the MCRG result for the bare step

scaling function with predictions from other methods. Note
that I show errors only for the MCRG results. I used the
interpolating formula from Ref. [41] to find ð�;�0Þ pairs
where r0=a differ by a factor of 2, while for Tc I used the
NT ¼ 8 and 4, and NT ¼ 12 and 6 transition temperatures
from Ref. [42]. In case of the SF and WL calculations I
attempted to find matching ð�;�0Þ pairs by identifying bare
couplings where the renormalized SF couplings are related

as �g2ðL̂Þ ¼ �g02ð2L̂Þ. In principle this relation should be

taken in the L̂ ! 1 limit but the numerical data do not
show significant finite volume effects. The predictions in
Fig. 5 use data from the 1-loop improved SF [34]. The bare
couplings used in the 2-loop improved SF paper do not
match close enough to use them in this analysis [35].
All the above calculations use the Wilson plaquette

gauge action, so in the scaling regime they should give
the same prediction. It is very satisfying to see the agree-
ment between MCRG, r0 and Tc even at relatively strong
couplings. In the range � 2 ð6:0; 7:0Þ the predicted values
differ considerably from the 2-loop perturbative results. It
is difficult to measure r0 or Tc at much finer lattice spac-
ings and show perturbative scaling for them. On the other

hand both the SF, WL and MCRGmethods approach s
ðpertÞ
b ,

TABLE I. The bare step scaling function for the pure gauge SU(3) system. The second column
list the optimal blocking parameter. The third and fourth columns are results from simulations on
324 volumes matched to 164 after 3(2) and 4(3) blocking steps. The last column shows results
from 164 volumes matched to 84 after 3(2) blocking steps.

�L̂ �opt sb, L̂ ¼ 32 nb ¼ 3ð2Þ sb, L̂ ¼ 32 nb ¼ 4ð3Þ sb, L̂ ¼ 16, nb ¼ 3ð2Þ
6.0 0.71 0.365(4)

6.2 0.72 0.410(7)

6.4 0.71 0.451(12) 0.448(10) 0.468(16)

6.6 0.69 0.488(15) 0.483(5) 0.496(13)

6.8 0.66 0.511(19)

7.0 0.66 0.517(27) 0.515(6) 0.516(10)

7.2 0.63 0.536(26)

7.4 0.61 0.548(38) 0.571(6) 0.575(42)

7.8 0.60 0.558(34) 0.575(5) 0.573(42

FIG. 4 (color online). Matching at � ¼ 7:0 from 324 to 164

lattices. The average matching values �� as the function of the
blocking parameter for the last 3 blocking levels are shown. Note
that the ‘‘error bars’’ denote the spread of the predictions for the
5 different operators used and thus represent systematical errors.
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but the latter one only at � 	 7:0. The relatively large
difference between the SF and r0 data was discussed and
analyzed in Ref. [41] where it was also noted that the 2-
loop improved SF shows significantly smaller scaling vio-
lations relative to r0.

Based on the results presented in this section the 2-
lattice MCRG matching method could be competitive
with other methods in determining the running coupling
of asymptotically free theories when it is combined with an
independent definition of the renormalized coupling in the
weak coupling regime.

B. Nf ¼ 4 flavor model

The 4 flavor SU(3) gauge theory is expected to be
confining and chirally broken even at large gauge cou-
plings. At the Gaussian g ¼ 0, m ¼ 0 FP both the mass
and the gauge coupling are relevant operators, the model is

asymptotically free. Perturbation theory predicts sðpertÞb ðs ¼
2Þ ¼ 0:45.

The results I present here were obtained using nHYP
smeared staggered fermions [43]. I chose nHYP smearing
as it significantly reduces taste breaking of staggered fer-
mions and therefore even in strong coupling has manage-
able lattice artifacts.

1. The nHYP staggered action

Very little is known about the 4-flavor system with
nHYP or HYP smeared fermions. The finite temperature
phase transition of the HYP smeared model was studied

with the partial-global Monte Carlo update in Ref. [44].
The phase transition in the chiral limit is expected to be
first order, most likely extending to finite mass before
turning into a crossover at large masses. Simulations with
thin link staggered fermions have confirmed this, finding a
strong discontinuity even at fairly large quark masses. The
conclusion of Ref. [44] was quite different: we found no
signal for discontinuity, the phase transition appeared to be
a crossover both for NT ¼ 4 and 6 even at fairly small
masses. The updating technique used in Ref. [44] was not
efficient enough to pursue much larger volumes, and we
did not continue our investigation of the Nf ¼ 4 system.

The nHYP smeared action is nearly identical to the HYP
smeared one, but nHYP is differentiable and the efficient
molecular dynamics update can be used with it [43]. I have
confirmed the raw data of Ref. [44] with the nHYP action,
and extended it further toward the strong coupling region.
Figure 6 shows the condensate h �c c i and the disconnected
chiral susceptibility [45]

	disc ¼ hh �c c i2confiU � hh �c c iconfi2U (13)

on 83 
 4 lattices at m ¼ 0:04. The condensate is almost
identical to Fig. 5 of [44], a smooth function of the gauge
coupling with no obvious sign of discontinuity. The dis-
connected chiral susceptibility has a strong peak at � ¼
4:4, signaling a crossover. In contrast, the data with thin
link staggered fermions at NT ¼ 4 show a discontinuity in
the condensate �h �c c i � 0:2. Figure 7 is the same as
Fig. 6 but on 123 
 6 lattices at m ¼ 0:05. Again, the
condensate is smooth, the susceptibility suggests a cross-
over around � ¼ 5:0. Obviously much more work is
needed to determine the transition temperatures and the
order of the phase transition accurately. Larger spatial
volumes might sharpen the transition, but in any case the
endpoint of the first order line with nHYP fermions occurs
at much smaller masses than with the thin link action.
To set the scale I measured the static potential on 164

lattices used later in the MCRG study. I found r0=a ¼
5:8ð3Þ at � ¼ 5:4, m ¼ 0:01. Ref. [44] quotes r0=a ¼
3:34ð7Þ at � ¼ 5:2, m ¼ 0:04 and r0=a ¼ 2:2ð1Þ at � ¼
5:0, m ¼ 0:10.

2. MCRG matching

In principle MCRG matching could be done similarly to
the pure gauge SU(3) model, but since the fermionic model
has 2 relevant operators, the matching requires tuning in
both the gauge coupling and the mass. This is a consid-
erably harder numerical task than a single parameter
matching. One can reduce this complication by setting
one of the relevant couplings to its critical value, since
then only the other coupling has to be matched. The critical
value of the mass is m ¼ 0. Simulations in small volumes
are possible even with vanishing mass. In addition the
dependence of the local observables used in the matching
is so weak on the mass that a small mass in the simulations

FIG. 5 (color online). The bare step scaling function sbð�; s ¼
2Þ for the pure gauge SU(3) system as predicted by different

methods. The 1-loop perturbative prediction is s
ðpertÞ
b ðs ¼ 2Þ ¼

0:59.
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is also acceptable. Setting the mass to zero or to a small
value allows matching in the gauge coupling only and the
bare step scaling function can be calculated in the same
way as for the pure gauge system.

To calculate the step scaling function I considered
164 ! 84 matching at several gauge couplings between
� 2 ð5:4; 8:0Þ (see Table II). All the 164 configurations
except � ¼ 5:4 are in the deconfined, chirally symmetric
phase, but that does not matter for the MCRG matching

method. I have generated 100–150 configurations on the
larger volumes and � 300 configurations on the smaller
ones, separated by 10 molecular dynamics trajectories. I
have used the same 5 operators in the matching as in the
pure gauge SU(3) system.
On the 164 lattices I chose m ¼ 0:01. If the critical

exponent for the mass were its engineering dimension,
the matching mass on the smaller volume would be m ¼
0:02. I generated 84 lattices with m ¼ 0:015 and 0.025 to

FIG. 7 (color online). The condensate and the disconnected chiral condensate on 123 
 6 volumes atm ¼ 0:05 in the Nf ¼ 4 theory.

FIG. 6 (color online). The condensate and the disconnected chiral condensate on 83 
 4 volumes at m ¼ 0:04 in the Nf ¼ 4 theory.
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bracket this value and to check for any dependence on the
mass. The matching for the plaquette is shown in Fig. 8.
The blue and red symbols represent the plaquette value
after 2 and 3 blocking steps on the 164 lattice at � ¼ 6:0
while the dashed and dotted lines interpolate the 1 and 2
times blocked plaquette values on the 84 lattices with m ¼
0:015 and m ¼ 0:025. For completeness I also show the
unblocked plaquette on the 84 volumes (black line) though
there is no consistent matching at this level. The dotted and
dashed curves are barely distinguishable. None of the other
observables show any dependence on the mass even after 3
blocking steps beyond the fairly small statistical errors of

the simulations, implying that the system indeed can be
considered critical in the mass.
The dependence of the matched values on the blocking

parameter � is similar to the pure gauge case. The ana-
logue of Fig. 4 is Fig. 9. Since for 164 ! 84 matching only
two blocking levels can be used, one has only two sets of
predictions, nb ¼ 2ð1Þ and nb ¼ 3ð2Þ. In Sec. IVA, Table I
I found that one can safely identify the optimal blocking
parameter and matching value from the intersection of
these blocking levels even on 164 ! 84 matching.
Table II and Fig. 10 summarize the simulation results.

The step scaling function sbðs ¼ 2Þ is consistent with
asymptotic freedom and approaches the 2-loop perturba-
tive prediction at weak couplings. Just like in the pure
gauge system, the data in Table II could be used to deter-
mine the running coupling of the 4-flavor model. To do so
one needs to calculate a renormalized coupling at � ¼ 8:0
and connect it through perturbation theory to a continuum
scheme. The change of the lattice scale between � ¼ 5:4
and � ¼ 8:0 can be determined form the data, while the
lattice spacing can be obtained by measuring a physical
quantity at some strong coupling. Improved block trans-
formation or larger volumes would allow a more precise
determination of sbð�Þ. Higher statistics especially at the
larger � values, would also help.

FIG. 8 (color online). Matching of the plaquette in the Nf¼4
model. The blue and red symbols show the plaquette value after
2 and 3 blocking steps on the 164 volumes at �¼6:0, m¼0:01.
The lines interpolate the plaquette on the 84 volumes at several
couplings and m¼0:015 (dashed) and m¼0:025 (dotted) after 1
and 2 blocking levels. The black line is the unblocked plaquette
on the 84 lattices. The dashed and dotted curves are barely distin-
guishable.

FIG. 9 (color online). Matching at � ¼ 6:0 from 164 to 84

lattices in the Nf ¼ 4 model. The matching values �� as the

function of the blocking parameter for the last 2 blocking levels
are shown. Note that the error bars denote the spread of the
predictions for the 5 different operators used and thus represent
systematical errors.

TABLE II. The bare step scaling function sbðs ¼ 2Þ for the 4-
flavor simulation. The second column lists the optimal blocking
parameter �.

�16 �opt sbðs ¼ 2Þ
5.4 0.81 0.388(10)

5.6 0.81 0.330(13)

5.8 0.77 0.335(20)

6.0 0.76 0.303(25)

6.4 0.67 0.400(29)

6.8 0.67 0.365(42)

7.2 0.63 0.404(39)

8.0 0.59 0.470(53)
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C. Nf ¼ 16 flavor model

The 16 flavor SU(3) model is still asymptotically free,
but 2-loop perturbation theory predicts the emergence of an
IRFP at weak gauge coupling [26]. Continuum limits can
be defined both at the Gaussian FP and at the new IRFP. In
the former case both the gauge coupling and the mass has
to be tuned towards the FP, in the latter one the gauge
coupling is irrelevant, only the mass has to be tuned tom ¼
0. There is no confinement or spontaneous chiral symmetry
breaking in the weak coupling phase, the continuum mass-
less theory at the IRFP is conformal. The conformal phase
was first identified in Ref. [46].

It is generally believed that in the strong coupling the
lattice model is confining and chirally broken, so there has
to be a (bulk) transition separating the strong and weak
coupling phases. Since the bulk transition is a lattice
artifact, it is probably not associated with critical behavior
or continuum quantum field theory. Most likely it is a first
order phase transition atm ¼ 0 and it might extend tom>
0 before turning into a crossover [31,47]. One should
mention that some numerical results indicate that this
confining phase might not even exist [48].

1. MCRG around an infrared fixed point

Assuming that the simulations are done in the conformal
phase, the behavior we expect from MCRG depends on
whether we study the critical (m ¼ 0) or them � 0 phases:

(i) On the m ¼ 0 critical surface at very weak coupling
the system is in the attractive region of the Gaussian
FP. 2-lattice matching could reveal the running of the

gauge coupling, s
ðpertÞ
b ¼ 0:016 from the 1-loop �

function, though numerical simulations probably
will not be close enough to the Gaussian FP to see
this behavior. It is much more likely that the RG flow
will be determined by the Banks-Zaks IRFP. At this
FP all operators are irrelevant when m ¼ 0. The 2-
lattice matching is designed to map out the flow
speed in the relevant direction, so we have to reeval-
uate the method when there is no relevant operator.
When all operators are irrelevant, they all flow into
the FP according to their scaling dimensions. In the
nb ! 1 limit all expectation values approach their
FP value independent of the bare couplings, so
matching is meaningless. At finite nb the RG flow
can pick up the ‘‘least irrelevant’’ operator. If there is
one operator with a nearly zero scaling dimension
matching can make sense: after a few RG steps all
other operators are already in the FP, so the flow line
follows that single operator. According to Eq. (5) the
scaling exponent of the gauge coupling for the Nf ¼
16 flavor theory at the Banks-Zaks FP is small, 
g ¼
�0:01, it is almost a marginal operator. The scaling
exponents of the other irrelevant operators are likely
close to their engineering dimensions, starting at

 � �2, so these operators will die out much faster
than the gauge coupling.
The picture we expect in the 2-lattice matching is
now clear. Since the gauge coupling is nearly mar-
ginal, the matching will follow its flow. sbð�Þ is
given by Eq. (7) and for a marginal operator sbð�Þ ¼
0 near the FP. For an almost marginal operator�� ¼
�� �0 can be either positive or negative, depending
on whether the FP of the actual RG transformation is
at smaller or larger gauge coupling.
The evolution of the blocked operators can also
signal the IRFP. As the RG flow approaches the
IRFP all expectation values approach their IRFP
value. On the other hand if the GFP controls the
system the flow lines follow the RT and run into
the trivial � ¼ 0 FP where all local expectation
values vanish. This difference is one of the strongest
signal for the existence of an IRFP in the MCRG
method.

(ii) At finite mass the RG transformation is dominated
by the flow of the relevant mass operator. However
the nearly marginal gauge coupling can still have a
strong influence on the flow, the situation is more
like matching 2 relevant operators than matching a
single one. The easiest way to deal with this is to set
the gauge coupling to its FP value (i.e. to the value
that corresponds to the IRFP of the RG transforma-
tion used) and match in the mass only. This matching
predicts the scaling dimension (or critical exponent)
of the mass. While the IRFP of the RG transforma-
tion depends on the blocking parameter, the expo-

FIG. 10 (color online). The bare step scaling function for 4
flavor SU(3) theory. The dashed line indicates the 1-loop per-
turbative value.
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nent itself is independent of both � and the gauge
coupling �.

2. Numerical simulations and results

I concentrate on the renormalization group properties of
the model in the massless limit and show only preliminary
results at finite mass. I did 2-lattice matching on 164 ! 84

lattices using nHYP smeared staggered fermions [43], and
as in the Nf ¼ 4 case, the simulations were done with a

small mass, m ¼ 0:01 on the 164 and m ¼ 0:02 on the 84

lattices. I have collected 100–150 configurations on the
larger volumes,�200 on the smaller ones, separated by 10
molecular dynamics steps.

On the 84 lattices I covered the coupling range � 2
ð2:4; 8Þ, trying to identify the bulk transition to the strong
coupling phase. The data show no sign of a phase transi-
tion, though for �< 4:0 the condensate starts increasing
slowly, suggesting the development of spontaneous chiral
symmetry breaking. It is likely that the bulk transition
exists only at very small, possibly vanishing, mass. This
does not contradict the results of Ref. [47] where a strong
first order bulk transition was observed with Nf ¼ 16

fermions. As we learned from the finite temperature inves-
tigation with Nf ¼ 4 flavors in Sec. IVB 1, smearing the

fermionic action can soften or wash away first order phase
transitions, and that might be the situation here as well.

Just like in the Nf ¼ 4 case the mass dependence of the

measured operators is weak for small m. Figure 11 shows
the plaquette blocked 1 and 2 times on the 84 configura-
tions at � ¼ 5:8 at different masses. The solid lines are
simple spline extrapolations. Within errors there is no mass
dependence up to about m � 0:05 for the plaquette. Other
observables are similar, so for the MCRG matching the
m ¼ 0:01–0:02 data set can be considered critical in the
mass.

Figure 12 is the analogue of Figs. 2 and 8, showing the
matching of the plaquette. The data points are at � ¼ 5:6
on 164 lattices after 2 and 3 levels of blocking. They are
compared to the 1 and 2 times blocked values as measured
on the 84 lattices. The block transformation is with pa-
rameter � ¼ 0:78, optimal for � ¼ 5:6 and matching is
consistent for both blocking levels with �� ¼ 0.

From the matching value alone it is not possible to
distinguish a marginally relevant flow (like at the GFP)
from an almost marginal irrelevant flow (expected at the
IRFP). Comparing Fig. 12 to the Nf ¼ 4 or pure gauge

Figs. 2 and 8 reveals an important difference. When the
flow is governed by the GFP the flow lines follow the RT
towards the trivial � ¼ 0 FP. In the nb ! 1 limit all
expectation values vanish. In Figs. 2 and 8 the plaquette
indeed decreases with increasing blocking levels. On the
other hand when the flow lines approach an IRFP all
expectation values take the value at the FP. The plaquette
in Fig. 12 increases with increasing blocking steps for � 	
5:4, indicating that the flow lines are not running towards

FIG. 11 (color online). The dependence of the plaquette on the
mass after 1 (red diamonds and solid line) and 2 (blue diamonds
and solid line) blocking steps on 84 volumes at � ¼ 5:8. The
bursts at m ¼ 0:15 show the plaquette after 2 and 3 blocking
steps starting form 164 volumes at the same � value. The dashed
lines indicate matching in the mass. The blocking parameter is
� ¼ 0:75, close to the optimal value at � ¼ 5:8.

FIG. 12 (color online). The matching of the plaquette for Nf ¼
16 flavor. The individual data points are at � ¼ 5:6 on 164

lattices after 2 and 3 levels of blocking. They are compared to
the 1 and 2 times blocked values as measured on the 84 lattices
(solid lines). The matching values �� � 0 indicate a nearly
marginal flow. Note that the plaquette increases with nb implying
that the RG flow is to an IRFP and not the � ¼ 0 trivial FP.
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the � ¼ 0 FP. Eventually all expectation values should
become independent of the blocking steps and �. This
trend is not obvious from the figure for two main reasons.
The first is that finite volume effects are considerable on 24

lattices, the second that with only 2 or 3 blocking steps one
approaches the FP only if the RG transformation is opti-
mized. Nevertheless the fact that with optimal blocking the
blocked operators increase with nb already signals that the
flow runs toward an IRFP.

Other operators show similar behavior at � 	 5:6 but
the results are quite different at stronger gauge couplings.
Figure 12 shows that the blocked plaquette values cross
around � ¼ 5:4 and they decreases with nb for �< 5:4.
The location of the crossing depends on the blocking
parameter but for the Nf ¼ 16 flavor model it never drops

below � ¼ 5:4. It appears that the flow is running towards
the � ¼ 0 FP when�< 5:4 and to the IRFP when �>5:4.

The 2-lattice matching is also different below and above
� ¼ 5:4. Figure 13 shows �� as the function of the block-
ing parameter � for � ¼ 5:4 and � ¼ 6:6. This figure is
the analogue of Fig. 4. As the left panel of Fig. 13 shows
the nb ¼ 2ð1Þ and 3(2) blocking levels get close but do not
actually converge at � ¼ 5:4, there is no consistent match-
ing. The situation is similar, even more enhanced, at
stronger couplings. I have not observed this kind of behav-
ior either with Nf ¼ 0 or 4, though I had simulations at

even stronger couplings there. While it is possible that
higher blocking levels would predict matching and the
expectation values eventually approach their FP value, it
is more likely that we see the effect of a nearby bulk
transition and the strong coupling confining region beyond
it. Apparently � � 5:4 is not governed by the IRFP. The

situation is entirely different at � ¼ 6:6 where predictions
from the two different blocking levels converge around
� ¼ 0:675 predicting �� ¼ �0:022ð44Þ (right panel of
Fig. 13). Results are similar at other �> 5:4 couplings,
as summarized in Table III. The optimal block transforma-
tion predicts �� � 0 for all coupling values, in agreement
with the expectations, i.e. that the RG flows are governed
by an almost marginal operator. Combining this with the
observation that with optimal blocking parameter the ex-
pectation values of the blocked operators increase leads to
the conclusion that the � 2 ð5:6; 6:6Þ coupling range in the
massless limit is governed by an IRFP.
The mass is a relevant operator at this IRFP, therefore it

should scale according to Eq. (8) under an s ¼ 2 RG
transformation. One can calculate the exponent ym by
identifying matched ðm1; m2Þ mass values. The gauge cou-
pling is irrelevant, any � in the attractive basin of the IRFP
could be chosen for this. Since the gauge coupling is nearly
marginal it is best to use the same coupling at both mass
values. For matching one can use the same operators as
before or add others that are more sensitive to the fermions.

FIG. 13 (color online). Matching at � ¼ 5:4 (left panel) and � ¼ 6:6 (right panel) from 164 to 84 lattices in the Nf ¼ 16 flavor
theory.

TABLE III. The parameters and MCRG results of the Nf ¼ 16
flavor simulations. The second column lists the optimal blocking
parameter �.

�16 �opt sbðs ¼ 2Þ
5.4 none

5.6 0.78 0.00(3)

5.8 0.78 �0:12ð4Þ
6.2 0.66 0.09(5)

6.6 0.67 �0:02ð4Þ
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I believe that direct fermionic observables would allow
more precise matching at smaller quark masses, but as
Fig. 11 illustrates the gauge observables also work. In
fact Fig. 11 already shows a matched mass pair. At � ¼
5:8 with � ¼ 0:75 RG transformation the m1 ¼ 0:15 mass
on the 164 configurations match m2 ¼ 0:318ð6Þ on the 84

configurations after 2(1) blocking steps, while the match-
ing mass is m2 ¼ 0:297ð10Þ after 3(2) blocking steps.
These values are for the plaquette but other observables
give similar values, predictingm2 ¼ 0:31ð3Þ at the optimal
� ¼ 0:75 parameter. I have preliminary data at � ¼ 5:8
and 6.6 at a couple of mass values. The matching ðm1; m2Þ
pairs are listed in Table IV. The fit according to Eq. (8)
predicts ym ¼ 1:02ð7Þ as shown in Fig. 14 The scaling
dimension of the mass is very close, within errors undis-
tinguishable, form it engineering dimension. This is not
unexpected as the IRFP is at weak coupling. In a recent
publication ym ¼ 1:5 was predicted for sextet fermions
[49]. It would be interesting to study the sextet model, or
the Nf ¼ 12 model, where the ym might be significantly

different from 1.

V. CONCLUSION

Renormalization group methods have been designed to
study the critical behavior of statistical systems. In this
paper I have shown that they are equally suitable to study
the renormalization group structure of quantum field theo-
ries. I have used a numerical Monte Carlo renormalization
group method to calculate the step scaling function and
critical exponent of SU(3) gauge theories with Nf ¼ 0, 4

and 16 flavors. I chose these fairly well understood systems
as my goal was to test the method before using it in more
relevant simulations. The paper is fairly pedagogical, ex-
plaining in detail the 2-lattice matching MCRG method.
In the Nf ¼ 0 case I demonstrated that the bare step

scaling function predicted by the 2-lattice matching
method is consistent with the more traditional
Schrodinger functional results. It is also consistent with
results obtained from the scaling of the r0 parameter and
the finite temperature phase transition even at strong gauge
coupling, suggesting scaling, though not 2-loop perturba-
tive scaling there.
The Nf ¼ 4 and 16 flavor simulations were done using

nHYP smeared staggered fermions. I chose nHYP smear-
ing because its highly improved taste symmetry. In the
Nf ¼ 4 flavor case I briefly studied the finite temperature

phase transition to develop a feel for the parameters of the
model. I calculated the step scaling function at vanishing
quark mass and showed that the 2-lattice method works
equally well in the fermionic system.
The Nf ¼ 16 flavor model brings in new challenges as

it is governed by an infrared fixed point at finite gauge
coupling. At this IRFP the scaling dimension of the
gauge coupling is small, it is an almost marginal opera-
tor. Accordingly the gauge coupling runs very slowly.
The measured step scaling function is consistent with
an almost marginal operator, but on its own it can-
not predict if the gauge coupling is relevant or irrelevant.
I argued that the evolution of blocked operators signal
if the RG flow is towards an IRFP or to the � ¼ 0 trivial
FP. For the Nf ¼ 16 model the flow clearly indicates an

IRFP.
Finally I presented preliminary measurements for the

scaling dimension of the mass. I found ym ¼ 1:02ð7Þ,
undistinguishable from the free field exponent. This is
not surprising for the Nf ¼ 16 theory.
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TABLE IV. Matched mass pairs in the Nf ¼ 16 system.

� �opt m1 m2

5.8 0.75 0.10 0.17(3)

5.8 0.75 0.15 0.31(2)

6.6 0.68 0.07 0.16(3)

6.6 0.68 0.10 0.20(4)

6.6 0.68 0.15 0.33(4)

FIG. 14 (color online). Matched ðm1; m2Þ pairs in the Nf ¼ 16
system. Red diamond: � ¼ 5:8, blue bursts: � ¼ 6:6. The linear
fit predicts ym ¼ 1:02ð7Þ.
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