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An accurate low-energy dispersive parametrization of the scalar K� form factor was constructed some

time ago in terms of a single parameter guided by the Callan-Treiman low-energy theorem. A similar

twice-subtracted dispersive parametrization for the vector K� form factor will be investigated here. The

robustness of the parametrization of these two form factors will be studied in great detail. In particular the

cutoff dependence, the isospin breaking effects, and the possible, though not highly probable, presence of

zeros in the form factors will be discussed. Interesting constraints in the latter case will be obtained from

the soft-kaon analog of the Callan-Treiman theorem and a comparison with the recent � ! K��� data.
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I. INTRODUCTION

Experimental information on the shape of the strange-
ness changing scalar f0ðtÞ and vector fþðtÞ form factors in
the low-energy region can be obtained from the study of
K‘3 decays. f0ðtÞ and fþðtÞ indeed enter the differential
decay rates of these semileptonic processes. In the expres-
sion of these decay rates f0ðtÞ is multiplied by a kinematic
factor ðm‘=mKÞ2 with m‘ and mK the lepton and the kaon
mass, respectively. This factor being of the order 10�6 for
the electron, only the muon mode is, in fact, sensitive to the
scalar form factor which is thus harder to determine.
Different collaborations, namely, ISTRA [1], KLOE
[2,3], KTeV [4,5], and NA48 [6,7] have measured these
kaon decays. In the analysis of their data, they parametrize
the two form factors in terms of some free parameters. The
actual number of parameters which can be determined
from a fit to the data are, due to strong correlations between
them, at most two for the vector form factor and one for the
scalar one. Thus quadratic, pole, and more recently, pa-
rametrizations based on conformal mapping (denoted z
parametrization) have been used for fþðtÞ while, until
recently, f0ðtÞ was described in terms of a linear and a
pole one [8]. While the pole parametrization gives compa-
rable results for fþðtÞ in the different experiments, the
situation for f0ðtÞ was much more confused. The slope of
the normalized scalar form factor, �f0ðtÞ, varied typically
between 9� 10�3 and 15� 10�3 depending on the experi-
ments [9]. Note that the slope determined in this way can
only be an upper limit of the true mathematical slope
d �f0ðtÞ=dtjt¼0 as calculated, for example, within chiral
perturbation theory [10,11]. Therefore it seemed appropri-
ate, in particular, in the case of the scalar form factor, to

develop another parametrization which is as model inde-
pendent as possible, involves only one parameter and
determines the higher order terms in the series’ expansion
on physical ground. An accurate dispersive representation
has been constructed in Ref. [12] which fulfills all these
properties. Two classes of parametrizations can hence be
distinguished depending on whether or not physical infor-
mation is used. In the first class one finds, for example, the
pole one for the vector form factor and this dispersive
parametrization for the scalar form factor and in the second
one the linear and the quadratic parametrizations. Strictly
speaking the z parametrization enters also this latter class.
However, in Ref. [13] it was shown that under certain
conditions it is possible to impose a bound on the sum of
the expansion coefficients based on unitarity and the total
rate of � ! K��� [14].
While the main aim of these K‘3 experiments was to

extract the Cabbibo-Kobayashi-Maskawa matrix element
Vus the dispersive parametrization of �f0 provides another
test of the standard model (SM) through the measurement
of the only unknown parameter lnC, withC the value of the
scalar form factor at the Callan-Treiman (CT) point. This
was in fact the original idea behind writing such a disper-
sive parametrization. It has first been used by the NA48
collaboration leading to a rather small slope for �f0 and a
4:5� deviation to the SM [7]. Unfortunately the situation is
still unclear for the scalar form factor; recent determina-
tions of lnC from KLOE [3] and KTeV [16] lead to no or
slight discrepancy with the SM. Because of the importance
of such a measurement it is very important to discuss in
more detail the robustness of this dispersive parametriza-
tion. This is the main aim of this paper together with the
investigation of a similar parametrization for the vector
form factor improving on the pole parametrization.
After introducing basic notations and properties in

Sec. II we will briefly review in Sec. III the dispersive
parametrization for the scalar form factor. We will then
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describe an analogous parametrization for the vector form
factor. In Sec. IV wewill investigate the robustness of these
parametrizations for both the scalar and the vector form
factors. We will discuss the uncertainties due to the input
parameters as well as the expected size of isospin breaking
effects. In the dispersive parametrization the hypothesis of
the absence of zeros has been made. This is usually
assumed in studies of form factors since it is the most
likely situation. In Sec. IV we will question this hypothesis
and, in particular, we will study the presence of possible
real or complex zeros in the form factors and the impact of
these zeros on the value of lnC. Even if the likelihood of
such a scenario is small its study is required by the par-
ticular importance of an unambiguous test of the SM. The
possibility of discarding zeros in the form factors from
some properties of the scalar form factor as well as from a
comparison with high-energy data from � decays will be
discussed in detail. We will conclude in Sec. V and finally
present some useful expressions to simplify the use of the
dispersive parametrization in the data analysis in the
appendix.

II. BASIC DEFINITIONS AND PROPERTIES

The hadronic matrix element describing K‘3 decays is
written in terms of two form factors fK�þ ðtÞ and fK�� ðtÞ,

h�ðp�Þj�s��ujKðpKÞi ¼ ðp� þ pKÞ�fK�þ ðtÞ
þ ðpK � p�Þ�fK�� ðtÞ; (2.1)

where t ¼ ðpK � p�Þ2. The vector form factor fK�þ ðtÞ
represents the p wave projection of the crossed channel
matrix element h0j�s��ujK�i, whereas the s wave projec-
tion is described by the scalar form factor defined as

f0ðtÞ ¼ fK�þ ðtÞ þ t

m2
K �m2

�

fK�� ðtÞ: (2.2)

In the following discussion we will consider the normal-
ized form factors

�f0ðtÞ ¼ f0ðtÞ
fþð0Þ and �fþðtÞ ¼ fþðtÞ

fþð0Þ ; (2.3)

with �f0ð0Þ ¼ �fþð0Þ ¼ 1, and try to describe their shape as
precisely as possible in the physical region of K‘3 decays,
m2

‘ � t � t0 ¼ ðmK �m�Þ2, with m� the pion mass. It is

shown in Fig. 1 together with the right-hand cut from K�

scattering which starts at tK� ¼ ðmK þm�Þ2 as well as the
CT point �K� ¼ m2

K �m2
� whose value is about twice as

large as t0. This point is of special interest in the case of the
scalar form factor. Indeed, the Callan-Treiman low-energy
theorem [17] predicts its value in the SUð2Þ chiral limit
(where the quark masses mu;d vanish) at that particular

point. As we will see, this is of great importance in testing
the SM. For physical quark masses, one has

C � �f0ð�K�Þ ¼ FKþ

F�þ

1

fK
0��

þ ð0Þ þ �CT; (2.4)

where FKþ;�þ are the charged kaon and pion decay con-

stants, respectively, and �CT is a correction of
Oðmu;d=4�F�Þ [18]. It has been estimated within chiral

perturbation theory at next-to-leading order in the isospin
limit [19] with the result

�NLO
CT ¼ ð�3:5� 8Þ � 10�3: (2.5)

The error is a conservative estimate assuming typical size
corrections of Oðmu;dÞ and OðmsÞ [20] for the higher

orders. It should certainly hold for the neutral kaon decays
which we are mainly interested in at present. Indeed, no
large corrections to this estimate are expected due to the
absence of �0 � � mixing in the final state which could
lead to small energy denominators. Equation (2.5) is con-
sistent with the values obtained recently (see
Refs. [11,21,22]). The quantities entering the expression
of C, Eq. (2.4), are in principle completely determined
within QCD. Except for�CT, they are studied within lattice
QCD (see Ref. [23] for a recent overview of the situation).
However, the actual most precise determinations of these
quantities are obtained from semileptonic decays.
Consequently, they depend on the assumption made for
the electroweak couplings of quarks. Assuming the SM
couplings, one can extract the quantity

Bexp ¼
��������
FKþVus

F�þVud

��������
1

jfK0�þ
þ ð0ÞVusj

jVudj; (2.6)

using experimental information on the ratio �Kþ
‘2ð�Þ

=��þ
‘2ð�Þ

,

the decay K0 ! ��e�e [24], and 0þ ! 0þ transitions in
nuclei [25]. These determine, respectively, the first ratio,
the second one, and jVudj in Eq. (2.6) with high precision
and lead to

Bexp ¼ 1:2418� 0:0039: (2.7)

FIG. 1. Different energy scales involved in the analysis of the scalar and vector form factors: the physical region of K‘3 decays lies
between the lepton mass squared m2

‘ and t0 ¼ ðmK �m�Þ2, �K� ¼ m2
K �m2

� denotes the CT point and the right-hand cut from K�
scattering starts at tK� ¼ ðmK þm�Þ2. For the numerical values, mKþ and m�0 have been used.
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Interestingly, the knowledge of Vus is unnecessary for
determining Bexp. Equation (2.4) then becomes

lnCjSM ¼ lnBexp þ �CT=Bexp

¼ 0:2166� 0:0034

þ ð�0:0035� 0:0080Þ=ð1:2418� 0:0039Þ
¼ 0:2138� 0:0073; (2.8)

where in the last line all the errors have been added in
quadrature. Note that the error on lnCjSM is rather small.
Hence a precise measurement of lnC in neutral K�3 decays

should allow for a test of the SM electroweak couplings by
comparing the obtained value with the one from Eq. (2.8).
However, the Callan-Treiman point is unreachable by a
direct measurement of this decay, its value being much
larger than the end point value of the physical region (see
Fig. 1). For this reason a dispersive representation of the
scalar form factor written in terms of lnC as the only free
parameter has been introduced in Ref. [12].

III. DISPERSIVE PARAMETRIZATION

Let us first briefly review this dispersive parametrization
of the scalar form factor based on an Omnès representation
[26] (see also Ref. [27] for an early application). We will
then introduce a similar representation to accurately de-
scribe the vector form factor in the low-energy region.

A. Scalar form factor

The dispersive representation of the scalar form factor
introduced in Ref. [12] follows previous attempts to deter-
mine the form factor in the physical region. In Ref. [28] a
coupled channel approach was used with only one sub-
traction in the dispersion relation. The main aim of
Ref. [12] was to stay as model independent as possible.
Therefore a second subtraction has been made in order to
minimize the bad knowledge of the high-energy region in
the dispersive integral. Using the two points t ¼ 0 (where
by definition, �f0ðtÞ � 1) and the Callan-Treiman point
�K� as subtraction points leads to

�f0ðtÞ ¼ exp

�
t

�K�

ðlnC�GðtÞÞ
�
; (3.1)

with

GðtÞ ¼ �K�ð�K� � tÞ
�

Z 1

tK�

ds

s

�0ðsÞ
ðs� �K�Þðs� t� i	Þ :

(3.2)

Here,�0ðsÞ is the phase of �f0ðsÞ. In writing Eq. (3.1), it has
been assumed that �f0ðtÞ has no zeros. Wewill come back to
this point in Sec. IV. In what follows, GðtÞ is decomposed
as

GðtÞ ¼ GK�ð�S; tÞ þGasð�S; tÞ � 
GðtÞ; (3.3)

where the first term corresponds to an integration from the
threshold tK� up to a cutoff �S, which characterizes the
end of the elastic region while in the second term the
integration runs from �S to 1. The choice of the value
of �S will be discussed later (see Sec. IV). In the elastic or
low-energy region (tK� < s <�S) the phase is identified
with the s wave, I ¼ 1=2 K� scattering phase, 
0, accord-
ing to Watson’s theorem [29]. In the analysis of Ref. [12],

0 (with its uncertainty) has been taken from Ref. [30].
There a matching of the solution of the Roy-Steiner equa-
tions with the K� ! K�, �� ! K �K, and �� ! ��
scattering data available at higher energies has been per-
formed. The phase obtained in this way is in very good
agreement with the work of Ref. [28], (see below). In the
inelastic or high-energy region (s >�S), the phase is al-
most unknown. Perturbative QCD indicates [31] that �f0ðtÞ
vanishes as Oð1=tÞ for large negative t. Thus from
Eq. (3.2), we conclude that the phase must approach �
asymptotically. In Ref. [12], the phase has been taken
constant and equal to its asymptotic value of � for s >
�S and an uncertainty of �� has been assumed. Note that
this uncertainty is a rather conservative estimate leading to
a large band going from 0 to 2�. However, due to the two
subtractions GðtÞ converges rapidly, hence GðtÞ is almost
insensitive to the high energy behavior of the phase, cf.
Sec. IV, and the large uncertainty on the phase at high
energy turns into a small uncertainty on GðtÞ. For example,
Gð0Þ, which has the largest error, is given for �S ¼
2:77 GeV2 by

Gð0Þ ¼ 0:0398� 0:0018� 0:0036� 0:0017; (3.4)

where the first and second error correspond to the error on
GK�=Gas, respectively, and the third error comes from the
study of isospin breaking. We will come back to the
uncertainties on GðtÞ in detail in Sec. IV.
The only free parameter, lnC, in Eq. (3.1) could, in

principle, be determined from the sum rule

lnC ¼ Gð�1Þ � �K�

�

Z 1

t�K

ds

s

�0ðsÞ
ðs� �K�Þ ; (3.5)

dictated by the asymptotic behavior of �f0ðtÞ, cf. Ref. [31].
However, this sum rule, which exhibits one less subtraction
than GðtÞ, Eq. (3.2), is not precise enough to allow to
determine lnC with a good accuracy without adding any
information on the high energy behavior of the phase of the
form factor. We will come back to the discussion of this
sum rule later. Thus, lnC is a free parameter which can be
determined from experiment by fitting the K�3 decay

distribution with the dispersive formula for �f0ðtÞ,
Eq. (3.1). For more details on the dispersive representation
of the scalar form factor, see Ref. [12].

B. Vector form factor

The description of the vector form factor [32] has known
a renewal of interest in connection with the recent precise
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measurements of the differential spectrum of the � !
��K� decay by Belle [33] and BABAR [34]. Form factors
have been obtained in the framework of resonance chiral
theory with additional constraints from dispersion relations
in Refs. [35,36]. In Ref. [37], a coupled channel analysis
has been performed taking into account, through analytic-
ity requirements, the experimental information on elastic
and inelastic K� scattering from the LASS Collaboration.
All these studies impose constraints from short distance
QCD as well as the value of the vector form factor at zero
momentum transfer. A fit to the � data allows them to
determine completely the shape of the form factor and
thus to deduce a value for the slope and the curvature
which compares reasonably well with the recent K‘3 ex-
periments. In these works, the emphasis is put on the
energy region of the � decay and they are thus best suited
for it. Here our aim is somewhat different: we want to have
a very precise parametrization of the form factor at low
energy improving on the pole parametrization usually
assumed in the K‘3 analysis

�fþðtÞ ¼ M2
V

M2
V � t

; (3.6)

which expresses the vector form factor completely in terms
of a resonance described as a discrete pole at

ffiffi
t

p ¼ MV .
This parametrization is physically motivated by the domi-
nance of the K�ð892Þ resonance in the vector channel. We
will add to our knowledge of the presence of this reso-
nance, the properties of analyticity, and a proper behavior
of the phase at threshold. Contrary to the analysis discussed
previously, we will not be able to determine the slope of the
vector form factor but it will be a free parameter to be
determined from a fit to the K‘3 data. This will allow us,
using a twice-subtracted dispersion relation as in the scalar
case, to minimize the effect of the high energy region in the
dispersive integral over the phase of the form factor.

In the case of the vector form factor, the value of �fþðtÞ at
t ¼ 0 is known [see Eq. (2.3)], but there is no equivalence
of the low-energy theorem of Callan and Treiman,
Eq. (2.4). Thus a dispersion relation for ln �fþðtÞ, this time
twice subtracted at zero, will be written. Defining
jd �fþðtÞ=dtjt¼0 � �þ=m2

� and assuming again that the
form factor has no zero, this will be discussed in Sec. IV,
one has

�fþðtÞ ¼ exp

�
t

m2
�

ð�þ þHðtÞÞ
�
; (3.7)

where

HðtÞ ¼ m2
�t

�

Z 1

tK�

ds

s2
�1ðsÞ

ðs� t� i	Þ ; (3.8)

with �1ðsÞ being the phase of �fþðsÞ. At sufficiently low
energies, in the elastic region,�1ðsÞ is given by the pwave,

I ¼ 1=2 K� scattering phase, 
l¼1;I¼1=2
K� ðsÞ � 
1ðsÞ. A de-

tailed partial-wave analysis of K� ! K� scattering in the

energy range s0 � ð0:825 GeVÞ2 � s � ð2:5 GeVÞ2 has
been performed in Ref. [30] based on high statistics pro-
duction experiments. In order to reliably evaluate the dis-
persion integral, Eq. (3.8), an accurate extrapolation of the
scattering phase down to threshold is needed. Contrary to
the s wave case, the Roy-Steiner equations are not really
useful for providing such an extrapolation due to the lack
of relevant experimental results. However, the well-known
method due to Gounaris and Sakurai [38] can be used to
directly construct a partial-wave amplitude which is uni-
tary, has the correct threshold behavior, the correct analy-
ticity properties (neglecting the left-hand cut), and
reproduces the position and width of the K�ð892Þ as given
by the Particle Data Group (PDG) [39]. It is most suited to
use the inverse amplitude method. Defining the function
DðsÞ via the T matrix as

T ¼ q2K�ðsÞ
DðsÞ ; (3.9)

allows to determine its discontinuity

ImDðsÞ ¼ �2
q3K�ffiffiffi
s

p : (3.10)

Hence, one can write a dispersive representation for 1=T
leading to

DðsÞ ¼ �2q2K�ðsÞ
s

�

Z 1

tK�

dx

x

qK�ðxÞffiffiffi
x

p 1

x� s
þ PðsÞ

(3.11)

with PðsÞ being a subtraction polynomial. In the previous
equations, we have used the standard notations,

s ¼ ðpK þ p�Þ2;

qK�ðsÞ ¼ ððs� ðmK þm�Þ2Þðs� ðmK �m�Þ2ÞÞ1=2
2

ffiffiffi
s

p ;

(3.12)

where qK� is the absolute value of the three-momenta in
theK� center of mass frame. Thus theK� scattering phase
is given by

q3K�ðsÞffiffiffi
s

p ctgð
1ðsÞÞ ¼ q2K�ðsÞhðsÞ þ
PðsÞ
2

; (3.13)

with

hðsÞ ¼ � s

�
P
Z 1

tK�

dx

x

qK�ðxÞffiffiffi
x

p 1

x� s
: (3.14)

A minimal choice will be done here for PðsÞ, namely,

PðsÞ ¼ aþ bs; (3.15)

since it already gives a very good description of the phase
in the vicinity of the resonance K�ð892Þ and down to
threshold. We will consider the impact of a higher order
polynomial in Sec IV. The constants a and b are deter-
mined from the mass and the width of the K�ð892Þ char-
acterized as
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ctg ð
1ðsÞÞjs¼M2
K�

¼ 0; (3.16)

and

d
1ðsÞ
ds

��������s¼M2
K�
¼ 1

MK��K�
: (3.17)

Note that there exists in the literature another definition of
mass and width in terms of the position of the pole in the
complex plane. The latter is process independent. The
uncertainties coming from the inputs used for MK� and
�K� will be discussed in Sec. IV. Another possibility would
be to determine a and b from a direct fit to the data [40].
This would, however, lead to a function HðtÞ lying within
the error bars discussed below. We checked that the phase
constructed in this way with no free parameters leads to
values of the p wave scattering length, a1 ¼ 0:0183m�3

� ,
agreeing with other determinations [30,41,42].

In p wave scattering, inelasticity effects which imply
�1ðsÞ � 
1ðsÞ become important at lower energies than in
the scalar case, the mass of the vector resonance K�ð1414Þ
being an indication of the start of the inelasticity. At high
energy, following the same arguments on the asymptotic
behavior as for the scalar case, the phase will reach its
asymptotic value, �. Therefore, similarly to what has been
done for GðtÞ, the function HðtÞ, Eq. (3.8), is decomposed
into two parts:

HðtÞ ¼ HK�ð�V; tÞ þHasð�V; tÞ � 
HðtÞ; (3.18)

with

HK�ð�V; tÞ ¼ m2
�t

�

Z s0

tK�


1ðt0Þ
t02ðt0 � tÞdt

0

þm2
�t

�

Z �V

s0


expðt0Þ
t02ðt0 � tÞ dt

0; (3.19)

and

Hasð�V; tÞ ¼ m2
�t

�

Z 1

�V

�

t02ðt0 � tÞdt
0

¼ �m2
�

t
ln

�
1� t

�V

�
�m2

�

�V

: (3.20)

In these equations,�V denotes the end of the elastic region.
In what follows, we will use �V ¼ ð1:414Þ2 GeV2 and we
will discuss other values for �V in Sec. IV. In Eq. (3.19),
the analytic formula for the phase 
1, Eq. (3.13), is used
below s0. Above s0 and below �V the experimental points
of Aston et al. [40] are used to determine 
exp and to

evaluate the corresponding contribution to HðtÞ together
with its uncertainties. As in the scalar case, the asymptotic
contribution, Eq. (3.20), gives only a very small contribu-
tion to HðtÞ due to the two subtractions. For the error, we
will take a somewhat larger band than in the scalar case.
Indeed it was found in Ref. [37] that a fit to the � data
reproducing the rate RK� quoted by the PDG [39] and
compatible with asymptotic QCD, leads to a phase of the

vector form factor reaching 3� at infinity. Thus we will
take


Hasð�V; tÞ ¼ þ2Hasð�V; tÞ
�Hasð�V; tÞ ; (3.21)

corresponding to the assumption that above �V , �1ðsÞ ¼
�þ2��� . This recipe almost certainly overestimates the real
uncertainty. The other sources of uncertainty will be dis-
cussed in Sec. IV. Let us give here only as an indication the
value of H at t0, point in the physical region of K‘3 decay
where it has the largest error. For�V ¼ ð1:414 GeVÞ2, one
has

Hðt0Þ ¼ ð2:16� 0:04þ0:65
�0:33Þ � 10�3; (3.22)

where the first uncertainty is the one on HK� and the
second one the one on Has, Eq. (3.18). Note that as for
GðtÞ, even if the inelasticity sets in at lower energies, the
uncertainty on the value of Hasð�V; tÞ related to our poor
knowledge of �1ðsÞ for s >�V is small due to the two
subtractions performed this time at zero. The resulting
phase,�1ðtÞ, with its uncertainties (grey band) is displayed
in Fig. 2 using the charged K� mass, MK� ¼ 891:66 MeV,
and width �K� ¼ 50:8 MeV from PDG [39]. It is compared
with the phase obtained in Ref. [37] from two fits charac-
terized by a different value of the parameter aM (see
Ref. [37] for more details).
Finally, let us note that a sum rule comparable to

Eq. (3.5) is implied by the asymptotic behavior of the
form factor,

�þ ¼ �Hð�1Þ ¼ �m2
�

�

Z 1

tK�

ds
�1ðsÞ
s2

: (3.23)

1 2 3 4

t[GeV
2
]

0

our model

a
M

=-7 10
-3

a
M

=-7.5 10
-3

FIG. 2 (color online). Comparison of our model for the phase
of the vector form factor, Eq. (3.13), with the coupled channel
analysis of Ref. [37]. The grey band corresponds to the assump-
tion that above �V the phase equals �þ2��� (see text).
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IV. DISCUSSION OF ERRORS AND ASSUMPTIONS

The aim of the dispersive representation is to describe
the shape of the form factor in the physical region of K‘3

decays as precisely as possible and consequently to test the
SM through the value of the scalar form factor at the
Callan-Treiman point. In order to achieve this, it is man-
datory to have under control all the assumptions entering
the construction of the form factors as well as the deter-
mination of the errors. In the following, we will discuss the
choice of the cutoff, the dependence on the input parame-
ters, and the absence of zeros.

A. Cutoff dependence

As just discussed, two energy regions are distinguished
in the dispersive analysis of the K� form factors: the
elastic one at low energy which is very well under control,
and the inelastic one at higher energies which is of less
importance in the description of the form factors due to the
two subtractions in the dispersive representation. As ex-
plained before, in the latter region a rough estimate of the
phase is made, using �0ðtÞ ¼ �� � for the scalar form
factor and �1ðtÞ ¼ �þ2��� for the vector one. Let us first
discuss this approximation in a bit more detail.

In Fig. 3, we show the phase of the scalar form factor as
obtained from a once-subtracted dispersion relation by
Jamin et al. (Ref. [28]), as well as the phase of the K�
amplitude obtained by Büttiker et al. (Ref. [30]). As can be
seen, in the elastic region both phases agree as they should.
In the region where the inelasticity sets in both phases
decrease, even rather abruptly in the case of the phase of
the amplitude, and then start to grow again. This behavior
is well understood and has been explained in Refs. [43,44]
in the case of the scalar �� form factor. Even though the
central value of the phase discussed in Sec. III does not
have this property, the large uncertainty assigned to it takes

it into account. Unless the form factor has a zero at some
higher energy, as it will be discussed in the next section, no
other sharp drop of the phase is expected and the phase will
just in someway go to its asymptotic value� at very large t
as typically does the phase obtained by Jamin et al. in
Ref. [28]. Thus �0ðtÞ ¼ �� � certainly encompasses the
physical phase of the scalar form factor.
Another source of uncertainty comes from the fact that

the energies �S and �V where the inelasticity cannot be
neglected any more are not very well known. For the s
wave, �S was chosen in Ref. [12] as the energy where the
phase of the amplitude is experimentally found to be differ-
ent from the phase of the S matrix, namely, at s ¼
ð1:66 GeVÞ2 as shown in Fig. 3. In the case of the vector
form factor, the K�ð1414Þ resonance can be seen as an
indication of the end of the elastic region. We want to
investigate here how sensitive GðtÞ and HðtÞ are to varia-
tions of the cutoffs �S and �V within reasonable bounds.
We will concentrate on GðtÞ; an analogous study on HðtÞ
leads to similar conclusions. In Fig. 4, the bands represent
the possible values of Gð0Þ, Eq. (3.2), and of Gð�1Þ,
Eq.(3.5), asa functionof the cut off whereGð0Þ has the larg-
est uncertainty in the whole physical region of K‘3 decays.
For the s wave a reasonable range of values for �S is

ð1:43 GeVÞ2 <�S < ð1:66 GeVÞ2 where the lowest value
is determined by the K�ð1430Þ resonance. Within these
limits Gminð0Þ varies between 0.0331 and 0.0354 and
Gmaxð0Þ between 0.0474 and 0.0442 while Gminð�1Þ
varies between 0.1227 and 0.1495 and Gmaxð�1Þ between
0.3599 and 0.3234 where Gmax=minðtÞ ¼ GðtÞ � 
GðtÞ and
the plus sign corresponds to the maximum value. Hence
although each part of the integral naturally depends on the
exact cutoff value, the sum is clearly less sensitive on the
exact position of �S. We obtain, for instance, Gð0Þ ¼
0:0336þ 0:0067 ¼ 0:0403 for �S ¼ ð1:43 GeVÞ2 and
Gð0Þ ¼ 0:0362þ 0:0036 ¼ 0:0398 for �S¼ð1:66GeVÞ2.
As expected Gð�1Þ, which involves one less subtraction,
depends much more on the exact value of the cutoff and has
a much larger uncertainty. However, a comparison of the
theoretical result for lnC, Eq. (3.5), together with its ex-
perimental determinations [3,7,16], which lie between 0.14
to 0.21 show that the uncertainty on GðtÞ is certainly over-
estimated. As already stated, a precise determination of
lnC from the sum rule, Eq. (3.5), is in the actual state of the
art not possible.

B. Variation of the input parameters

Within this section we will discuss the influence of the
choice of the input parameters on the phase at low energies
and therefore on the dispersive representation of the form
factors.

1. Scalar form factor

At low energy the I ¼ 1=2, swave K� scattering phase,

0 from Ref. [30] is used in the evaluation of the function
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FIG. 3 (color online). Comparison of the K� scattering phases
from the amplitude and the S matrix in the scalar channel
extracted in Ref. [30] and the phase of the form factor (preferred
fit 6:10K2) obtained via a multichannel analysis [28].
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GðtÞ. As already discussed in Ref. [12], there are two
sources of uncertainties on 
0. The first one comes from
the propagation of the errors of the experimental inputs
into the solution of the Roy-Steiner equations. The other
one is due to the choice of the point where one matches the
Roy-Steiner equations with the data. This leads to the
conservative estimate (cf. Ref. [12]),


GK�ð�S; tÞ � 0:05GK�ð�S; tÞ: (4.1)

Furthermore, the analysis of Ref. [30] is performed
under the assumption of perfect isospin symmetry. In
Ref. [45], it has been shown that for �� scattering the
shift in the phase due to isospin breaking corrections can
amount up to 0.015. For the �� system, these leading
effects are of purely electromagnetic origin. In
Refs. [46,47] it has been argued that due to a partial
cancellation between the strong and the electromagnetic
effects, the total isospin breaking effect for K� should be
smaller than for ��. Awaiting a more detailed quantitative
analysis [48], we will assume here as a conservative esti-
mate of isospin breaking effects a constant shift of the
phase by 0.02 which is even larger than the maximal value
obtained for �� [45]. The corresponding error on
GK�ð�S; tÞ is, in fact, comparable to 
GK�, Eq. (4.1).
Replacing the average values of mK and m� throughout
the solution of Roy-Steiner equations with their physical
ones has only a negligible effect on GK�ð�S; tÞ.

The function GðtÞ with the different uncertainties dis-
cussed here is plotted in Fig. 5. In Appendix A the sim-
plified expression for GðtÞ discussed in Ref. [12] is given
together with the different errors on the parameters.

2. Vector form factor

To evaluate HK� we considered two domains as ex-
plained in Sec. III. From threshold tK� to s0 the main input
parameters are the mass and the width of the K�ð892Þ.

Varying them within the error bars given by the PDG
[39] has only a negligible influence on HK�, the errors
are at most a few 10�4 times HK�. Another source of
uncertainty in this energy region lies in the choice of the
polynomial PðsÞ, Eq. (3.11). In order to estimate the effect
of higher order terms, we added a contribution c � s2 to the
right-hand side of Eq. (3.15) and varied the parameter c
within �0:15 GeV�2 < c< 0:62 GeV�2. Within this
range we still obtain values for the scattering length,
a1m

3
� ¼ 0:013� 0:020, in agreement with other determi-

nations [30,41,42] and the phases agree reasonably well
with the Aston data as displayed in Fig. 6. The induced
error on HK� is in this case a few 10�3 times its value.
Between s0 and the cutoff �V the uncertainty on the phase
is given by the error bars of the Aston data. To determine
the error induced by the choice of the cutoff values, we
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FIG. 5 (color online). The function GðtÞ in the physical region.
Each curve corresponds to one of the uncertainty discussed in the
text added in quadrature to the previous one, in the order shown
in the legend. The last curve gives the total uncertainty on GðtÞ.
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FIG. 4. Variations of Gð0Þ (left-hand side) and Gð�1Þ (right-hand side) as a function of the end point of the elastic region �S. Note
that the scale differs in the two figures.
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impose a rather large variation for s0 and �V , namely,
ð0:825 GeVÞ2 < s0 < ð1:1 GeVÞ2 and ð1:2 GeVÞ2 <
�V < ð1:6 GeVÞ2.

The function HðtÞ with the different uncertainties dis-
cussed here is plotted in Fig. 7. Except for Has, we have
symmetrized the errors which were not symmetric around
the central value, using as error the largest value to be on
the conservative side. In Appendix A a simplified expres-
sion for HðtÞ is given together with the different sources of
uncertainties on the parameters.

C. Discussion of possible zeros

Writing the dispersive relations, Eqs. (3.1) and (3.7), we
have assumed that the form factors have no zero. This is in
fact quite standard when studying form factors. Indeed, in

the spacelike region, a form factor represents the Fourier
transform of a charge density. It is argued for instance in
Ref. [49] for the case of the electromagnetic form factor of
the pion that the properties of the pion charge distribution
should be similar to the one of the electron in the ground
state of the hydrogen atom. This charge density being
proportional to the square of the wave function, the corre-
sponding form factor is positive in the spacelike region.
The possibility that the form factors have one or several
zeros can, however, not be completely overruled and has
been studied in the literature, for example, in Ref. [50] for
the case at hand and in Ref. [51] for the pion form factor.
Let us therefore discuss it here for the scalar form factor. In
the vector case the experimental situation is much better as
we have seen in the introduction. Slope and curvature can
be measured rather precisely. Zeros would essentially
modify the relation between the slope and the curvature
in the physical region of K‘3 decays compared to what we
have been discussing here. Considering the precision of the
experiment, allowed zeros cannot alter much the results in
the physical region. We will however briefly mention what
happens for the vector form factor in Sec. IV in relation
with the � ! K��� decay.

1. Real zeros

We will consider first one real zero, T0, to simplify. In
that case the function �f0ðtÞ=ð1� t=T0Þ has no zero and one
can proceed as in the previous section. One can thus write

�f0ðtÞ¼
�
1� t

T0

�
exp

�
t

�K�

�
lnC� ln

�
1��K�

T0

�
�GðtÞ

��
:

(4.2)

In order for �f0ðtÞ to behave like 1=t for large negative t
[31], the phase of the form factor has now to go to 2� at
infinity since one has

lim
t!�1

�f0ðtÞ ¼ const t=t
ðþ1Þ=�: (4.3)

Now there are two possibilities. The zero can be in the
timelike or in the spacelike region.
a. Timelike region.—In the timelike region a zero on the

real axis would correspond to a jump of the phase by �. In
fact, Eq. (4.2) can be rewritten as

�f0ðtÞ ¼ exp

�
t

�K�

�
lnC� �K�ð�K� � tÞ

�

�
Z 1

t�K

ds

s

�0ðsÞ � ��ðs� T0Þ
ðs� �K�Þðs� t� i	Þ

��
: (4.4)

Following the discussion of Sec. IVA, this zero should
occur at a four momentum larger than �ð1:7 GeVÞ2 since
below, the phase of �f0ðtÞ is known and there is no indica-
tion of a zero for the form factor. At these energies there is
a right-hand cut on the real axis and this scenario looks thus
rather improbable. Furthermore since the region above �S

gives a small contribution to GðtÞ in the K�3 physical
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FIG. 7 (color online). The function HðtÞ. Each curve corre-
sponds to one of the uncertainty discussed in the text added in
quadrature to the previous one, in the order shown in the legend.
The last curve gives the total uncertainty on HðtÞ.
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FIG. 6 (color online). K� scattering phase in the vector chan-
nel for different values of the parameter c. Here s0 is fixed to the
value ð0:825 GeVÞ2. For comparison the data [40] are shown,
too.
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region, one does not expect much change in the form factor
from the presence of such a zero. This is illustrated in
Fig. 8 where a comparison is made between the form factor
obtained from Eq. (3.1) and the one from Eq. (4.2) for T0 ¼
2:5 GeV2. This is typically the smallest possible value for a
real zero in this timelike region and thus the one which is
expected to affect most our representation.

b. Spacelike region.—In the spacelike region, there is no
left-hand cut and thus a real zero looks more plausible even
though it goes against the argument of positivity of the
form factor in the spacelike region given previously. A
completely different behavior of the form factor as com-
pared with the case without zero could result if the zero was
close enough to the physical region. This can be seen in
Fig. 9 where the scalar form factor is shown for two
different values of T0, namely, �0:1 GeV2 and
�1 GeV2. In the first case, the slope is rather large and
there is a maximum at a rather small t value. As T0

decreases, the slope becomes smaller and the maximum
moves towards larger t and eventually approaches the
curve without zero. This is in fact what happens for T0 ¼
�1 GeV2. The K�3 data, however, seem to exclude the

large slopes we observe when the zero becomes close to the
physical region (see Fig. 9). In that case, the high energy
behavior of the form factor is completely different, too.
This has an impact for instance in � decays as discussed
below.

2. Complex zeros

Zeros could occur in the complex plane, which would in
fact mean, due to the property of real-analyticity of the
form factor, the presence of a zero, Z0, and its complex
conjugate �Z0. The form factor would take the following
form

�f0ðtÞ ¼
�
1� t

Z0

��
1� t

�Z0

�
exp

�
t

�K�

�
lnC� ln

�
1� �K�

Z0

�

� ln

�
1� �K�

�Z0

�
�GðtÞ

��
: (4.5)

In order for �f0ðtÞ to behave as 1=t for large negative t [31],
the phase should now go asymptotically to 3� [see Eq.
(4.3)]. As can be seen in Fig. 8, the presence of complex
zeros could lead to lower values for the form factor at the
end of the physical region. In the case of the blue dot-
dashed curve which corresponds to zeros with rather large
imaginary parts, namely,�10 GeV2 and a rather large real
part, too, thus not close to the physical region ofK�3 decay,

the difference to the curve without zero is very small as
expected. The effect becomes, however, much stronger
when one takes a small real part as well as a smaller
imaginary part, as shown by the pink dotted curve in
Fig. 8 which corresponds to zeros at ð0:1� i2Þ GeV2.
The slope becomes smaller and the curvature larger. Note
that the same value for lnC has been used in the determi-
nation of the curves, namely, lnC ¼ 0:2138, Eq. (2.8) (the
trends discussed here are independent of the precise value
of lnC) such that the three curves meet at the CT point.

3. Properties of the scalar form factor and their
constraints on the existence of possible zeros

It is clear from the previous discussion that the presence
of zeros in the scalar form factor with values close to the
physical region would affect the determination of lnC from
the experiment. Unfortunately, it is not possible to test such
a scenario with the K�3 data since due to strong correla-

tions and the sensitivity of the data it is only possible to
determine one parameter for the scalar form factor from
the fits. However, the scalar form factor possesses some
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FIG. 8 (color online). Scalar form factor: without zeros, plain
black curve; with a zero at T0 ¼ 2:5 GeV2, red dashed curve;
with two complex conjugate zeros at Z0 ¼ ð2:5� i10Þ GeV2,
blue dashed-dotted curve; and at Z0 ¼ ð0:1� i2Þ GeV2, pink
dotted curve.
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located in the spacelike region. Black plain curve: no zero; blue
dashed and red dotted-dashed curves: real negative zero at T0 ¼
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properties which might allow for the set up of constraints
on the presence or the absence of zeros. The different
behavior for t away from the physical region of K‘3 decays
could have consequences, too, for example, in � decays.

a. Sum rules.—The first properties which can be used are
sum rules which can be derived from the knowledge of the
behavior of the form factor for t ! �1. In the absence of
zeros, one obtains the sum rule, Eq. (3.5). It is modified in
the presence of zeros and for instance, with one real zero, it
reads

Gð�1Þ ¼ lnC� ln

�
1��K�

T0

�
: (4.6)

The second logarithm on the right-hand side is negative so
that the sum rule now leads to a value Gð�1Þ larger than
lnC. For example, with T0 ¼ 2:5 GeV2 as used above, one
obtains lnð1� �K�=T0Þ ¼ �0:096. Thus a good knowl-
edge of these two quantities could provide an information
on the presence of zeros in the form factor. In the case of
complex zeros, one can derive two additional sum rules,
namely,

Z 1

tK�

ds
Im �f0ðsÞ

ð1� s=Z0Þð1� s= �Z0Þ ¼ 0; (4.7)

Z 1

tK�

ds
s Im �f0ðsÞ

ð1� s=Z0Þð1� s= �Z0Þ ¼ 0: (4.8)

All these sum rules have to be satisfied simultaneously.
Unfortunately, they are rather sensitive to the phase at high
energies which, as has already been stressed, is badly
known. Consequently, they do not provide any constraint
on the presence or absence of zeros as long as one does not
have a better knowledge of the behavior of this high energy
phase. At present, it is possible to find a model for the
phase which satisfies simultaneously the three sum rules.

b. Soft kaon analog of the Callan-Treiman theorem.—
Another important property which provides us with a more
severe constraint is the soft kaon analog of the Callan-
Treiman theorem [52]. One has

f0ðm2
� �m2

KÞ ¼
F�þ

FKþ
þ ~�CT: (4.9)

A one loop calculation of the SUð3Þ correction ~�CT in the

isospin limit [10] gives ~�CT ¼ 0:03 which is larger than its
soft pion analog �CT, see Eq. (2.5), by a factor m2

K=m
2
�. It

is rather small for a first order SUð3Þ 	 SUð3Þ breaking
effect, which is expected to be of the order of 25%. Note
one interesting point: at next-to-leading order within the
minimal not-quite decoupling electroweak low-energy ef-
fective theory [53], there appear in the light quark sector
essentially two combinations of parameters of spurionic
origin describing the couplings of quarks to theW boson to
be determined from experiment [54,55]. While the knowl-
edge of the scalar form factor at the CT point measures one

combination, its knowledge at m2
� �m2

K measures the

other one. A precise determination of ~�CT would thus
help to settle the issue of the presence of right-handed
couplings of quarks to the W boson. At present one can
only give an estimate of the higher order contribution to
~�CT. The expected size is of the order of 10%. To get an
idea of the actual size, let us look at the two-loop calcu-
lation [56], where one finds

~�CT ¼ 2� FK

F�

� F�

FK

� 16

F4
�

ð2C12 þ C34Þm2
Kðm2

K �m2
�Þ

þ ��ðm2
� �m2

KÞ þ �ð0Þ: (4.10)

The quantities ��ðtÞ [57] and �ð0Þ are discussed in
Ref. [56], and C12 and C34 are two low-energy constants.
The same combination of these low-energy constants in
Eq. (4.10) appears in the two-loop calculation of the slope,
�0, of the scalar form factor. Taking �0 between 0.009 and
0.016 which encompasses the values obtained by the
NA48, KTeV, and KLOE collaboration and using the value
1.22 for FK=F� as in Ref. [56] (for an actual status on the
value of FK=F�, see, for example, Ref. [9]) one obtains
�4� 10�6 < 2C12 þ C34 < 8� 10�6 in agreement with
the estimates found in the literature [11,22,58,59]. This

leads to �0:035< ~�CT < 0:11 within the expected order
of magnitude. Assuming the SM electroweak couplings,
one has F�=ðFKfþð0ÞÞ ¼ 0:8752� 0:0020, such that a
conservative result for the normalized scalar form factor
�f0ðm2

� �m2
KÞ is

0:8< �f0ðm2
� �m2

KÞ< 1: (4.11)

This bound constrains the allowed region of possible zeros
in the scalar form factor. Real zeros in the spacelike region
which do have an impact on the form factor in the physical
region are excluded since they drop very fast with t for t
negative and violate the bound. For complex zeros the
situation is less obvious. It is easy to calculate which are
the imaginary parts the complex zeros should have in order
that the scalar form factor at t ¼ m2

� �m2
K lies within the

bound, Eq. (4.11). One finds that the positive imaginary
part increases when the bound decreases. Typically for a
complex zero with a real part between �0:2 and 0.2 the
imaginary part varies between 0.7 for �f0ðm2

� �m2
KÞ ¼

1:03 and 6 for �f0ðm2
� �m2

KÞ ¼ 0:87. Thus, with our

present knowledge of ~�CT, one cannot totally eliminate
the presence of complex zeros very close to the physical
region which would affect the determination of lnC.

4. High energy behavior and the decay � ! K���

The energy distribution in the decay � ! K��� has
been measured first by the ALEPH Collaboration [60],
then by OPAL [61], and recently the Belle Collaboration
[33] and the BABAR Collaboration [34] presented results
for different isospin combinations. The differential decay
distribution is given by
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d�K�ðsÞ
d

ffiffiffi
s

p ¼ V2
usG

2
Fm

3
�

128�3
qK�ðsÞ

�
1� s

m2
�

�
2

�
��

1þ 2s

m2
�

�
4q2K�ðsÞ

t
jfþðsÞj2

þ 3ðm2
K �m2

�Þ2
s2

jf0ðsÞj2
�
; (4.12)

with the kinematic variables s and qK�ðsÞ defined in
Eq. (3.12). It thus involves the scalar and the vector form
factors. Unfortunately due to the presence of the K�ð892Þ
resonance which dominates the cross section between
�0:8 and �1:2 GeV, one can only hope to obtain infor-
mation on the scalar form factor from this decay channel
very close to threshold. As discussed above, the only zeros
which could lead to a clear difference in the energy distri-
bution very close to the threshold are the real spacelike
zeros close to the K�3 physical region. As is shown in

Fig. 10 the curve is shifted towards larger values if there is
no zero in the scalar form factor. The Belle data seem to
favor the latter even though the error bars are rather large
for the lowest point [62]. This is consistent with the soft
kaon analog of the CT theorem which, as we have seen,
excludes the presence of such zeros in the scalar form
factor.

On the right-hand side of the figure, the differential
decay width, Eq. (4.12), is shown in a broader energy range
and assuming the presence or absence of zeros in the vector
form factor. The resonance region, where the contribution
of the vector form factor dominates, becomes more sensi-
tive to the phase in the inelastic region such that relatively

large uncertainties for the decay width are expected in this
resonance region. The dispersive representation without
zero, for �þ ¼ 0:024 50, and �1 ¼ � beyond the cutoff
�V , as discussed in Sec. III, describes amazingly well the
precise Belle data in this region (see the central plain black
curve on the right-hand side of Fig. 10). Much larger or
smaller phases at the beginning of the inelastic region seem
to be excluded as shown on the same figure where instead
of�, 0 for the lower plain black curve and 3� for the upper
plain black curve have been used for�1. In the presence of
complex zeros, on the contrary, the phase should be very
small at the beginning of the inelastic region in order to
reproduce the data, as illustrated in Fig. 10. There the result
with a phase equal to 3� in the energy range from 1.4 to
3 GeV (pink dotted curve) is compared with the one with a
vanishing phase in that same energy range (blue dashed
curve). The opposite is true for real spacelike zeros. As the
value of T0 increases, the resonance peak gets more and
more washed out and eventually disappears for a given
phase �1. Rather highly improbable large values of the
phase in the inelastic region becomes necessary to counter-
balance the effect of the zeros. Thus from our study, due to
the lack of knowledge of �1 in the inelastic (high-energy)
region, we cannot completely rule out the presence of zeros
in the vector form factor even though such a scenario does
not seem very probable. We can, however, conclude as
expected that zeros in the vector form factor which would
not be totally excluded from the analysis of tau decays
would not affect the low energy region of the vector form
factor and consequently the results of the analysis of K‘3

decays.
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FIG. 10 (color online). Differential decay width � ! K���. On the left-hand side the calculations with one real zero in the scalar
form factor close to the physical region (T0 ¼ �0:1 GeV2) and without zero are compared. The vector form factor has no zero. On the
right-hand side the calculation is done without zero and with complex zeros at Z0 ¼ ð0:1� i2Þ GeV2 in the vector form factor.
Different cases have been considered corresponding to different ansätze for the phase as explained in the text. The scalar form factor
has no zero. In these figures lnC ¼ 0:2138, Eq. (2.8), and �þ ¼ 0:024 50 as obtained from the pole parametrization with the K�ð892)
mass. For comparison the Belle data for �� ! K0

S�
��� [33] are displayed, too.
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V. FINAL REMARKS AND CONCLUSION

In this paper we have discussed the robustness of a
precise and convenient dispersive representation of the
scalar and vector K� form factors. In Fig. 11 we show
the scalar (left panel), Eq. (3.1), and the vector form factors
(right panel), Eq. (3.7), with all the uncertainties discussed
above under the usual assumption of no zeros in the form
factors and for two different values of their respective free
parameters lnC and �þ. The figure nicely illustrates the
fact that our dispersive representation describes to a very
high accuracy the form factor shapes in the physical region
of K‘3 decays. Equations (3.1) and (3.7) thus represent a
very useful tool for an optimal analysis of the K‘3 data. As
already pointed out, it allows us to determine the shape of
these form factors in an unambiguous way, contrary to
other parametrizations used in the data analysis.
Furthermore, as emphasized in Ref. [12], a measurement
of lnC, with C the value of the normalized scalar form
factor at the Callan-Treiman point, allows us to test the
SM. A departure of the measured value from Eq. (2.8)
would signal, under the hypothesis of no zeros in the
form factor, a failure of the SM, as, for example, the
presence of a direct coupling of right-handed quarks to
W [12]. We have, however, to moderate slightly the con-
clusion drawn there. We have indeed seen that the shape of
the scalar form factor could be slightly modified in the
highly improbable case where it would have zeros in a very
small domain of the complex plane within or close to the
K�3 physical region. Even though the likelihood of this

scenario is very small we have not been able at present to
totally eliminate it. Note, however, that for the vector form
factor, zeros that would affect the dispersive parametriza-
tion in the low-energy region we are interested in here, are
excluded by the tau data.
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lages électrofaibles non-standards des quarks.’’

APPENDIX A: SOME USEFUL EXPRESSIONS

1. Scalar form factor

In order to facilitate and accelerate the numerical evalu-
ation of the scalar form factor, for example in the experi-
mental analysis of KL

�3 decays, it is convenient to have a

parametrization of the function GðtÞ. As already discussed
in Ref. [12], within the physical region it can be very
accurately parametrized as

GPðtÞ ¼ xDþ ð1� xÞdþ xð1� xÞk; (A1)

where x � t=t0, d � Gð0Þ, D � Gðt0Þ. The value of k can
be obtained from the constraintGð�K�Þ ¼ 0. In Table I we
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FIG. 11 (color online). Dispersive representation of the scalar (left panel) and vector (right panel) form factor over a wide range of
energies. For comparison two different values of lnC (right) and �þ (left) have been used: lnCjSM is from Eq. (2.8), lnCjNA48 ¼
0:1438, �NA48þ ¼ 0:0233 are the central values of the NA48 experimental results [7] and �

pole
þ ¼ 0:024 50 is from the pole

parametrization with the K�ð892Þ mass. The band takes care of all the uncertainties discussed in the text.
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give the central values for the parameter d,D, k together with the corresponding errors arising from the different sources of
errors as discussed in Sec. IV.

For practical purposes and for comparison with the traditionally often used linear and quadratic approximations to the
form factor, it is useful to list the first coefficients of the Taylor expansion of the form factor. They read

m2
�

d �f0
dt

��������t¼0
¼ m2

�

�K�

ðlnC�Gð0ÞÞ ¼ m2
�

�K�

ðlnC� 0:0398ð44ÞÞ;

m4
�

d2 �f0
dt2

��������t¼0
¼

�
m2

�

d �f0
dt

��������t¼0

�
2 � 2

m4
�

�K�

G0ð0Þ ¼
�
m2

�

d �f0
dt

��������t¼0

�
2 þ ð4:16� 0:56Þ � 10�4

m6
�

d3 �f0
dt3

��������t¼0
¼

�
m2

�

d �f0
dt

��������t¼0

�
3 � 6

m4
�

�K�

G0ð0Þ
�
m2

�

d �f0
dt

��������t¼0

�
� 3

m6
�

�K�

G00ð0Þ

¼
�
m2

�

d �f0
dt

��������t¼0

�
3 þ 3ð4:16� 0:56Þ � 10�4

�
m2

�

d �f0
dt

��������t¼0

�
þ ð2:72� 0:21Þ � 10�5:

(A2)

The Taylor expansion up to third order of the scalar form
factor allows us to reproduce well the exact dispersive
representation in the physical region. The maximal error
is 3%.

2. Vector form factor

It is equally very convenient to have a parametrization of
the function HðtÞ in order to avoid the evaluation of the
dispersive integral for the vector form factor. Within the
physical region, the function HðtÞ can be very accurately
parametrized as

HPðtÞ ¼ H1xþH2x
2: (A3)

The numerical values of the parameters H1 and H2 are
given in Table II together with the corresponding uncer-
tainties. As discussed in the text, the uncertainties coming
from the uncertainties on the mass and the width of the K�,

HMK� , and 
H�K� are completely negligible.

Here again, for practical purposes and for comparison
with other parametrizations of the vector form factor, it is
useful to give the first coefficients of the Taylor expansion

m2
�

d �fþ
dt

��������t¼0
¼ �þ;

m4
�

d2 �fþ
dt2

��������t¼0
¼ �2þ þ 2m2

�H
0ð0Þ

¼ �2þ þ ð5:79þ1:91
�0:97Þ � 10�4;

m6
�

d3 �fþ
dt3

��������t¼0
¼ �3þ þ 6m2

�H
0ð0Þ�þ þ 3m4

�H
00ð0Þ

¼ �3þ þ 3ð5:79þ1:91
�0:97Þ � 10�4�þ

þ ð2:99þ0:39
�0:21Þ � 10�5:

(A4)

The third order Taylor expansion is very accurate in this
case, too. The maximal error with respect to the exact
dispersive representation is 6%.

3. Calculation of IK

In order to extract jfþð0ÞVusj from the measurement of
the K‘3 decay rate

�
Kþ=0

‘3

¼ N Kþ=0SEWð1þ 2�EM
Kþ=0‘

ÞjfKþ=0

þ ð0ÞVusj2I‘Kþ=0 ;

(A5)

with

TABLE I. Coefficients arising in the parametrization GP with their uncertainties.

Central Value 
G� 
Gas 
GK� 
Gisospin Total Error

d 0.0398 0.0005 0.0036 0.0018 0.0017 0.0044

D 0.0209 0.0002 0.0016 0.0010 0.0010 0.0021

k 0.0045 0.0000 0.0001 0.0002 0.0003 0.0004

TABLE II. Coefficients arising in the parametrization GP with their uncertainties.

Central Value 
HAston 
Hs0 
Hc 
H�V

Has Total Error

H1 � 103 1.92 0.04 0.01 0.01 0.06 þ0:62
�0:31

þ0:63
�0:32

H2 � 104 2.63 0.04 0.01 0.02 0.04 þ0:27
�0:13

þ0:28
�0:15
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N Kþ=0 ¼ C2
Kþ=0

G2
Fm

5
Kþ=0

192�3
; (A6)

one has to evaluate the phase space integrals I‘
Kþ=0 defined

in terms of the scalar and vector form factors:

I‘
Kþ=0 ¼

Z t0

m2
‘

dt
1

m8
Kþ=0

�3=2

�
1þm2

‘

2t

��
1�m2

‘

2t

�
2

�
�
�f2þðtÞ þ

3m2
‘�

2
K�

ð2tþm2
‘Þ�

�f20ðtÞ
�
; (A7)

where � ¼ ðt� ðmK þm�Þ2Þðt� ðmK �m�Þ2Þ.

Using the dispersive parametrization for the form fac-
tors, see Eqs. (3.1) and (3.7), it is possible for a practical
purpose to approximate the phase space integrals,
Eq. (A7), by a polynomial expansion in terms of the two
parameters lnC and �þ entering this parametrization. One
obtains

I‘
Kþ=0 ¼ c0 þ c1�þ þ c2�

2þ þ c3�
3þ þ c4�

4þ þ c5 lnC

þ c6 lnC
2 þ c7 lnC

3 þ c8 lnC
4;

(A8)

where the polynomial coefficients for the 4 phase space
integrals are collected in Table III.
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