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We calculate, with several corrections, the nonrelativistic binding by Higgs exchange and gluon

exchange between six top and six antitop quarks (actually replaced by left-handed b quarks from time

to time). The remarkable result is that, within our calculational accuracy of the order of 14% in the top-

quark Yukawa coupling gt, the experimental running top-quark Yukawa coupling gt ¼ 0:935 happens to

have just that value which gives a perfect cancellation of the unbound mass ¼ 12 top-quark masses by this

binding energy. In other words the bound state is massless to the accuracy of our calculation. Our

calculation is in disagreement with a similar calculation by Kuchiev et al., but this deviation may be

explained by a phase transition. We and Kuchiev et al. compute on different sides of this phase transition.
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I. INTRODUCTION

We have earlier claimed [1] that, if of the order of 6 top
quarks and 6 antitop quarks were brought within the dis-
tance of the Higgs Compton wavelength from each other,
they would obtain such a strong binding energy that it
would be definitely of the same order of magnitude as
the mass energy of these 6 top and 6 antitop quarks.
Within the accuracy of the previous calculations [1–3], it
was not excluded that the binding energy for the 6 top plus
6 antitop bound state could just compensate the mass
energy, so that the total mass of the bound state would be
just zero. Indeed we concluded that, within uncertainty, we
had consistency with the hypothesis that the experimental
top-quark Yukawa coupling constant gt had been ‘‘myste-
riously’’ tuned so as to make this bound state of 6 top and 6
antitop quarks—called NBS (new bound state) or the
t ball—have just zero mass. In our notation (see
Appendix A), the experimental top-quark Yukawa cou-
pling is 0.935 corresponding to the running mass or 0.992
if we use the pole mass of 172.6 GeV [4].

However, it was recently claimed by Kuchiev,
Flambaum, and Shuryak [5] that, with the experimental
coupling gt � 0:989 and a realistic Higgs mass used to
give the Yukawa form of the potential, the system of the 6
top and 6 antitop quarks would not even bind, let alone
bind to zero mass. As we shall show in Appendix J, the
calculation of the bound state mass or rather the lowest
energy for the 6tþ 6�t system as a function of the Yukawa
coupling gt has the character of a ‘‘phase transition.’’ That
is to say that the mass mbound of the bound state gets a kink
as a function of the Yukawa coupling gt. In this Appendix
we shall only present a toy model calculation showing such
a kink, but the expectation is that also the fully correct
calculation would at least approximately show a kink.
Having such a nonanalytic, or at least essentially nonana-
lytic, behavior of the bound state mass in mind, it could
easily happen that the fact that Kuchiev et al. ignore some

corrections could lead them to a qualitatively wrong con-
clusion by working on the wrong side of the phase tran-
sitionlike kink. As we illustrate with our toy model in
Appendix J, the suggested phase transition should be
caused by the vacuum Higgs field collapsing under the
influence of the high density of top and antitop quarks in
the potential bound state.
Two calculations were made in Ref. [5] using, respec-

tively, a variational method and self-consistent Hartree
Fock equations. As we remark in Appendix I our own
estimate of what we call the many body effect agrees
with the results of this reference in the massless Higgs
approximation. Kuchiev et al. effectively included
u-channel Higgs exchange and also gluon exchange, in
addition to the explicitly considered t-channel Higgs ex-
change, by increasing the t-channel Higgs exchange po-
tential by a factor of 2. However, in the present article we
want to take into account some effects not considered in
Ref. [5]. The two most important of these are as follows:
(1) First, one has to take into account the possibility

that, if the system of the 6 top plus 6 antitop quarks
indeed binds strongly, then inside the bound state the
Higgs field can be strongly reduced compared to its
usual vacuum expectation value (VEV). Since the
second derivative of the effective potential for the
Higgs field can even be negative, leading to an
effectively tachyonic Higgs particle, for small val-
ues of the Higgs field, it follows that the effective
Higgs mass inside the bound state might be consid-
erably smaller than the usual Higgs mass outside.
This correction of using an effective Higgs mass
only sets in when indeed one has the bound state.
So it is a priori not excluded that there could be a
binding due partly to this effect, while a calculation
not using an effective Higgs mass might still show
no binding.

(2) We shall take into account also the exchange of W
and Z bosons and even the photon. What really
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matter most in this connection are, as we shall see
below, the components of the intermediate gauge
bosons which in reality correspond to the eaten
Higgs field components. So it is really the exchange
of components of the Higgs field, other than the
radial one identified with the genuine Higgs parti-
cles, which we consider here.

In addition we shall present several smaller corrections
which were not considered in Ref. [5].

In the present article we correct and improve our pre-
vious calculations [1–3] of the ‘‘critical’’ top Yukawa
coupling gtjphase transition needed to make the bound state,

NBS or t ball or dodecaquark, massless. As mentioned
abovewe include first of all part of the effect on the binding
coming from the exchange ofW and Z bosons, namely, the
part that is in reality the exchange of the ‘‘eaten Higgses.’’
Even in the limit of vanishing fine structure constants, �1

for Uð1Þ and �2 for SUð2Þ, respectively, there would be an
exchange interaction between bottom and/or top quarks by
the exchange of W ’s or Z’s. This is because the squared
masses in the propagators of the gauge bosons are propor-
tional to the fine structure constants and consequently, for
part of the exchange potential, the fine structure constants
drop out of the calculation. It is a part we interpret as being
really the exchange of an eaten Higgs component.
Inclusion of at least part of the W exchange means that a
top quark gets converted to a b quark or oppositely.
Including such contributions, we thus have to imagine
that our NBS or t-ball bound state is a superposition not
only of top and antitop quarks, but also has components
with some of these top or antitop quarks replaced by b
quarks or anti-b quarks, respectively. It is, however, trivial
to see that the right-handed chirality b quark is totally
decoupled in the first approximation and cannot come
into this approximation.

We consider the inclusion of this weak interaction ex-
change so to speak—really of eaten Higgses—as a major
correction, on top of which we shall then further make a
series of ‘‘smaller’’ corrections, which are typically really
not so much smaller. The whole calculation is basically a
nonrelativistic one, although one of our many corrections
is an attempt to take into account in a somewhat crude way
relativistic effects.

The major purpose of these calculations is to see to what
accuracy we should be able to claim that the cancellation of
the binding energy and the energy of the masses of the
constituents occur just for the experimental top-quark
Yukawa coupling. If we could claim the accuracy is high
enough, it would mean that nature had chosen a very
special value for the top-quark Yukawa coupling, and there
would be some mysterious fine-tuning problem to be ex-
plained—for instance by our multiple point principle [1,6].

But even not worrying about the strange coincidence
which such a special top Yukawa coupling would mean, it
would say that now the bound state became of such low

mass that there might be a hope of producing it. In fact we
expect a spectrum of bound states with different numbers
of top-quark constituents, as discussed in Appendix H, and
some of these should be found [7] at the LHC and con-
ceivably could already have been produced at the Tevatron.
It should be emphasized that we only use the standard

model to calculate the critical Yukawa coupling needed to
make the bound state mass zero. If indeed the binding is
small (or it does not bind at all as Kuchiev et al. [5] would
claim), even after additional corrections the system will
remain nonrelativistic. However, if the binding gets of the
same order as the mass energy (12mt), relativistic consid-
erations are called for. Kuchiev et al. never need such
relativistic corrections; but we formulate our whole calcu-
lation the opposite way around, in as far as we formulate it
as calculating that specific value of the top-quark Yukawa
coupling gt, which makes the bound state of the 6 top and
the 6 antitop quarks massless. Doing it this way immedi-
ately forces us into the consideration of relativistic
calculations.
Our attempts to make the best relativistic estimate for

instance lead us to think of our calculation being done in
the infinite momentum frame (see Sec. II and Appendix B).
In this frame we find that the binding needed to make the
bound state mass zero is decreased by a factor of 2 com-
pared to what a naive nonrelativistic calculation would
suggest. It corresponds to extrapolating the mass squared
linearly as a function of the binding energy rather than
extrapolating the mass. Also the relativistic speeds mean
that the exchanged Higgses cannot necessarily be fully
described by means of static Coulomb forces, but that
ladder diagrams with crossing rungs (lines) have to be
included (see Sec. VIII).
In Sec. II we shall shortly review and update the non-

relativistic calculation, formulated as a calculation of the
value of the top-quark Yukawa coupling gt needed for the
cancellation of the binding energy with the constituent
masses. In Sec. III we shall make the first crude introduc-
tion of the important effect of including the eaten Higgs
exchanges and the thereby associated introduction of a
component of left-handed b quarks in the bound state.
In the following sections we shall then go through

several smaller corrections to our calculation: In Sec. IV
we make some correction to our too crude treatment of the
eaten Higgs exchange force.
In Sec. V we discuss the correction of the Higgs mass

after all not being exactly zero, so that in principle we have
a Yukawa potential rather than, as we used at first, a
massless Higgs approximation meaning a Coulomb-like
potential. However the point will be that, due to the
Higgs field from the many top quarks and antitop quarks
largely compensating or even overcompensating the vac-
uum expectation value of the Higgs field, the effective
potential for the Higgs field has a second derivative (cor-
responding to the effective mass squared) in the relevant
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region which is even some times negative. It follows that an
effective Higgs mass, introduced to approximately de-
scribe the relevant situation, will be much smaller than
the physical Higgs mass. For definiteness, in this paper we
shall take the physical Higgs mass to be mh ¼ 115 GeV,
corresponding to the LEP lower bound which coincides
with the 2 standard deviation hint of a Higgs signal [8]; this
value is also consistent with our multiple point principle
prediction [7,9,10]. However we shall also take a conser-
vative error of �50 GeV on mh.

In Sec. VI we include the s-channel exchange of both the
Higgs and gluons; these contributions were left out in our
previous calculations, since they are more difficult to esti-
mate and more uncertain.

Then in Sec. VII we consider the correction due to the
dependence of the top-quark mass on the value of the
Higgs field inside the bound state. A correction due to
the finite speed of Higgs exchange is considered in
Sec. VIII.

In Sec. IX we correct for the very crude way in which we
previously treated the genuine many body problem, which
occurs when we have a system of 12 constituent particles.
Previously we assumed that we could calculate this effect
by letting each top or antitop quark ‘‘feel’’ the field of 11=2
of the other 11 particles, meaning that there is on the
average 11=2 other particles inside a sphere around the
center of mass point reaching out to the particle in question
and 11=2 outside. The field from the outside ones is
supposed to be negligible on the average, while that from
the inside ones can be treated as if they were all in a
‘‘nucleus’’ in the center. As mentioned above this many
body effect was also calculated in Ref. [5]. Our results for
the size of the effect are in agreement with this paper for
the massless Higgs exchange approximation.

In Sec. X we consider the contribution to the binding
energy from the exchange of SUð2Þ gauge bosons. Then in
Sec. XI we consider Uð1Þ-gauge boson exchange.

In Sec. XII we discuss at what precise value of the scale
� we think that our calculation delivers the top-quark
running Yukawa coupling gtð�Þ. We call this the renor-
malization group correction.

Then in Sec. XIII we present the final results and collect
an estimated uncertainty for the various corrections and
thereby essentially for the whole calculation.

In Sec. XIV we present the conclusion and discussion.

II. NONRELATIVISTIC BINDING OF TOP AND
ANTITOP QUARKS BY HIGGS AND GLUON

EXCHANGES

Calculating bound states in relativity is generally diffi-
cult and in principle should be done using the Bethe-
Salpeter equation. However, it is much easier to work
with atomic physics, e.g., the Bohr atom, and the infinite
momentum frame technology, which to some extent has
similar simplifying properties to the nonrelativistic ap-

proximation, and this is what we in principle shall use
now. We shall use first the nonrelativistic approximation
and claim that, if we only consider the t-channel exchange
and only one constituent going around a central particle or
bunch of particles, we can simply use the old Bohr for-
mulas for the hydrogen atom if we ignore the mass of the
exchanged Higgs particle being different from zero—i.e.,
we use a Coulomb potential rather than the true Yukawa
one. But then we argue that, for weak binding, we can
trivially derive the binding in the infinite momentum frame
from the nonrelativistic one, so that we can essentially use
the Bohr formula also in the infinite momentum frame. It is
our intention next to include also u-channel exchange
while leaving the s-channel exchange, which gets appreci-
ably more complicated, to the later Sec. VI.
The virtual exchange of the Higgs particle between two

quarks, two antiquarks, or a quark-antiquark pair yields an
attractive force in each case. For top quarks Higgs ex-
change provides a strong force, since we know phenom-
enologically that gtð�Þ � 1 in a notation in which the
Lagrangian density for the Higgs top-quark interaction is
gtffiffi
2

p �c tL�hc tR þ H:c:, where then the Higgs field is normal-

ized to the expectation value h�hi ¼ 246 GeV. See
Appendix A for our notation. In this notation the potential
between two top or antitop quarks, using only the t-channel
exchange with massless Higgs particles, is

Vt-channel Higgs ¼ �g2t =2

4�r
: (1)

So let us now consider putting more and more t and �t
quarks together in the lowest energy relative s-wave states,
the 1s wave. The Higgs exchange binding energy for the
whole system becomes proportional to the number of pairs
of constituents, rather than to the number of constituents.
So a priori, by combining sufficiently many constituents,
the total binding energy could exceed the constituent mass
of the system. However we can put a maximum of 6tþ 6�t
quarks into the ground state 1s wave. We shall now esti-
mate the binding energy of such a 12 particle bound state.
As a first step we consider the binding energy �E1 of

one of them to the remaining 11 constituents treated as just
one particle, analogous to the nucleus in the hydrogen atom
but consisting of Z ¼ 11 quarks.
However, if we want to be allowed to sum the various

E1s obtained for the 12 constituents, in order to obtain the
total potential energy of the system (as we must to calcu-
late the bound state mass), we must think of bringing the
quarks or antiquarks into the bound state one by one. That
is to say that, when we bring in the ith constituent, the
number of constituents in the center is only i� 1, so that

the potential is � ði�1Þg2t =2
4�r . So, instead of taking the poten-

tial felt by a single constituent in the final situation (i.e., in

the bound state) V ¼ � 11g2t =2
4�r , we take an average over the

steps of putting in the particles one by one and use the
potential:
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V ¼ �
11
2 g

2
t =2

4�r
: (2)

We assume that the radius of the system turns out to be
reasonably small, compared to the Compton wavelength of
the Higgs particle, and use the well-known Bohr formula
for the ground state energy level of a one-electron atom
with atomic number Z ¼ 11, but modified by the just
mentioned inclusion of a factor 1=2 in the potential to
obtain the crude estimate1:

E1 ¼ �
�11
2 g

2
t =2

4�

�
2 11mt

24
: (3)

Here gt is the top-quark Yukawa coupling constant, in our
normalization in which the top-quark mass is given by
mt ¼ gt174 GeV. Furthermore we used the reduced mass
of 11

12mt for the one top quark moving relative to the other

11.
The nonrelativistic binding energy of the 12 particle

system is then given by Ebinding ¼ �12E1. This estimate

only takes account of the t-channel exchange of a Higgs
particle between the constituents.

A. u channel

A simple estimate of the u-channel Higgs exchange
contribution [1] increases the binding energy by a further
factor of ð16=11Þ2. This can be seen as follows.
Considering that the system is totally antisymmetric in
spin and color permutations, we can effectively proceed
as if it consisted of 6 top quarks and 6 antitop quarks, with
both of these bunches being bosons. Then the permutation
of the interacting particles caused by going from t-channel
to u-channel exchange means adding them up as if the
force were twice as big. Since the considered quark can be
permuted in this way with the remaining 5 quarks out of the
other 11 quarks or antiquarks, we conclude that the factor
of 11 inside the square in Eq. (3) should be replaced by
11þ 5 ¼ 16. This gives

Ebinding ¼ �12 � ð16=11Þ2E1 ¼ 11g4t
2�2

mt ¼ 0:557mtg
4
t :

(4)

Inclusion of the u-channel contribution in this way is
equivalent to using an averaged potential of

Vwith u-ch ¼ �
16
2 g

2
t =2

4�r
: (5)

B. Gluon exchange

We have so far neglected the attraction due to the
exchange of gauge particles. So let us estimate the main
effect coming from gluon exchange [2] due to the interac-
tion gs �c tA

a
��

a=2��c t. It follows that the t-channel gluon

exchange graph gives an effective Coulomb potential for a
quark-antiquark pair in a color singlet state of

Vgluon ¼ � g2s Trð�a=2 � �a=2Þ3
4�TrðIÞ3r ¼ � g2s8=2

4� � 3r
¼ �e2t�t=ð4�rÞ: (6)

The QCD fine structure constant is given by �sðMZÞ ¼
g2sðMZÞ=4� ¼ 0:118. However, as will be discussed in
Appendix C, the scale associated with the radius of the
new bound state is closer to the mt scale than to the MZ

scale. We will therefore take the value �SðmtÞ ¼ 0:109 in
our estimate. This corresponds to an effective gluon t� �t
coupling constant squared of

e2t�t ¼ 4
3g

2
s ¼ 4

31:37 ¼ 1:83: (7)

Here, however, we must bear in mind that the gluon
exchange potential (6) is only for a quark attracting an
antiquark in the compensating color state. It is not the
coupling between all pairs of quarks and antiquarks; rather
we should consider an averaged gluon potential as follows.
For definiteness, consider a t quark in the bound state; it

interacts with 6 �t quarks and 5 t quarks. The 6 �t quarks form
a color singlet and so their combined interaction with the
considered t quark vanishes. On the other hand, the 5 t
quarks combine to form a color antitriplet, which together
interact like a �t quark with the considered t quark. So the
total gluon interaction of the considered t quark is the same
as it would have been with a single �t quark. In this case the
u-channel gluon contribution should equal that of the
t channel. We shall also include a factor 1=2, analogous
to that included in the Higgs potential V above, which
takes into account the probability of the center of the
effective 5 quark system being closer to the center of the
bound state than the considered quark. The averaged gluon
potential to be used, in analogy to the t plus u channel
Higgs exchange potential Vwith u-ch of (5), thus becomes 2
times 1=2 of the expression (6), i.e., accidentally just Vgluon

itself. Thus the full averaged potential, to be used as if all
the quarks and antiquarks interacted in the same way, is

Vtotal ¼ Vgluon þ Vwith u-ch ¼ � e2t�t
4�r

�
16
2 g

2
t =2

4�r

¼ � e2t�t þ 4g2t
4�r

: (8)

This means that the binding energy (4) should be corrected
to include the gluon exchange force by substituting

4g2t ! e2t�t þ 4g2t ; (9)

1This formula actually represents a correction by a factor of 2
compared to our previous publications [1–3] in which we instead
divided the binding energy computed for Z ¼ 11 by 2; but then
one has forgotten that the factor 1=2 in the potential ends up
being squared in the binding energy (the Rydberg in Bohr’s
formula). This is the effect of the average radius increasing when
the potential is decreased.

C. D. FROGGATT AND H.B. NIELSEN PHYSICAL REVIEW D 80, 034033 (2009)

034033-4



which leads to (4) being replaced by

Ebinding ¼
�
11ðe2t�t þ 4g2t Þ2

32�2

�
mt (10)

¼ 0:0348mtðe2t�t þ 4g2t Þ2 (11)

¼ 0:557mtð0:456þ g2t Þ2: (12)

Later on, as we see that both the experimental gt value and
the critical gt value (which we are about to estimate) are
close to unity, it follows that as far as the coupling squared
is concerned the gluon potential is about half as strong as
the Higgs potential.

C. Infinite momentum frame

We can always think of our system as moving with a
specified high momentum in the z direction. This is really
considering the infinite momentum frame. As long as the
binding is so small that higher order in it is irrelevant, we
can trust the nonrelativistic approximation and even trans-
late it into infinite momentum frame (IMF) language, in
which the energy EIMF of a system of mass m having large
momentum component pz and transverse momentum ~pT is
generally written in the form

EIMF ¼ pz þ ðm2 þ ~p2
TÞ=ð2pzÞ: (13)

When we have an object composed of several particles,
each of them must have its large momentum component
pzi ¼ xipz, where then pz stands for the total momentum
of the cluster of particles in the z direction. In this notation
the total infinite momentum frame energy for such a cluster
of n constituent particles becomes

EIMF cluster ¼ pz þ
�Xn
i¼1

ðm2
i þ ~p2

TiÞ=xi
�
=ð2pzÞ

þ interaction terms: (14)

The reason we propose to think about this infinite mo-
mentum frame—without even doing any proper calcula-
tion in it—is that in this language we keep to the
nonrelativistically looking formula,2 as long as pz is very
large, even if the mass squared m2

bound of the bound state3

we wish to study should become small. Then we can,
namely, imagine that one can calculate the energy
EIMF bound of the bound state, due to the Higgs and gluon
exchange, in the nonrelativistic way even when the mass
squared m2

bound is close to zero. Supposing that this can be

done in a formalism in which one has a Hamiltonian

involving the xi’s and their conjugates, as well as the
transverse momenta and their conjugates, we should expect
the EIMF bound-energy eigenvalue to be analytic as a func-
tion of the parameters. Hence m2

bound, which is linearly

related to this energy, should also be analytic. Ignoring in
such a calculation higher order terms in the coupling gt
than the fourth order, which we just used, we can then
reliably get the mass squared of the bound statem2

bound even

become negative, provided that the interaction is suffi-
ciently strong.
That is to say that we can now obtain a tachyonic bound

state with m2
bound < 0. In this way a new vacuum phase

could appear due to Bose-Einstein condensation. Let us
consider a Taylor expansion in g2t for the mass squared of
the bound state, estimated from our nonrelativistic binding
energy formula:

m2
bound ¼ ð12mtÞ2 � 2ð12mtÞ � Ebinding þ � � � (15)

¼ ð12mtÞ2
�
1� 2 � 0:557ð0:456þ g2t Þ2

12
þ � � �

�
(16)

¼ ð12mtÞ2ð1� 0:0929 � ð0:456þ g2t Þ2 þ � � �Þ: (17)

Assuming that this expansion can, to first approximation,
be trusted—as our argument using the infinite momentum
frame was meant to suggest—for large gt, the condition
m2

bound ¼ 0 for the appearance of the above phase transition
with degenerate vacua becomes to leading order4:

0 ¼ 1� 0:0929 � ð0:456þ g2t Þ2; (18)

or

gtjphase transition ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=0:0929

p � 0:456

q
¼ 1:68: (19)

At this level we have included t- and u-channel Higgs
and gluon exchange, both taken as massless particles, and
we have only used as constituents the top and antitop
quarks. We have not included the W or eaten Higgs ex-
change that could lead, as we shall see below, to partly b
quarks among the constituents. Also we worked in the
nonrelativistic or infinite momentum frame approximation,
and so far we did not specify at what scale to take the gt
although we have put in essentially the perturbative QCD
scale at mt for the gluon coupling.
In the article of Kuchiev, Flambaum, and Shuryak [5],

these authors crudely take into account gluon exchange
and u-channel exchange by taking the potential between
two top quarks to be twice as big as the t-channel Higgs
potential (1). Using this we can extract from Eq. (5) in their
article the critical value of gt needed to make the binding
energy h�Hi equal to just half of the mass energy Nmt

2It is nonrelativistic in the sense that the kinetic term is
quadratic in ~pT [11].

3The mass squared m2
bound of the bound state is defined such

that, if the constituent wave function corresponding to the bound
state NBS is used for the cluster (14) and we put EIMF ¼
EIMF cluster into (13), we get m2

bound ¼ m2.

4Because of the already mentioned mistake in previous pub-
lications [1–3] by a factor 2 in the binding energy, the incorrect
value gtjphase transition ’ 1:24 was previously quoted.
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(where N ¼ 12 is the number of constituents)—as is re-
quired according to our infinite momentum frame formula
(20) below. This critical value becomes gtjKFS ¼ 1:91.
This value should be compared to the just given value of
1.68 in (19) after it has been corrected for the many body

effect performed in Appendix I, which gives 1:68 �
ð2:16Þ1=4 ¼ 2:04 to be compared with gtjKFS ¼ 1:91. The
small 6% difference is mainly due to the crude treatment of
the gluon and u-channel correction. Rather than an in-
crease in the t-channel Higgs potential by a factor of 2,
we find that with the value (19) above for gt the factor
would be 1.70. With such a correction factor multiplying

the t-channel Higgs potential, we get gtjKFS ¼
1:91=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:70=2

p ¼ 2:07 in close agreement with our many
body corrected value of 2.04.

D. Justification of formal nonrelativistic mass-energy
cancellation of half constituent mass to get zero mass

bound state

We already argued that analyticity of the energy in the
infinite momentum frame, or equivalently the bound state
mass squared, suggested that we could formally use the
nonrelativistic binding energy calculation and extrapolate
it until the mass squared of the bound state becomes zero or
even less than zero, if we wanted to obtain the phase
transition value gtjphase transition of the Yukawa coupling.

It is easy to see that the formal nonrelativistic require-
ment for this extrapolation in mass squared to make m2

bound

zero means that the binding energy is adjusted to obeyX
i

mi=2� Ebinding ¼ 0; (20)

rather than the intuitively expected requirement, which
does not have the factor 1=2 on the mass term. This factor
1=2 came in from the Taylor expansion (15) of m2

bound in

terms of the binding energy Ebinding.

We would now like to justify such a formal rule for
calculating the critical gt-value gtjphase transition. For that

purpose, in Appendix B, we imagine writing the infinite
momentum frame energy EIMF cluster for a cluster of ‘‘con-
stituents’’ first in the case that the nonrelativistic approxi-
mation is valid. In this case we obtain the energy
expression5

EIMF cluster ¼ pz þ 1

2pz

X
i

mi

xi
ðmi þ 2HiÞ: (21)

Here Hi is the contribution of the ith particle to the total
nonrelativistic Hamiltonian H ¼ P

iHi in the rest frame of
the bound state:

Hi ¼ ~p2
i

2mt

þ 1

2

X
j;i�j

Vij � ~p2
i

2mt

þ Vtotal; (22)

where we approximate the interaction by a central potential
Vtotal, while only half of the other 11 particles are present,
and also include the u-channel and gluon exchange con-
tributions by using Eq. (8). This approximation corre-
sponds to taking the effective two particle interaction to be

Vij � � A

4�rij
; where A ¼ 2ðe2t�t þ 4g2t Þ

11
: (23)

Here rij denotes the distance between the ith particle and

the jth particle.
We could now imagine that we want to use the expres-

sion (21), in order to obtain the critical value for the
Yukawa coupling from the requirement of the bound state
being of zero mass. This would mean that the term pro-
portional to 1

2pz
should be zero to determine gtjphase transition.

A symmetry argument between the different constitu-
ents—at least in the case of interest here in which all the
constituents are the same type of particle—would suggest
that we have to obtain this zero by all the operator factors
mi þ 2Hi being actually zero, in the sense of the non-
relativistic single particle Hamiltonians Hi having eigen-
values �mi=2. If we believe this basic analyticity
assumption argument, we have arrived at a justification
for our rule of calculating the critical gt coupling, accord-
ing to which one shall require there be an eigenvalue for the
binding energy equal to half the mass mi value. In other
words one shall find an ‘‘eigenstate’’ � for which the
equations�

mi

2
þHi

�
� ¼ 0; for i ¼ 1; 2; . . . ; n (24)

are satisfied. Let us here stress that, in this equation (24),
the central potential approximation which we use in the
single particle Hamiltonian Hi corresponds to the half-
filled situation, so that Z ¼ 11

2 and the potential 1
2

P
jj�iVij

is replaced by Vtotal.
If one wanted the physical Higgs field, one should rather

ask for the Higgs potential felt by a constituent after all the
other 11 constituents have already been put into the system.
This would, in our concentration in the center approxima-
tion, give twice as strong a Higgs field as if one naively
used the Higgs potential in Hi. But this is only true for the
large r region, where one truly can expect all the particles
generating the Higgs field to be at smaller r than the
considered one. So for large r indeed one should multiply
the deviation of the Higgs field from the usual VEV, as
given by the Higgs potential in Hi, by a factor of 2.
However, for an average distance hri, about half the field
producing constituents are farther away from the center
and their contribution can crudely be ignored. So for r �
hri this factor of 2 is compensated by the factor of 1=2

5Note that this expression (21) agrees with Eq. (B19) of
Appendix B, when all the constituents move with the same speed
in the z direction so that xi ¼ miP

j
mj
.
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corresponding to only getting the field from the constitu-
ents closer to the center. So here you get the Higgs field
corresponding to the Higgs potential as present in the
expression Hi. Further inside, corresponding to r less
than hri, the true field deviation from the usual VEV is
even smaller than that corresponding to the Higgs potential
in Hi.

The outcome of this discussion is that
(1) We argue that it is reasonable to use the nonrelativ-

istic approximation as a rule that should lead to our
wanted calculation.

(2) It is important that in this rule one should get the
zero mass bound state by requiring only half the
mass be compensated by the binding. The other half
should then in reality be canceled by the suggested
analytic extrapolation.

III. INTRODUCTION OF LEFT-HANDED BOTTOM
QUARKS

We have so far left out the exchange of the weak gauge
bosons but, with the estimate of the radius of the bound

state given in Appendix C being of the order of r0 ’
ð ffiffiffiffiffiffiffiffi

4=3
p

mtÞ�1, we should not necessarily ignore weak gauge
boson exchanges. Actually in this section we shall only
include these weak gauge boson exchanges in the approxi-
mation of letting the gauge couplings go to zero. At first
you might think that in this limit we could totally ignore
the exchange of the W and Z0, but that is not true, because
for the longitudinal components of these bosons there is
then a zero in the inverse propagator due to gauge symme-
try. In fact these longitudinal W and Z0 components really
represent the ‘‘eaten’’ Higgs components (see
Appendix D). So what we shall really do is to replace the
exchange of Z0 and W by the exchange of their longitudi-
nal components and postpone the discussion of the effect
of their Coulomb fields until Secs. X and XI. Equivalently
we can think of it as the exchange of the components of the
Higgs other than the physical Higgs particle, which we
already considered at length in the foregoing section.

In as far as the Higgs field has two complex components,
of which we have in the foregoing section only included
the uneaten real part of one of them, there are three more
real fields in the Higgs doublet, and these can be exchanged
between the constituents in our bound states. The compo-
nents eaten by the W are the charged fields and they will
when exchanged from a top quark convert it to a b quark or
oppositely.

For the understanding of the correction due to these
exchanges, let us first note that we should have in mind
that the particles which couple sufficiently strongly to be
included in our approximation are as follows:

(1) The left-handed b quark components.
(2) The whole Higgs doublet (but we do not need theW

and Z0 fields proper, nor the photon field). Only the

eaten components and the physical Higgs are
included.

In this way we cannot properly have b quarks or anti-b
quarks in our bound states, since they would all the time
have to be represented by the right-handed top components
whenever they need to be represented by right-handed
components.
We shall further make the approximation that, whenever

a pair of (left) b �b quarks has been made by eaten charged
Higgs exchange, then it soon gets again annihilated back to
the usual situation of there being only top quarks and
antitop quarks in our bound state. This assumption means
that we only take into account that a right-handed top and
an anti-right-handed top—which really must have left
helicity—exchange an eaten Higgs between them and
become a b �b pair of bottom quarks, which then in the
next interaction return back to become again a pair of right-
handed top quarks.
For definiteness one could think of the self-energy dia-

grams for a combination of fields with the appropriate
conserved quantum numbers to have an overlap with the
bound state. Then, due to the summation over an infinite
number of diagrams, a pole should be generated at p2 ¼
m2

bound corresponding to the mass squared of the bound

state. In this section we shall use a box-diagram approxi-
mation, according to which the dominant self-energy dia-
grams are the ones in which the doublet propagators are
restricted to circulate around box subdiagrams, with singlet
right-handed top-quark propagators attached to the four
vertices. The singlet right-handed top-quark propagators
are not restricted and could, for instance, cross over each
other forming a nonplanar diagram.
In the previous section we only included the ‘‘physical’’

Higgs component and only the left-handed top quark as
particles that could come into these box diagrams. So we
could think of the previous calculation as having used, for
the box-diagram description of the scattering of right-
handed top quarks, only those box diagrams in which the
left-handed top quark and the physical Higgs components
were included. Since the physical Higgs component is only
one purely real part of one of the complex components of a
Higgs doublet (which has two complex components
equivalent to four real ones—meaning two purely real
and two purely imaginary components), we must also
imagine that in a corresponding sense in this approxima-
tion of the previous section only the real part of the left-
handed top-quark field was used.
By the inclusion of the left-handed bottom quark com-

ponents and the three eaten real components of the Higgs,
we have 4 times as many real components to exchange and
to be represented as propagators in the box diagram we
described. Actually all four combinations of Higgs and of
left-handed bottom or top-quark real components that can
circle around in the box diagram will give the same dia-
gram contributions. Thus the effect of including the three
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eaten components and the left-handed quark components
connected with them in the box diagram should simply be
to increase the size of the box-diagram contribution by a
factor 4, as may be checked in Appendix E. Now this box
diagram is proportional to g4t , because each of its four
corners contributes a top-quark Yukawa coupling. In
Sec. II C we estimated the top-quark Yukawa coupling
needed to make the 6tþ 6�t bound state to have zero
mass to be gt ¼ 1:68. Naively, in our present approxima-
tion, this estimation could in principle have been made by
using only the box diagram, but really to claim that would
need some argumentation which we postpone to Sec. IV.
This means that, in this approximation, the contribution to
the binding energy from the box diagram with physical
Higgs exchange would have to have the same value as in
the previous section, in order to make the bound state
massless. However we have seen that this box-diagram
contribution should be increased by a factor of 4. This
must mean that we should correct our predicted value of
g4t down by a factor 4, in order to obtain again, in the more
correct calculation including the eaten Higgses, the mass-
less bound state of 6tþ 6�t.

Thus we have now reached the estimate that the critical
coupling gt arranged to make the proposed bound state of
6tþ 6�t to have zero mass becomes

gtjphase transition ¼ 1:68=41=4 ¼ 1:19: (25)

This estimate of the Yukawa coupling, giving the exact
masslessness of the bound state of 6tþ 6�t, was made using
only the t- and u-channel gluon and Higgs exchanges.
However, we made an oversimplified approximation with
respect to the exchange of the eaten Higgses (really longi-
tudinal W and Z0 exchange), meaning that we considered
deviations from there being only physical Higgs exchange
inside certain box diagrams. A major point is that we have
included the presence of left-handed b quark components
as constituents rather than only top quarks. So we should
perhaps not say that our state is exactly composed from
6tþ 6�t, since actually it is now considered possible to
virtually replace a top and anti-top-quark pair by a bottom
and antibottom quark pair.

It is now the idea to make a series of smaller corrections
below to the approximations used to reach Eq. (25).

First, in Sec. IV, we shall discuss the correction to our
box-diagram approximation coming from other closed
loops of weak isospin doublet lines. However, before doing
so, we consider the possible effect of diagrams involving
interactions with the VEV of the Higgs field, represented
by a Higgs-propagator symbol with a cross at one end (a
tadpole). Because weak isospin is formally upheld in the
Feynman rules, it follows that the couplings with the Higgs
VEV have to come in pairs. We here want to argue that,
when we precisely require the bound state to be exactly
massless, these diagrams involving tadpoles must add up to
zero.

An argument for this runs as follows: Clearly the sum
over those diagrams having just two vacuum couplings will
be proportional to the square of the Higgs VEV. Provided
we ignore the direct dependence of the mass of the bound
state on the Higgs mass (which according to Sec. V con-
tributes a 5.2% correction to gtjphase transition), we expect, for
dimensional reasons, that the bound state mass for fixed
values of the coupling constants must be proportional to
the Higgs VEV, except perhaps for very small renormal-
ization group effects. But now, as we insist on looking for
the zero mass case, there will be no dependence on the
Higgs VEV. In turn that means that the total contribution to
the change in the mass of the bound state, arising from the
diagrams with two tadpoles, must be just zero.
Accepting this argumentation then the contributions

arising from the insertion of one pair of tadpoles into the
diagrams should at the end add up to just zero. Really you
can argue similarly that the diagrams with four tadpoles
and so on would also cancel out.
Finally we have argued that, for our specific project of

finding that gt value for which we can have a massless
bound state, we can ignore the tadpole diagrams and thus
concentrate on those diagrams in which all the isospin
doublet propagators form loops of longer or shorter
lengths. We assumed above that it is the very shortest loops
which matter most, but in the next section we shall discuss
corrections to this box-diagram approximation.

IV. CORRECTIONS TO THE EATEN HIGGS
EXCHANGE FORCE AND THEREBY BOTTOM

QUARK ADMIXTURE

Actually it is not correct that the left-handed bottom or
top quarks would only circle around in box diagrams. In
order to obtain an idea as to how much this box-diagram
approximation has to be corrected, let us imagine a dia-
gram being written down for how the bunch of 12 top or
antitop quarks propagate with mutual interaction under
what really corresponds to the development of the bound
state. As in Sec. II, there are interactions between any of
the top or antitop constituents and any other one among
them. We imagine constructing the diagram by drawing a
series of 12 top-quark lines representing chains of top-
quark propagators. Next we divide these lines up into
propagators while decorating them with exchanged parti-
cle propagators going from one of the lines in the chains to
one of the other ones. At first we imagined that we had top-
quark propagators representing both right-handed and left-
handed components. But it is actually rather easy to imag-
ine that, in our Feynman rules, we make different propa-
gators for right-handed and left-handed components so as
to introduce one propagator for left and another one for
right. Then the Higgs vertices all the time connect a left to
a right, while the gluon vertices oppositely couple left to
left and right to right.
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After having imagined the notation with left-handed and
right-handed t propagators being treated as different parti-
cles, we can rather easily introduce the left-handed b
quarks by imagining that we allow the left propagator to
be treated as if it had both a t and a b component built into
it. So the left propagators represent simultaneously two
types of particles, b and t, while the right propagators are
kept unchanged and only represent the right-handed t
quark. At the same time we have to introduce also the
eaten components for the Higgs propagator, but that we do
analogously by just deciding that now the Higgs-
propagator symbol stands for both complex components
being propagated. In other words we just reinterpret the
diagram to include the eaten components and the left-
handed b quark also. The diagram will look formally the
same as when we just separated the diagram into left and
right t propagators without any b quarks.

In this latter notation we can follow the propagation of
the doublets through the diagrams. That is to say we can
follow chains of propagators, which are either left t and b
combined propagators or the full Higgs propagators. Since
these two types of propagators are doublets under weak
isospin, while the right t propagators and the gluons are
weak isospin singlets, it is clear that the chains of doublet
propagators cannot end anywhere in the interior of the
diagram. Ignoring the case of external lines being doublets,
they would have to form loops inside the diagram consid-
ered. In Sec. III we actually made the approximation that
these loops of doublets would always be box loops having
only four propagators along the loop. But that is of course
by no means guaranteed.

There is however an argument that the small box loops
of doublets might be favored compared to more extended
doublet loops: We get our factor 4 increase in the value of
the whole diagram, due to the inclusion of the eaten
components and the b quark, for each doublet loop that
can be found in such a whole diagram. For a given number
of left and Higgs propagators one thus gets the biggest
increase factor—i.e., more factors of 4—by putting the
doublet propagators into as many loops as possible. That
will then mean to put them into loops with as few propa-
gators as possible around them. But such loops correspond
to box loops. Since the propagators around a doublet loop
must, namely, alternate a left-handed quark with a Higgs
back and forth, we must always have an even number of
propagators in such a loop of doublets. So four is the
minimum nontrivial number of propagators in the loop.

Were it not for such an effect of a somewhat higher
factor for the small doublet loops, the doublet loops could
be rather long because they would be obtained by combi-
natorically taking random diagrams.

We now want to correct for the fact that our assumption
of there being only the box loops of doublets overestimates
the effect on the correction to gtjphase transition from the

inclusion of b quarks. In fact we used above that the factor

4 per doublet loop could be compensated for by a corre-
sponding reduction in g4t by the factor 4. But now, since
many of the doublet loops can be longer than 4 propagators
around but rather on the average n propagators around, the
correction should instead have been that gnt be reduced by a
factor 4. That of course would lead to the change

gtjphase transition ¼ 1:68=41=n; (26)

where we now have to estimate an appropriate average for
the quantity n.
A doublet loop with n vertices along it has n doublet

propagators. So, compared to the box doublet loops, it has
per loop ðn� 4Þ=4 too few factors of 4 due to the summing
over the different components that can propagate around
the loop. This gives for such doublet loops a suppression

weight factor 4�ðn�4Þ=4. This means that if you compare the
contribution for one diagram and one modified locally in
the diagram reorganizing it so as to replace n=4 box loops
by one n-‘‘propagator’’ loop6 of isodoublets in the local
region considered, then the magnitude of the square of this

modified diagram will be ð4�ðn�4Þ=4Þ2 times the corre-
sponding square of the replaced diagram. Let us suppose
that statistically, ignoring the extra factors for the isodoub-
let loops, the distribution in a random (typical) diagram of
the loop size n is smooth. This distribution of the number
of propagators around the isodoublet loops is briefly dis-
cussed in Appendix F. Taking this distribution to be flat and
essentially constant for the first few n values, we obtain
that the probability distribution of n (on random diagrams
weighted with their magnitude squared) would go as

ð4�ðn�4Þ=4Þ2. If you somehow weighted with amplitude
rather than the squared amplitude, the ‘‘distribution’’

would only go as 4�ðn�4Þ=4.
We may see that this means, in the example of, e.g., the

six sided doublet loop, that its weight factor is 4�ð6�4Þ=4 ¼
1=2 in amplitude. But in probability the six sided loops are

suppressed rather by ð4�ð6�4Þ=4Þ2 ¼ ð1=2Þ2 ¼ 1=4.
Thinking of the Feynman diagrams as adding up with
random phases, the resulting sum of a lot of Feynman
diagrams would statistically get a magnitude correspond-
ing to adding them in quadrature rather than simply adding
real positive numbers with the size of the series of dia-
grams. We indeed take it that the weighting of the impor-
tance of loops of a given number of doublet propagators n
shall be counted as proportional to the squared quantity

ð4�ðn�4Þ=4Þ2 rather than to 4�ðn�4Þ=4 itself. It is then easily
seen that the relative importance of the contributions of the
loops with the series of n values (being n ¼ 4; 6; 8; 10; . . . )
form the series of terms

6Here we count a series of doublet propagators, which reduce
to a single propagator when gluon propagators are ignored, as a
single propagator. Really the easiest way of thinking about this is
to say that we totally ignore the gluons in this calculation of the
backcorrection to our box-diagram approximation of Sec. III.
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1þ 1

4
þ 1

16
þ 1

64
þ � � � ¼ 4

3
: (27)

It follows that, instead of all the correction factors to

gtjphase transition in Sec. III being 4�1=n ¼ 4�1=4 (coming

by thinking of just box loops having n ¼ 4), we get the
following series of correction factors corresponding to the
series of terms in (27)

4�1=4; 4�1=6; 4�1=8; 4�1=10; . . . : (28)

Compared to the correction as made in Sec. III to
gtjphase transition (multiplicatively), we get instead a further

correction—which is really correcting back for the fact that
we have overcorrected—by

1 � 1þ 1
4 � 4�1=6þ1=4 þ 1

16 � 4�1=8þ1=4 þ � � �
1þ 1

4 þ 1
16 þ 1

64 þ � � � � 1:04:

(29)

We have thus crudely estimated that the b-inclusion
correction of Sec. III has to be modified, so as to put the
estimate of the critical gtjphase transition up by 4%.

For a very big number N of Higgs components to
exchange and a corresponding number of left-handed
quark components, the smallest closed loop for the circu-
lation of the weak isospin will be favored. This is because
we get a factor of N for each closed loop. Then for a self-
energy diagram with a given number of doublet propaga-
tors, we get the largest number of factors of N by using the
diagram with the largest number of loops. For large N it
follows that the box-diagram approximation will dominate.
This number N is 4 in the true standard model as already
discussed above. For N being small, however, we have no
guarantee for this box-diagram dominance at all and in-
deed this is the situation for which our calculations in
Sec. II were performed, namely, for N ¼ 1. So we do not
yet really have a good argument for how this Sec. II
calculation can be related to the higher N cases.

Let us now consider the dependence of gtjphase transition on
N, by introducing a parameter nðNÞ giving the typical
doublet loop size in our complicated Feynman diagrams,
so that

gtjphase transition ¼ g0=N
1=n: (30)

Here g0 does not depend onN. For largeN the box diagram
dominates and we clearly have nðNÞ ! 4. It is also clear

that the denominatorN1=n ! 1 forN ¼ 1. But then we can
essentially interpolate the denominator to be approxi-

mately N1=4 for all N. Therefore we can effectively calcu-
late as if Eq. (30) were replaced by

gtjphase transition � g0=N
1=4; (31)

and thereby justify Eq. (25) as a good approximation,
because it is a good interpolation of the general formula.

We estimate that the uncertainty in this interpolation
formula is of order �7%. Combining this �7% error
with an estimated error of �4% on the correction calcu-
lated above, we obtain a total error of �8% Thus our final
result for the correction to gtjphase transition is to increase it by
4� 8%.

V. CORRECTION DUE TO HIGGS MASS

In Appendix C we estimate the Bohr radius of our bound

state of 6tþ 6�t in the critical coupling case to be r0 �
ð ffiffiffiffiffiffiffiffi
4=3

p
mtÞ�1 and thus we see that with a Higgs mass of

115 GeV, which we use in this paper, the effect of the Higgs
particle having a nonzero mass would not be so dramatic
for our calculations. It is however not just this argument of
the radius being small which is the true reason for our
correction, due to the nonzero mass of the Higgs, being
only a small correction. Rather the argumentation is the
following:
As we go into the interior of the bound state we find the

Higgs field due to all the top and antitop quarks around.
These fields have such a sign as to mean that, in reality, the
normal vacuum value of the Higgs field is diminished in
the interior of the bound state. So we shall not use the
Higgs mass for the normal vacuum, but rather some effec-
tive Higgs mass on the background of the Higgs field inside
the bound state. This effective Higgs mass squared is
extracted from the second derivative of the effective po-
tential for the Higgs field at the value at which we want to
‘‘work.’’ To a good approximation the Higgs field effective
potential is given as a fourth order polynomial

Veffð�hÞ ¼ � 1

2
jmhbarej2j�hj2 þ �

8
j�hj4: (32)

So the physical Higgs mass squared is related to the second
derivative of this expression at the minimum, where the
value of the field �h must be fitted to 246 Gev.
But now it is obvious that the second derivative and thus

the effective Higgs mass squared becomes smaller for
lower values of the field �h, where we want to extract
this second derivative. Since in the interior of the bound
state the Higgs field is supposed to be smaller, then the
Higgs mass to be used there actually also becomes smaller
than in the normal vacuum outside the bound state. In this
section we shall at first ignore gluonic contributions to the
binding energy. Then we estimate that the Higgs field
inside the bound state deviates so strongly from the one
in the normal vacuum that even the sign of the full Higgs
field—the vacuum value plus the field contributed by the
quarks—tends to be inverted in the most interior part of the
bound state. Thus, in most of the interior of the bound state
volume, the second derivative is much smaller than in the
normal vacuum or even negative. The latter corresponds
formally to an imaginary effective Higgs mass. So in an
averaged way the Higgs mass squared is, to first approxi-
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mation, an average of both negative and positive
contributions.

Really we should split up the volume of the bound state
into a region—the more interior region—with imaginary
effective Higgs mass and a more exterior region in which
the Higgs mass is real, but even there the numerical value
of the mass is diminished.

In order to get an idea about how strong the Higgs field
should be in the interior of the bound state, we may use the
virial theorem. According to the virial theorem, in the
nonrelativistic approximation which we use with a 1=r
potential, the magnitude of the potential energy has to be
twice as big as the total binding energy. Now we have
precisely decided to adjust the top-quark Yukawa coupling,
so as to make the total binding energy per constituent
numerically equal to half its mass mt=2. This then means
that the potential energy per top quark should be �mt in
the potential 1

2

P
j;j�iVij felt by a constituent only feeling

half the other 11 quarks.
We can understand that the change in energy of a top

quark, resulting from the reduction of the full Higgs field
down from its normal vacuum value to zero, would remove
the mass and thus correspond to a change by�mt. So in the
potential due to only half of the constituents of the bound
state we need just this effect, meaning that the Higgs field
should be zero (in the approximation of ignoring the glu-
ons) at the typical distance from the center. Thus, taking
into account that only half the constituents are inside the
average radius, we estimate that the Higgs field at this
average radius distance actually vanishes,�hjat average pos ¼
0. In the very most interior of the bound state the effective
Higgs mass is not so important, since the distances are
anyway small compared to the Compton wavelength of the
Higgs. On the way out from the center, the effective Higgs
mass is small or even imaginary and only in the outskirts of
the bound state does it take on approximately its normal
value.

Thus, at the average radius hri ¼ 3=2 � r0, the potential
energy per top quark should be equal to �mt, when we
compensate the total mass of the bound state and make it
zero by letting the binding energy be mt=2 per constituent.
This means that the Higgs field is zero, �hjat average pos ¼ 0,

at this average radius hri ¼ 3=2 � r0.
Now the effective potential for the Higgs field has an

inflection point—i.e., second derivative zero—when its

value is 1=
ffiffiffi
3

p ¼ 0:58 times the value in the normal vac-
uum h�hinormal ¼ v. This inflection point value of the
Higgs field thus deviates from the normal vacuum expec-

tation value of the Higgs field by ð1� 1=
ffiffiffi
3

p Þv ¼ 0:423v,
while the average value of the Higgs field reached at r ¼
hri ¼ 3=2 � r0 deviates by v from the normal value. Since,
in the first approximation, the potential felt by the quark in
the bound state goes down inversely with the distance r
from the center, i.e., as / 1=r, the inflection point is
reached when 1=r has fallen by a factor of 1=0:423 ¼

2:37 compared to 1=hri ¼ 2=ð3r0Þ. This means that the
inflection point is reached at the distance rinflection ¼ 3=2 �
2:37r0 ¼ 3:55r0.

A. Correcting the Higgs field strength in the interior
due to the force being partly gluonic

In Sec. II B we calculated that approximately 1=3 of the
force responsible for the binding of the top and antitop
quarks in our bound state was due to gluonic rather than
Higgs exchange. Thus the binding energy from the Higgs
exchange by itself should only make up approximately
ð2=3Þ2 ¼ 4=9 of the total binding energy. Rather than
having the potential energy per top quark equal to �mt

due to the Higgs field being zero at the average distance
from the center, as estimated above, we should instead
have that this average value of the Higgs field should be
�hjat average pos ¼ ð1� 4=9Þv ¼ 5v=9. As we shall see in

Appendix G, we estimate that the field strength measured
as the deviation from the normal vacuum expectation value
v, i.e.,�ð�h � vÞ, reaches a value at the very center of the
bound state which is about 3=2 times the average deviation.
Hence, when the average of the Higgs field deviation is
4v=9, this maximal deviation—or the maximal field
strength due to the top and antitop quarks—will be 3=2 �
4v=9 ¼ 2v=3. Thus the actual value of the Higgs field in
the center of the bound state is ð1� 2=3Þv ¼ v=3, mean-
ing that it is one-third as strong as in the usual vacuum.
Hence the effective Higgs mass remains imaginary all the
way into the center, after we have passed deep enough into
the bound state for the value of the Higgs field to fall below

its value v=
ffiffiffi
3

p
at the inflection point.

The conclusion is that, closer to the center than the

distance at which the field �h has the strength v=
ffiffiffi
3

p
corresponding to the inflection point in the Higgs effective
potential, we have an imaginary effective Higgs mass. We
will now consider the real and imaginary effective Higgs
mass regions separately.

B. The real Higgs mass region

The only region in which we get a real effective Higgs
mass is at distances so far from the center that the value of
the Higgs field has risen above the inflection point value of

v=
ffiffiffi
3

p
. So let us first consider the Higgs field in this region,

where it is numerically bigger than at the inflection point.
According to the above discussion, the average value of

the Higgs field in the region of the constituents of the
bound state should be 5v=9. We take it that this value is
reached at the average position given by r ¼ hri ¼ r0 �
3=2, where r0 is the Bohr radius. Since the Higgs effective
potential has an inflection point when the Higgs field takes

on the value�h ¼ v=
ffiffiffi
3

p
, this must occur in the bound state

when the distance r from the center has been increased

relative to hri ¼ 3=2 � r0 by a factor 1�5=9

1�1=
ffiffi
3

p . Thus, as one

moves out from the center of the bound state, the inflection
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point in the Higgs effective potential is passed at the
distance

r ¼ rinflection ¼ 1� 5=9

1� 1=
ffiffiffi
3

p � hri ¼ 1:052 � hri ¼ 1:58r0:

With the probability distribution in r taken to be /
expð�2r=r0Þr2dr, the probability for a quark being outside
the distance characteristic of the inflection point rinflection
becomes crudely R1

rinflection
expð� 2r

r0
Þr2drR1

0 expð� 2r
r0
Þr2dr (33)

� exp

�
� 2rinflection

r0

�R1
rinflection

expð�2ðr�rinflectionÞ
r0

Þr2inflectiondrR1
0 expð� 2r

r0
Þr2dr

(34)

¼ expð�2rinflection=r0Þ�ð1Þr
2
inflection

�ð3Þðr0=2Þ2
(35)

¼ expð�3:15Þ � 3:152=2 (36)

¼ 21:2%: (37)

Since the distance rinflection from the center to the in-
flection point field value is only 5% greater than the
average distance hri, the Higgs exchange Coulomb poten-
tial at r ¼ rinflection is only reduced by a factor
hri=rinflection ¼ 0:951 compared to its value at the average
distance. So the effect of even an order of unity change of
the potential for r > rinflection (due to the Higgs mass effect)
could at most change the average of the overall binding
potential by the order of 0:951 � 21:2% ¼ 20:2%. At r ¼
rinflection the probability distribution / expð�2r=r0Þr2dr of
the quarks has a logarithmic derivative of ð2=rinflection �
2=r0Þ ¼ ð2 � 0:951=hri � 3=hriÞ ¼ �1:098=hri. So the
range, over which we have a significant part of the proba-
bility, goes outside r ¼ rinflection only by about a distance of
the order of hri=1:098. In that range the effective Higgs
mass squared grows away from its starting value of zero at
rinflection. By using a linear Taylor expansion in �h, we
estimate that the effective Higgs mass squared reaches
ð1=1:098þ1=0:9511Þ�1

1:098 ¼ 0:464 of its final value at infinite dis-

tance. The value of the infinite distance Higgs mass is the
physical Higgs mass mh, which we take to be 115�
50 GeV in this article. So the effective Higgs mass in the

region of interest is mheff ¼ ð115 GeVÞ � ffiffiffiffiffiffiffiffiffiffiffiffi
0:464

p ¼
78:3 GeV. The range over which this Higgs mass is active
is about hri=1:098, so that the correction factor, converting
the Coulomb potential into a Yukawa potential, becomes

exp

�
�mheff � 3r0

2 � 1:098
�
¼ exp

�
�3

mheff=ð
ffiffiffiffiffiffiffiffi
4=3

p
mtÞ

1:098 � 2
�

¼ exp

�
�3

78:3=ð172:6 ffiffiffiffiffiffiffiffi
4=3

p Þ
2:196

�
¼ expð�0:54Þ:

However this 54% correction only applies to quarks at
distances r > rinflection from the center of the bound state.
So the percentwise correction to the total potential, due to
the Higgs mass in the real Higgs mass region, is 20.2% of
54% ¼ 10:9%. This effect gets doubled when calculating
the binding energy, because the radius varies with the
strength of the potential. However, since it is only for the
Higgs part of the potential, it should also be reduced by a
factor 2=3. Finally then we are interested in this paper in
calculating the coupling gtjphase transition, which is extracted

from the fourth root of the binding energy. So, at the end,
this correction leads to an increase in the phase transition
coupling, needed to get just zero mass for the bound state,
by 2 � 2

3 � 10:9
4 % ¼ 3:6%.

C. The imaginary Higgs mass region

As we have just seen the effective Higgs mass is imagi-
nary in the region of greatest relevance for the binding of
the top quarks and antitop quarks, namely, from r ¼ 0 out
to where the Higgs field takes on the inflection point value
at the distance rinflection ¼ 1:58r0 from the center. In
Appendix G, we crudely estimate the average effective
Higgs mass squared, in this region 0< r < rinflection, to
be m2

heff ¼ �m2
h=12.

The most important place to get effects from this effec-
tive imaginary Higgs mass is from the very most central
region out to the average distance of the quarks and anti-
quarks feeling the potential, which must crudely be at the

distance r ¼ hri ¼ 3r0
2 . The usual Yukawa potential having

the form / expð�mhrÞ=r should formally be replaced by a
form / expð�ijmheffjrÞ=r in the imaginary effective Higgs
mass region. However it should be real in as far as the
Higgs field is ‘‘real’’ and, since the sign of the i in the
exponent is ambiguous, we actually have to take

�h / cosðjmheffjrÞ=r (38)

in the effective imaginary Higgs mass region.
Actually it is not difficult to see that an expression of this

form obeys the Klein-Gordon equation with a tachyonic
mass—i.e.,m2

heff < 0. Requiring the Higgs field to be given
by the Coulomb, i.e., massless, potential in the immediate
neighborhood of the particle emitting it, we also see that
the only solution to the Klein-Gordon equation with this
boundary condition becomes the cosine form just
presented.
We take the averaged effect of the Higgs field on the

binding to be approximated by the effect at the average
distance hri. This means that the correction, due to the

C.D. FROGGATT AND H.B. NIELSEN PHYSICAL REVIEW D 80, 034033 (2009)

034033-12



effective tachyonic Higgs mass mheff being imaginary, will
become a factor cosðjmheffjhriÞ in the attractive Higgs
exchange potential between two (anti-)quarks. Since the
latter is proportional to g2t , this means that we effectively
replace g2t by g

2
t cosðjmheff jhriÞ. That will in turn mean that

the gt value needed to achieve a certain condition for the
binding—in our case that we bind just so strongly as to
make the 6tþ 6�t bound state massless—will have to be

increased by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðjmheffjhriÞ

p �1
. In other words

gtjphase transition ! gtjphase transition=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðjmheffjhriÞ

q
(39)

¼ gtjphase transition=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos

�
mhffiffiffiffiffiffi
12

p � 3
2
r0

�s
(40)

¼ gtjphase transition=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos

�
3mh

8mt

�s
(41)

¼ gtjphase transition=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð0:250Þp

(42)

¼ gtjphase transition � 1:016; (43)

showing that gtjphase transition is increased by 1.6%. Here we

assumed the physical Higgs mass to be mh ¼ 115 GeV

and we used the crude estimate jmh effj ¼ mh=
ffiffiffiffiffiffi
12

p
from

Appendix G. For the Bohr radius of the bound state, we

took r0 � ð ffiffiffiffiffiffiffiffi
4=3

p
mtÞ�1 from Appendix C. The average

radius is, of course, hri ¼ 3=2 � r0. Also we used the
experimental value [4] of mt ¼ 172:6 GeV for the top-
quark mass.

Combining this with the correction from the positive
effective Higgs mass region of 3.6%, we get the total
correction from the Higgs mass not being zero to be a
1:6%þ 3:6% ¼ 5:2% increase in the value of gt needed
for the phase transition. We estimate a theoretical uncer-
tainty of �2% in this result. In order to take into account
the �50 GeV error in the Higgs mass, we have repeated
the above calculation for a Higgs mass of 165 GeV.We find
the total correction in this case to be an increase of 8.5% in
the critical value of gt. So we conclude that, for a Higgs
mass of mh ¼ 115� 50 GeV, we obtain a total correction
of 5:2%� 3:3%. Combining in quadrature this 3.3% un-
certainty arising from the error on the Higgs mass with the
estimated theoretical uncertainty on the calculation of 2%,
we finally obtain the value 5:2%� 4% for the increase in
the value of gt needed for the phase transition.

VI. s-CHANNEL EXCHANGES

We only calculated the contributions to the binding
energy from the t-channel and u-channel exchanges above
because

(a) These contributions are somewhat easier to calculate
in the Bohr atom approximation.

(b) We believe that the s-channel contribution will be
relatively smaller due to the effect that, in an
s-channel exchange, a quark and an antiquark to-
gether with their associated binding energy are vir-
tually missing from the bound state. This leads to an
extra suppression of the binding energy from the
s-channel exchange.

In the present section we shall estimate the extra bind-
ing, due to the s-channel exchange of both Higgses and
gluons.

A. Crude channel symmetry estimation of s-channel
contribution

First we shall make an estimate of the binding energy
caused by the s-channel effect—let us first consider just the
Higgs exchange—by thinking of an effective four quark
interaction term. We then compare the s-channel contribu-
tion to the t-channel and u-channel contributions in such a
formalism.
The plan is first to imagine a situation in which we could

ignore the masses of the quark and antiquark, interacting
via the virtual annihilation and recreation mechanism de-
scribed by s-channel scattering. The energy can then be
chosen so that there would be a symmetry between all three
channels (s, t, and u), apart from the selection rules. In this
situation the dominant 4-momenta for the quark (anti-)
quark scattering comes from the 3-momenta arising from
the Heisenberg uncertainty in the momentum, which fol-
lows from the geometrical extension of the wave function
for the quarks and antiquarks.
We may think of evaluating the binding energy, by

taking the expectation value of an operator corresponding
to the Feynman diagram for the Higgs exchange between a
quark and an antiquark in one of the three channels (s, t, or
u). Such an expectation value of a lowest order scattering
operator should then be the change in energy due to this
interaction. Here we do not take into account that, after the
inclusion of some interaction, one should also adjust the
ground state wave function (e.g., the radius of the bound
state). We now imagine an artificial arrangement of
‘‘small’’ energies, replacing the ones due to the quark
masses, such that on the average the 4-momenta through
the three channels (s, t, and u) are arranged to be the same.7

Thereby the propagators in these different channels will
also be the same and thus the diagrams, when averaged,
will give the same numerical values, as long as they are not
simply forbidden by selection rules. This means that they
would give equal contributions to the binding energy. It is
these imagined momentum distribution configurations,
which we want to use for estimating the size of the

7This same value for the three quantities s, t, and u is not at all
consistent with the nonrelativistic situation and, strictly speak-
ing, it is even in the unphysical region in the Mandelstam
diagram.

REMARKABLE COINCIDENCE FOR THE TOP YUKAWA . . . PHYSICAL REVIEW D 80, 034033 (2009)

034033-13



s-channel contribution to the binding energy relative to that
from the t channel. Then we must correct for the fact that
these artificially arranged 4-momenta get modified, when
we instead take the external 4-momenta to contain the
quark masses in the nonrelativistic situation.
Furthermore, we must take into account the effects of the
lack of binding energy to the other quarks, during the
virtual time in which the pair of scattering quarks is absent
from the bound state.

Let us denote by B the binding energy due to an allowed
t-channel exchange between two quarks, which is achieved
without changing the bound state wave function and is
hence proportional to g2t rather than to g4t . Then this
binding energy B is indeed the expectation value of the
operator connected with the t-channel exchange diagram
for the scattering of the two quarks.

In the artificial situation proposed above, we arranged
the energy components of the four-momentum distribu-
tions for the quarks, so that there was a symmetry between
the three channels with respect to these four-momentum
distributions. This then means that not only would the
u-channel and t-channel interactions, counted in the
same way, lead to the same binding B, but even the
s channel would give the binding B in the artificial
situation.

Next we must estimate the change in the binding B,
when we include the correct rather than the artificial ex-
ternal 4-momenta. The idea is that this makes no difference
as far as the three momentum is concerned. The major
effect comes from the inclusion of the correct mass ener-
gies and from the lack of binding to the other quarks in the
bound state during the s-channel quark scattering. Thus
there is no difference—at least in the nonrelativistic ap-
proximation—to the 4-momenta in the u channel and the
t channel. These u and t channels contribute a binding
energy B by definition, and B is not changed relative to the
artificial kinematical situation by including the nonrelativ-
istic masses into the energies. So we only need to get the
correct replacement for B for the s-channel diagrams.

We now need to estimate the correction to the s-channel
propagator, by replacing the s-channel propagator with the
artificial four-momentum going through it by the one hav-
ing the correct four-momentum (mainly mass energy)
going through it instead. Now the artificial four-
momentum going through the s channel was precisely
made up to be just the same as what goes through the
t channel in the t-channel diagram. So really we ask for the
ratio of the s-channel propagator in the true s-channel
diagram to the t-channel propagator in the t-channel dia-
gram. Then we can correct the binding energy, appropri-
ately taken from the t channel, by this factor and thereby
obtain the binding energy due to the corresponding
s-channel exchange term.

In order to perform this correction, we need to estimate
not only the binding B, which we have essentially already

done in previous sections, but also the average of the
square of the four-momentum going through the
t-channel propagator.

B. Estimate of size of average t-channel momentum in
propagator

The average three momentum squared ~q2 in the
t-channel propagator is achieved as the sum of the mo-
mentum distributions of two of the Higgs emitting
quarks—really the same quark before and after the emis-
sion. Now we may easily estimate the expectation value of
the ~p2 distribution for the quark in the bound state, using
the virial theorem and the binding energy. In fact we have
from Eq. (24) that

mt=2 ¼ binding energy ¼ �ðVpotential þ h ~p2=ð2mtÞiÞ:
(44)

As discussed in Sec. V, it follows from the virial theorem
that

Vpotential ¼ �2h ~p2=ð2mtÞi; (45)

which means that

h ~p2=ð2mtÞi ¼ mt=2; (46)

and hence

h ~p2i ¼ m2
t : (47)

So, since the t-channel exchange goes between a quark to
quark transition vertex and another one, the probability
distribution for the momentum squared in the propagator
should really be the product of the distributions appearing
from the two emissions. In the Gaussian approximation the
product distribution will have the spread h ~q2i obtained by
adding the inverse h ~q2i’s, i.e., h ~q2i�1 for the two distribu-
tions multiplied. These emission distributions in turn have,
in Gaussian approximation, the average of the ~q2 given as
the sum of that for the quark before and that after the
emission. It is easy to see that we then end up having the
four or equivalently three momentum squared in the
t-channel propagator being the same as the distribution
of ~p for a single quark in the wave function. In other words
we obtain the propagator momentum squared average

h ~q2i ¼ m2
t : (48)

C. Naive calculation with just the quark masses

If we just calculate naively, according to the prescription
suggested, we should now simply insert the crude non-
relativistic approximation 2mt for the s-channel propagator
four-momentum value in the time direction, which domi-
nates. This would mean a decrease of the s-channel propa-
gator by a factor 4 compared to the one in the artificial
situation or equivalently relative to the t-channel one. This
is only so simple because we ignore both the Higgs mass
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and the lack of binding energy coming from the quark-
antiquark pair during their virtual annihilation time. This
result means that the binding energy due to the s channel is
reduced from B down to B=4.

In the following part of this section we shall correct this
naive s-channel binding energy expression B=4, by taking
into account the very strong interaction which the consid-
ered quarks, annihilating into the Higgs, have with the
other quarks in the bound state. In our case, in which the
binding cancels the mass energy, of course this interaction
must be very significant. Although including such effects is
in principle higher order and really corresponds to calcu-
lating loop diagrams, we indeed need to include them at
least crudely. We shall perform these corrections in a
couple of steps:

(1) We shall consider the Higgs relativistic Feyman
propagator from a nonrelativistic quantum mechani-
cal second order perturbation theory point of view,
interpreting it to have two physically different fac-
tors in the denominator; see Sec. VID.

(2) We shall take into account and estimate the extra
energy contribution accompanying the Higgs, due to
the change in the binding of quarks inside the bound
state; see Sec. VI E.

D. Comparing nonrelativistic perturbation with
Feynman propagator

It is well known that the relativistic Higgs propagator is

prop ðpÞ ¼ i

p2 �m2
¼ i

ðp0 � Eð ~pÞÞðp0 þ Eð ~pÞÞ : (49)

This is made in a normalization of the Higgs field�H given
by the expression Z

�y
H@
$
0�Hd

3x ¼ 1: (50)

This normalization deviates from the simple nonrelativistic
one: Z

�y
H nr�H nrd

3x ¼ 1: (51)

For approximate energy eigenstates with energy EHiggs,

this implies the following relationship between the relativ-
istically and nonrelativistically normalized fields:

�H ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHiggs

p �H nr: (52)

The interaction energy density of the Yukawa term in the
Lagrangian becomes

H Yukawa ¼ �gtð �c tR�
y
Hc tbL þ H:c:Þ (53)

[see Eq. (A7) in Appendix A for notation], where the field
�H is the relativistically normalized field. Thus, in non-
relativistic notation, this Hamiltonian density would rather

look like

H Yukawa ¼ � gtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHiggs

p ð �c tR�
y
H nrc tbL þ H:c:Þ: (54)

Now, according to usual nonrelativistic second order
perturbation theory, one has the correction to say the
energy of the ground state jgsi from this second order
effect:

hgsj
Z

H Yukawad
3xjHiggsi

� hHiggsj
Z

H Yukawad
3xjgsi=ðEHiggs � EgsÞ: (55)

For example, say we wanted to consider the change in
energy of a quark-antiquark pair due to s-channel Higgs
exchange, then Egs would be the energy of the unperturbed

pair and EHiggs would be Eð ~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h þ ~p2
q

. In Eq. (49)

the denominator factor p0 � Eð ~pÞ is thus to be identified
with the denominator in the nonrelativistic perturbation
correction (55), i.e.,

p0 � Eð ~pÞ ¼ �ðEHiggs � EgsÞ: (56)

In the nonrelativistic notation, using (54), and for p0 close
to the on-shell energy of the Higgs, the matrix elements in

(55) each contain an extra denominator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHiggs

p
compared

to the relativistic notation, which we can transfer to the
propagator. In this way we get a propagator to be used,
together with the formal relativistic notation matrix ele-
ment, without such a denominator,

�i

EHiggs�Egs

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHiggs

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHiggs

p ¼ i

ðp0�Eð ~pÞÞð2EHiggsÞ
� i

ðp0�Eð ~pÞÞðp0þEð ~pÞÞ
¼ propðpÞ: (57)

It will be important for us to use this physical interpre-
tation of the two different factors in the denominator of the
relativistic propagator, when in the next section we shall
take into account the very strong interaction of the quarks,
which annihilate into the Higgs, with the rest of the quarks
in the bound state.

E. Extra energy in the intermediate state

The important effect of the strong interaction, between
the two annihilating quarks and the other quarks, is that the
energy of the remaining 10 quarks (really 5 quarks and 5
antiquarks) may be changed drastically by the absence of
the annihilated quarks. This change in energy means that
the energy of the intermediate state—which is talked about
here as the Higgs state—is actually shifted relative to the
Higgs energy proper to an effective Higgs energy including
this interaction energy change.
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When we want to include the missing binding energy of
the annihilated pair together with them into the calculation,
one should strictly speaking consider the whole process
described by an effective loop Feynman diagram, in which
the bound state of 12 particles (the t ball) is split up into a
Higgs and a ‘‘core’’ consisting of a bound state of 10
constituents. The loop vertex should then really be a de-
scription of the annihilation process coupling to the emit-
ted Higgs. If we indeed went into the details of the
estimation of such a loop, we would have to integrate
over a loop energy, p0. The integrand would have poles
coming from both the Higgs and the core (i.e., the 10-
constituent bound state). In fact we propose to look at the
contributions from near these poles as two terms to be
calculated separately. In order to avoid going into the de-
tails of loops, we shall however make another presentation,
in which we instead only talk about tree diagrams. The
price, however, is that now we must vary what state we take
as the background (or one could say the vacuum), in
evaluating what we believe would be the same contribu-
tions that come from the different poles in the loop
formulation.

We can indeed consider the following two points of
view, with respect to the vacuum for our problem:

(1) We choose the ‘‘vacuum’’ to be the full 12 compo-
nent bound state with an extra Higgs present, in a
state with the spatial Higgs momentum distribution
which we estimate couples to the annihilation. The
initial state, consisting of the 12-constituent bound
state without any extra Higgs, now has an energy
below that of the vacuum, because of its lacking
Higgs. That is to say the initial state has an energy
�EHiggs, where EHiggs is the energy of the Higgs in

the vacuum. So we think of this as the initiating
q �q pair having the initial energy �EHiggs.

Now the process is that a t�t pair annihilates to
become a hole (really a double hole) in the vacuum,
because the vacuum should have 12 constituents and
after the annihilation there are only 10 left. So they
really form a virtual s-channel hole. This hole rep-
resents that we have the 10-constituent bound state
instead of the 12-constituent one. As we shall see in
Appendix H, the mass difference between these
bound states is m10 �m12 � 950 GeV. So the
hole must be counted as having the energy
950 GeV. Since we start with a state with energy
�EHiggs, taken to be of the order �mt because the

momentum is of that order, it means that the
(double) hole must be strongly off shell.
In the relativistic notation we formally get a propa-
gator with a denominator of the order of 950 GeV to
the second power, which means that we assume it to
be smaller than the corresponding object in the
t channel by a factor ð950 GeV=mtÞ2 ¼
ð950=172Þ2 ¼ 5:52 ¼ 30:5. But now, if we want to

write the diagram in terms of the nonrelativistic
vertex form (see Sec. VID), there is in this form a

factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eholeð ~pÞ

p
for each of the two vertices that

must be extracted to get the vertex in the nonrela-
tivistic formulation (52). Using the nonrelativisti-
cally normalized field �hole nr, we would expect the
transition matrix element between the 12-
constituent bound state and the 10-constituent one
to be a rather simple overlap giving just unity in first
approximation—of ignoring, for example, the dif-
ference in radii. Thus one of the two factors of 5.5 is
used up by the factor 1=2Ehole. So, as we think of
varying the ‘‘big’’ number 5.5, we only get the
s-channel contribution suppressed by one factor of
5.5. Since we assume that for the hole energy of the
order of mt only we would have gotten the same as
in the t-channel case, this means that the suppres-
sion of the s-channel contribution is by the factor
5.5. However, we did not include the kinetic energy
resulting from the spatial momentum being of the
order of mt, as given by Eq. (47). This means that

the true suppression factor is rather
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:52 þ 1

p ¼
5:6.

(2) In this case we consider a vacuum which is simply
the bound state with 10 constituents and we consider
the Higgs to be the s-channel particle. Then the
initial state has all the extra binding energy of the
12-constituent state compared to the 10-constituent
one. That is to say now the initial energy is
�950 GeV. In the Higgs propagator the factors in
the denominator are of this order of magnitude, but
we cannot absorb such strong suppression from even
one of them by crudely identifying it with the factors

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EHiggs

p
contained in the Higgs vertices, because

the EHiggs in the latter is given by the Higgs momen-

tum and mass and these quantities in our model
never reach more than about mt. So, in this case 2,
we indeed get a very small contribution only of
order 1=5:52 ¼ 1=30:5 compared to the t channel
or rather 1=5:62 ¼ 1=31:4, when we include the
spatial momentum.

As we shall see in the following section, these two
different tree-diagram estimates should really be added.
In other words, the full s-channel contribution is sup-
pressed, relative to the analogous t-channel term, by a
suppression factor equal to the sum of the two above
computed suppression factors:

“ suppression factor” ¼ 1=5:6þ 1=5:62

� 1

5:6ð1� 1=5:6Þ � 1=4:6: (58)

Thus we shall calculate an s-channel contribution by first
evaluating the coupling and combinatorial factors and then
dividing the result by 4.6. We shall do this for the Higgs
exchange in Sec. VIG and for the gluons in Sec. VIH.
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F. Arguing for adding the two terms

From the above discussion it may not be clear what we
have to do with the two different results obtained under the
points of view 1 and 2, respectively. We want to argue here
that we should indeed add these two contributions.
However, for this purpose, it is best to think of doing the
calculation as a loop correction. Then we look at the
correction to the binding energy as the result of the virtual
split up of the 12-constituent bound state (the t ball) into a
Higgs particle and the bound state consisting of only 10
constituents. This means that it is truly a self-energy dia-
gram in an effective field theory (with the various bound
states as particles giving Feynman rules together with, e.g.,
the Higgs), which corrects the mass of the 12-constituent
bound state.

When we formulate the mass correction in this loop way,
we end up with a loop four-momentum q over which to
integrate. Let us now think of the performance of the
integral over the energy component q0 of this loop four-
momentum q: For fixed values of the spatial components of
the loop four-momentum ~q the integrand is (basically) a
product of two propagators, namely, one for the 10-
constituent bound state and one for the Higgs. It therefore
gets poles whenever one of these two particles is on shell.
We imagine to approximate the whole loop integral by the
sum over contributions from the neighborhood of these
poles. Actually it is not difficult to see that, by an appro-
priate closing and deformation of the contour, you can
prove that the loop integral over the q0-dummy variable
gives a sum over the pole residues (divided by 2�). Now
the point is that these pole contributions can indeed be
identified with the results from the formal tree diagrams
just discussed under points 1 and 2. In fact the contribution
from the Higgs-propagator pole (for positive Higgs energy)
in the loop integrand gives us the formal tree diagram
corresponding to the on-shell Higgs being considered
part of the vacuum. The propagator in this formal tree
diagram corresponds to the hole in the other 12-constituent
part of the vacuum, so that it is really the propagator for the
10-constituent particle that lies under the hole. Thus this
contribution from the pole of the Higgs propagator in the
loop corresponds to case 1 above. Similarly the residue
contribution from the pole of the 10-constituent bound
state propagator in the loop integrand gives the contribu-
tion in which this 10-constituent bound state is identified
with the vacuum. This is case 2 above.

Since we have now identified the two tree-diagram con-
tributions from the previous section as being two contri-
butions coming out of the same loop integral, we see that
these contributions to shifting the mass of the 12-
constituent bound state must be added.

G. Finding the s-channel Higgs correction to gt

A certain quark in the bound state can only annihilate
together with the antiquark having just the compensating

color and spin. So there is among the antiquarks only one
that can annihilate with a given quark into the Higgs. This
means that the factor 11, corresponding to the number of
quarks or antiquarks that can interact via t-channel ex-
change with a given quark, gets replaced by 1 for the
s-channel exchange. In Sec. II A we saw that, for
u-channel exchange, we had to replace this factor of 11
by 5. So, by including the u channel, the interaction of a
quark by Higgs exchange has a combined strength of
coupling to the other constituents as if there were 16 of
them coupling by only t-channel exchange. Thus, if the
strength of the s-channel coupling, when allowed, had been
just the same as for the t channel, meaning just B, then the
coupling strength of the s channel would have made up 1

16

that of the t- plus u-channel Higgs exchange. Now these
coupling strengths or scattering amplitudes are propor-
tional to g2t . Thus, if the s-channel Higgs exchange results
in a 1=16 ¼ 6:25% increase in the scattering amplitude,
then we should decrease the previously predicted critical
coupling gtjphase transition by 1

2 � 1
16 ¼ 3:125%. But now, as

we estimated above in Sec. VI E, the s-channel propagator
has to be suppressed by a factor of 4.6. This means then
that, if we totally ignore the gluons, the percentwise de-
crease of the previously calculated critical gtjphase transition
would be 1

32�4:6 ¼ 3:125
4:6 % ¼ 0:68%. Since the gluon con-

tribution to the potential does not depend on g2t , the cor-
rection of including the s-channel Higgs exchange will
change the critical gt ¼ gtjphase transition downward by

0.68%, i.e.,

� lngtjphase transition ¼ �0:68% ðfrom s-channel HiggsÞ:
(59)

H. The gluon s-channel correction

Next we shall consider the change in the scattering
amplitude, or equivalently the potential, from the exchange
of gluons in the s channel. Each quark can interact by
annihilating into a gluon with any one of the antiquarks,
except when they form a color singlet together. We can
take care of the latter exception by including a correction
factor 8=9 in the scattering amplitude. Apart from this
exception, we have interaction between all quarks with
antiquarks, while neither quark and quark nor antiquark
and antiquark can annihilate into gluons. So one quark can
interact via the s channel with 6 antiquarks. Thus we can
estimate the strength of the s-channel gluon exchange,
counted in amplitude or potential, as being 6=16 times as
strong as the u- plus t-channel Higgs exchange, provided
we replace the Higgs coupling g2t =2 ¼ ð0:935Þ2=2 ¼
0:437 by the equivalent gluon coupling e2t�t ¼ 1:83 [see

Eq. (7)]. This replacement gives an increase in strength
by a factor of 4.2. We must also remember to include the
correction factor of 8=9. So finally we get the s-channel
gluon exchange binding amplitude to be given relative to
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the combined u- and t-channel Higgs exchange by

gluon s channel

Higgs t channelþ u channel
¼ 6

16
� 4:2
4:6

� 8
9
¼ 0:304:

(60)

Here we also included the suppression factor of 4.6 from
Sec. VI E for the s channel. Now, since the amplitude in
which we calculated the correction is proportional to g2t ,
we obtain a backcorrection in g2t of 30.4%, meaning that g2t
after the correction has to fill in the same as g2t before with
30.4% subtracted, i.e., g2t jcorrected ¼ ð1� 30:4%Þg2t jbefore.
So the correction to gtjphase transition due to s-channel gluon

exchange is downward by � lnð1� 0:304Þ=2 ¼ 18:1%,
i.e.,

� lngtjphase transition ¼ �18:1% ðfrom s-channel gluonsÞ:
(61)

I. s-channel summary

Summarizing we obtain

� lngtjphase transition ¼ �18:1%� 0:68%

¼ �18:8% ðfrom full s channelÞ
(62)

for the total correction from the s channel counted
logarithmically.

VII. TOP MASS FIELD DEPENDENCE
CORRECTIONS

If we could be allowed to use the masses mi for the
constituent particles undisturbed by the Higgs field having
different values in different places in the interior of the
bound state, then the expression (21) for the infinite mo-
mentum frame energy, derived in Appendix B, would lead
to the expansion for m2

bound in Eq. (15) with Ebinding being

just the nonrelativistic expression formally, even if this
binding is big compared to the mass terms. In this sense
the infinite momentum frame expansion justifies the formal
nonrelativistic calculation, provided we take the former to
mean the expansion of the mass squared being extrapolated
without higher order terms.

Now, however, the masses occurring in this formula are
supposedly changed, due to the average Higgs field in the
interior of the bound state being smaller than in the outside.
Such a change of the effective top-quark mass will natu-
rally change the mass of the bound state and, at first, it
looks like we should include a correction for this effect.

However, we see that in the approximation of the masses
all being scaled by the same factor, due to the averaged
Higgs field in the region where they are on the average, the
whole bound state mass squared will simply be scaled by
the square of this factor. This is simply a consequence of a
dimensional argument, since the mass is the only dimen-

sional quantity entering the calculation. The quantity pz is,
namely, only a formal going to infinity quantity.
Now, however, the quantity we are truly after is just the

gt value gtjphase transition at which the mass squared of the

bound state becomes zero. That is, however, a dimension-
less quantity being asked for, and that cannot depend on
the value of the single mass scale quantity, the average
mass. Thus there should be no change in our phase tran-
sition coupling prediction due to such an effective mass
change, provided we can count it as being by the same
factor crudely all over the inside of the bound state. Thus
actually, in the first approximation, no corrections are
needed. This means 0% correction to first approximation.

A. Next order correction in effective mass variation
with the field

Now, however, the approximation in which the effective
mass inside the bound state should be just the same all over
in space is not so terribly good. Rather we must take into
account that, for a quark being in the deep interior of the
bound state, the effective mass is smaller than for one being
farther out in the outskirts of the bound state.
In order to correct for this variation of the effective

mass, we imagine to have calculated the average mass
mav corresponding to the average Higgs field felt by the
top quark. Then we may write the true space-dependent
effective mass as

mð~rÞ ¼ mav þ �mð ~rÞ: (63)

In Sec. Vabout the Higgs mass correction, we found that
even at the center of the bound state the Higgs field was
estimated to be 1=3 of its faraway value, i.e., v=3, while on
the average with respect to the constituent distribution it
was 5v=9. In the classical approximation the constituent
can only reach out to the distance r where the kinetic
energy becomes zero. Using the virial theorem, this corre-
sponds to where the potential has fallen to numerically half
the value at the average distance hri. At this classical upper
limit for the radial distance r, the field �h must be in the
middle between the faraway value v and 5v=9. Hence, at
the classical boundary for the constituents, the Higgs field
is 7v=9. This already gives us an estimate of the fluctuation
in the effective mass

j�mj
mav

<
5=9� 1=3

5=9
¼ 2

5
¼ 0:4 (64)

or

j�mj
mav

<
7=9� 5=9

5=9
¼ 2

5
¼ 0:4: (65)

A priori these coincident estimates are even overestimates
and should be reduced by considering a flat interval distri-

bution between v=3 and 7v=9. Then, using

R
1

�1
x2dxR

1

�1
dx

¼ 1=3,
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we obtain a reduction factor of 1=
ffiffiffi
3

p
, which givesffiffiffiffiffiffiffiffiffiffiffiffiffiffih�m2ip

hmi ¼ j�mj
mav

� 5=9� 1=3

5=9 � ffiffiffi
3

p ¼ 2

5
ffiffiffi
3

p ¼ 0:23: (66)

B. An alternative mass fluctuation estimate

Another estimate of this ‘‘fluctuation’’ in the effective
quark mass is gotten by using the fact that the relative
spread in the radial distance isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihr2 � hri2ip

hri ¼ 1ffiffiffi
3

p ; (67)

which in turn implies a spread in the potential energyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhVi � hViÞ2p
hVi � 1ffiffiffi

3
p : (68)

Since V / mt �mð ~rÞ, this means thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihðmav �mð ~rÞÞ2ip
mt � hmð ~rÞi � 1ffiffiffi

3
p ; (69)

and thus, using mav ¼ 5
9mt, we getffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�mð~rÞ2ip

mav

� 4

5
ffiffiffi
3

p ¼ 0:46: (70)

But here we did not take into account the flattening off of
the potential in the center discussed in Appendix G, which
we used in the first estimate.

Instead of arguing via first estimating the fluctuation in
the distance and then calculating as if this fluctuation were
small, we can directly calculate the fluctuation in 1=r or
equivalently the Coulomb potential. In this case we get a

value of 4=5, which is
ffiffiffi
3

p
times bigger than (70).

C. Taylor expanding in the mass

In the nonrelativistic looking condition for the binding
energy per particle just being equal to mð ~rÞ=2, given in
Eq. (24), the only mð~rÞ-dependent term with nonzero sec-
ond derivative with respect to mð~rÞ is the kinetic energy

term ~p2

2m . This term has the second derivative

@2ð ~p2

2mÞ
@m2

¼ ~p2

m3
: (71)

Provided that the average of the square of the �mð~rÞ is as
given by (66), i.e., hð�mÞ2i ¼ 0:232 �m2

av ¼ 0:053m2
av, we

obtain an effective replacement for the kinetic term:

~p2

2m
! ~p2

2m
þ 1

2

~p2

m3
� hð�mÞ2i ¼ ~p2

2m
þ 1

2

~p2

m3
� 0:053m2

av

¼ ~p2

2m
ð1þ 0:016Þ: (72)

D. Correction to gtjphase transition from kinetic term
mass fluctuation change

The change of the kinetic term effectively due to the
mass variation by the factor (1þ 0:016) means that, in
Eq. (B6) for the Hamiltonian in Appendix B, we have
replaced the top-quark mass by a value ð1þ 0:016Þ�1

times as big. Thus the binding energy resulting from use
of the modified version of this expression will, for dimen-
sional reasons, be (1þ 0:016) times smaller than the usual
Rydberg (3). To compensate for this decrease in the bind-
ing energy, the fourth power of gt to which the Rydberg is
proportional must be increased by 1.6%. Thus this correc-
tion, due to the variation of the effective mass over the
bound state volume, to our critical Yukawa coupling pre-
diction is that we increase the prediction by 0.4%.
Had we, instead of (66), used the alternative estimate

(70) for the variation of the effective mass, we would have
gotten a 4 times bigger value for hð�mÞ2i. This would, in
turn, mean an increase in the value for the predicted critical
Yukawa coupling of 0:4% � 4 ¼ 1:6%. Had we used the
even bigger estimate at the end of Sec. VII B for the
fluctuation in the massffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�mð ~rÞ2ip

mav

� 4=5 ¼ 0:80; (73)

we would have gotten an increase of 4.8% in our predicted
critical Yukawa coupling.
Since the bigger estimates of the correction correspond

to using an unsmoothed potential even near the center of
the bound state, they are probably less reliable. So we have
a bit more confidence in the 0.4% estimate; but let us take
� lngtjphase transition ¼ 2%� 3% as a reasonable average.

VIII. FINITE SPEED OF HIGGS EXCHANGE

In the nonrelativistic calculations which we used, we
took the interactions to be instantaneous and ignored the
fact that the Higgs or gluon being exchanged between a
couple of quarks or antiquarks after all only travels with the
speed of light. Under such conditions the only Feynman
digrams for t-channel exchange, are the diagrams in which
Higgses or gluons are exchanged one after the other.
However, diagrams, in which a couple of quarks among
our 12 interact by an exchange of two Higgses propagating
simultaneously, are ignored in this approximation. By this
we mean that a diagram in which the two Higgs propaga-
tors cross each other, when being exchanged, is what is
ignored in the nonrelativistic approximation we used. We
should however, to higher accuracy, include such possible
effects of the emission and the absorption of the exchanged
Higgs not being quite simultaneous.
We shall do this crudely here, by estimating the fluctua-

tion caused by this effect in the distance r between the
interacting quarks to be used in the potential (1): By the
virial theorem, we have that the kinetic energy of a quark in
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its motion in the potential equals minus one-half of the
potential energy and, thus, is just equal to the binding
energy numerically. Since the binding energy, in the criti-
cal case which we look for, is mt=2, we obtain on the
average �

~p2

2mt

�
¼ mt=2: (74)

This implies that for a single component of the momen-
tum—e.g., the component along the line connecting the
interacting quarks—we have on the average

hp2
xi ¼ m2

t =3: (75)

This implies a velocity component with a spread, due
essentially to quantum fluctuations, of

hv2
xi ¼ 1=3: (76)

This in turn implies that the effective distance r to be used

in the potentials such as (1) actually fluctuates by
ffiffiffiffiffiffiffiffi
1=3

p �
100% ¼ 57%. Now the second derivatives of the potentials
such as (1) are of the form

d2Vt-channel Higgs

dr2
¼ � 2 � g2t =2

4�r3
: (77)

Hence, by Taylor expanding the potential at the Higgs-
delay corrected distance rdc around the first or nonrelativ-
istic approximation value rnr for the distance between the
interacting quarks, we get the fluctuation corrected effec-
tive potential to be

VeffðrnrÞ ¼
�
Vt-channel HiggsðrnrÞ

þ dVt-channel HiggsðrnrÞ
drnr

ðrdc � rnrÞ (78)

þ 1

2

d2Vt-channel HiggsðrnrÞ
dr2nr

ðrdc � rnrÞ2 þ � � �
�

(79)

¼ Vt-channel HiggsðrnrÞ þ 1

2

d2Vt-channel HiggsðrnrÞ
dr2nr

r2nr=3þ � � �
(80)

¼ ð1þ 1=3ÞVt-channel HiggsðrnrÞ þ � � � : (81)

Thus, at the end, we get that this effect of the delay of the
propagation of the (in first approximation) infinite speed
Higgs exchange causes an effective spread in the distance
rdc to be used for evaluating the potential. This causes an
effective increase in the potential by a factor of 1þ 1=3 ¼
4=3, in our situation corresponding to the critical case of a
zero mass bound state. In turn this means that the coupling
gt needed to provide this critical mass zero bound state
should be corrected, by reducing it by the square root of
this factor of 4=3. This means that, instead of Eq. (18), we

get the same equation but with the factor 0.0929 replaced
by a number which is ð4=3Þ2 times bigger. So the equation
now reads

0 ¼ 1� 0:0929 � ð4=3Þ2 � ð0:456þ g2t Þ2: (82)

Thus we obtain the following value for the critical gt,
evaluated using the delay corrected effective potential
(81):

gtjphase transition ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð0:0929 � ð4=3Þ2Þ

q
� 0:456

r
¼ 1:42:

(83)

Compared to the previous value for the critical gt at this
stage—before even the introduction of the b quark correc-
tion of Sec. III—this is a downward correction given
logarithmically percentwise by

� lngtjphase transition ¼ ln
1:42

1:68
¼ �17:2%: (84)

IX. MANY BODY CORRECTION

Clearly the calculation made as if all the other quarks or
antiquarks than the one considered were sitting in just one
point cannot be correct; so we have in principle to make
calculations on the system of the 12 constituents as a true
many body system.
Here we shall do this in a rather crude way, only thinking

of an ansatz in which the constituents are described by a
factorizable wave function, meaning that it is a product of a
wave function for each constituent independently of the
other ones. Then it is obvious that the spread in the distance

between a couple of constituents will be just
ffiffiffi
2

p
times

bigger than that of the independent particle distributions.
In turn this means that, to the extent that the expectation
value of the momentum squared is given by—or at least
varies as—the Heisenberg uncertainty relation, the inde-
pendent h ~p2iwill be twice that of the relative motion of one
pair. This change will function as if the mass in the kinetic
term were, for the many particle description, smaller by a
factor 2 than in the starting relative position description.
For dimensional reasons such a diminishing of the mass by
a factor 2 would also diminish the resulting binding energy
by this factor 2. In turn that would mean that we should

correct our critical coupling upward by a factor of 21=4.
This means a logarithmic percentwise increase of 100% �
lnð2Þ=4 ¼ 17:3%.
The many body corrections we are studying here reflect

the fact that the calculation of the quark contributions to
the binding, as if the individual pairs of top or antitop
quarks could distribute themselves so as to minimize the
energy of just that pair, cannot be quite correct. If two of
the constituents are not essentially at the same site, it is
impossible for a third one to be very close to both. In
Appendix I we have illustrated this problem of the impos-
sibility of having all the pairs have their optimized relative
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distance distribution, by using a Gaussian ansatz factoriz-
able wave function for the whole bound state. Indeed the
factor of 2 correction discussed in the previous section is
essentially realized, but more precisely a factor of 2.16 is
obtained [see Eq. (I6)]. This corresponds to an upward
correction of 100% � lnð2:16Þ=4 ¼ 19:3% in our critical
coupling gtjphase transition, which provides an upper bound

for the many body correction considered. In fact one could
a priori very easily imagine that, by making a more com-
plicated ansatz wave function, we could enhance the
probability for the individual pairs having a small relative
distance. In this way we could make the distribution be-
tween the constituents in a pair approach more closely to
the ideal ground state distribution for a two particle system.
Certainly we must expect that the true wave function for
the bound state system must have gone a bit in this direc-
tion compared to the ansatz in Appendix I.

It may be best to think about this effect, of somehow
getting the wave function improved to cluster the constit-
uents more on the short distances, as an antiscreening that
could even be approximately described by a ‘‘dielectric’’
constant for the medium of constituents conceived as a
material. With such a dielectric constant �, the potential
around a constituent is modified from the usual

ðgt=
ffiffiffi
2

p Þ=4�r form to ðgt=
ffiffiffi
2

p Þ=4��r.
Let us now attempt to estimate an effective 1=� correc-

tion to use (on the potential) as a function of r. Such a
correction factor 1=� would correct the quantity g2t in our
expression for the potential, which we might think of as
being in an effective distance r dependent way.

All our earlier calculations before this section were
made without any ‘‘many body’’ correction and assumed
the absolutely most well-arranged relative distributions for
all the pairs. However it is not possible to realize such a
distribution for all the quarks simultaneously and thus
these previous calculations provide an upper limit to the
correction factor. It is therefore impossible that the correc-

tion factor 1=� could be more than a factor
ffiffiffiffiffiffiffiffiffi
2:16

p
.

When we then think of the correction factor as depen-
dent on an effective distance r, we must imagine a function

of this r taking values between 1 and
ffiffiffiffiffiffiffiffiffi
2:16

p
. It is clear that,

for the distance r going to zero, it is hopeless to organize
clustering and the correction factor must go to 1 there. Also
at r ! 1, where we think of a constituent isolated from the
rest, there are essentially no particles to cluster with and no
further clustering is possible. In practice the rest of the
particles are already clustered in this case. So the further
correction factor can only be 1 in this limit too. In the
intermediate region in r, you would however expect some
further clustering to take place compared to that of the
ansatz wave function in Appendix I. So let us now assume
that the correction factor as a function of r is reasonably
smooth, say basically a second order polynomial, in the
range of any significant population of the constituent dis-
tance r.

The maximal possible modification of our above correc-
tion of 19.3% could now only be achieved by having the

maximal correction factor 1=� ¼ ffiffiffiffiffiffiffiffiffi
2:16

p
around the typical

or most likely distance, i.e., around r ¼ hri. But then the
correction factor must also reach 1=� ¼ 1 as r goes to zero
or to infinity effectively. Roughly this must mean that, for
the tails of the distribution to both sides, we get the

correction factor 1 rather than the
ffiffiffiffiffiffiffiffiffi
2:16

p
. Let us very

crudely estimate that, averaged over the distribution, we

get the mean between the two values 1 and
ffiffiffiffiffiffiffiffiffi
2:16

p
. That

would mean that we would get g2t replaced by g2t � ð1þffiffiffiffiffiffiffiffiffi
2:16

p Þ=2 or g2t � ð2:16Þ1=4 using a geometrical mean in-
stead. In order to compensate for that, we would need to
decrease the critical coupling gtjphase transition by a factor of

ð2:16Þ1=8. This means a decrease of the critical gt predic-
tion from our model by 10.1%.
Together with the 19.3% increase, this ‘‘backcorrection’’

means that we would end up with a 19:3%� 10:1% ¼
9:2% correction. It seems reasonable to consider this latter
value, i.e., a 9.2% increase of gtjphase transition, as a lower

bound for the many body correction. Therefore, crudely,
we might present the result of this rather big many body
correction as an increase of the predicted critical coupling
by ð19:3þ 9:2Þ%=2� 9:2%=2 ¼ 14:2%� 4:6%.

X. THE SUð2Þ PART OF Z0 AND W EXCHANGE
EFFECTS

We expect the effect of exchanging the time components
or rather Coulomb fields for Z0, W�, and the photon to be
rather small, in as far as these exchanges are proportional
to the fine structure constants for the SUð2Þ andUð1Þ gauge
groups in the standard model, which are rather small. We
should bear in mind that we already have included the
scalar components of these a prioriweak interaction gauge
bosons. They were, namely, the so-called eaten Higgs
exchanges, which were supposed to be larger because, as
is explained in Appendixes D and E, the exchange of a
scalar component becomes independent of the fine struc-
ture constants and is only given by the Yukawa coupling of
the top quark.
So here we want to discuss, as a small correction, the

inclusion of the timelike component exchanges of the weak
gauge bosons. The exchange of aW boson has a similarity
with the exchange of the eaten Higgs in that it converts a
top quark into a bottom quark or oppositely. We could
therefore roughly imagine that a timelike W exchange
could—ignoring for the present what are left and what
are right components of the quarks—take the place of an
eaten charged Higgs component.
Very crudely we might therefore first simply imagine to

include the W and Z0 exchanges, by enhancing appropri-
ately the eaten Higgs couplings analogous to the gauge
particle time components in question. In the usual lan-
guage, this means approximating the exchange due to the
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timelike components of the gauge particles by correcting
by an overall factor the exchange due to the scalar compo-
nents alone (which is the one we call the eaten Higgs
exchange). Now the effective Coulomb potential for the
eaten Higgs is

� g2t =2

4�r
: (85)

In the same notation the Coulomb potential corresponding
to the exchange of W ’s between—now only left-handed—
quarks becomes

� g2�
a=2 � g2�a=2

4�r
ðonly for left-handed quarksÞ; (86)

where, experimentally, we have at the mZ scale

1=�2 ¼ 4�

g22
� 30: (87)

Here we have crudely included W0 exchange.
For a crude estimate we may take it that, in the roughly

nonrelativistic situation, there should be equally many left-
handed and right-handed top quarks, so that we can say in
the eaten Higgs exchange case, we have to start a box loop
with external right-handed top components. In analogy we
have with the time components to start with left-handed top
components, but that has approximately the same
probability.

Using this way of arguing, we can effectively replace the
�a matrices by the number 1. We then get that the ratio of
the time-component exchange potential to the eaten Higgs
exchange potential is given by the factor

1=30 � ð1=2Þ2
ðg2t =2Þ=ð4�Þ

� 1=120

1=28
¼ 0:237: (88)

Thus we may take a box loop, as discussed in Sec. IV, to
have its two eaten Higgs propagators increased by the
correction factor 1þ 0:237. This would mean that, pro-
vided we had external top-quark states being guaranteed to
be a certain linear combination of left-handed and right-
handed components corresponding to that for nonrelativ-
istic particles, the box diagram would be increased by a
factor ð1þ 0:237Þ2. Hence the critical gt, namely
gtjphase transition, should be decreased by the fourth root of

ð1þ 0:237Þ2, meaning percentwise a decrease by lnð1þ
0:237Þ=2 ¼ 12%.

This is though an overestimate of the effect, because of
the following ‘‘troubles’’:

(1) Our estimate of getting the squared correction factor
ð1þ 0:237Þ2 presupposes that interference terms, in
the sense of box diagrams with one time component
and one eaten Higgs in the same diagram, are really
present.

(2) There are not quite fourW’s corresponding to the, in
total, four Higgses to be exchanged (as eaten
Higgses or the original Higgs).

If we have to give up the interference term, the factor
ð1þ 0:237Þ2 must be replaced by 1þ 0:2372 ¼ 1:056,
meaning only correcting the critical gtjphase transition by de-

creasing it by 5:6%=4 ¼ 1:4%. The fact that we have only
3 W bosons rather than 4 means that we should reduce the
ratio factor 0.237 from Eq. (88) to 3=4 of this number. That
would alone bring the above 12% down to 3=4 � 12% ¼
9%
So we take the correction coming from the exchange of

the timelike components of the SUð2Þ gauge bosons to be
between 9% and 3=4 � 1:4% ¼ 1:1%. In other words we
take the correction to give a decrease of gtjphase transition by
5%� 4%.
In this crude estimate we really included the exchange of

W0, which corresponds to a superposition of Z0 and the
photon �. Thus we are still left with having to include the
orthogonal Uð1Þ superposition of Z0 and � in the next
section.

XI. Uð1Þ-GAUGE BOSON EXCHANGE

The photon or better the Uð1Þ-gauge boson exchange (a
certain superposition of the photon and the Z0 though
mainly being the photon) may best be treated as effectively
modifying the gluon coupling, since it couples similarly to
the gluon.
The effective fine structure constant for the gluons,

including the 4=3 from Eq. (7), is 0:109�4=3 ¼ 0:145 ¼
1=6:88, which is to be compared with the inverse fine
structure constant for the Uð1Þ gauge group in the standard
model 1=�1 � 100 in the Z0 mass region. This means that
the potential from theUð1Þ-gauge boson exchange is down
by a factor of 14.5 compared to that from the gluons. Since
we found that the gluons make up about one-third of the
potential for binding, we need only half of the 1=14:5
change in the g2t . In other words we must correct
gtjphase transition by a relative change of 1=2�1=2�1=14:5 ¼
1=58. This means that the correction coming from the
inclusion of the Uð1Þ gauge particle exchange causes the
predicted critical gt to be decreased by 1=58 ¼ 1:72%

XII. RENORMALIZATION GROUP SCALE
DISCUSSION

The top-quark Yukawa coupling is strictly speaking a
running coupling constant, and we should use its running
value at the scale given by the typical momentum trans-
ferred by the Higgses, which are emitted in the scattering
processes relevant inside the bound state. We have already
found this to be mt in Eq. (47). This typical momentum
transfer is also crudely given by the inverse radius of the
bound state which is, as already estimated in Appendix C,

of the order of ð ffiffiffiffiffiffiffiffi
4=3

p
mtÞ�1. That is to say that the critical

Yukawa coupling gtjphase transition, which we estimate above,

is to be interpreted as the running coupling at just the
typical momentum, or by the radius given scale, � � mt.

C. D. FROGGATT AND H.B. NIELSEN PHYSICAL REVIEW D 80, 034033 (2009)

034033-22



Usually the experimental result for the top-quark
Yukawa coupling gt is quoted as a running coupling at a
scale of � ¼ mt, by making corrections to the measured
pole mass. This gives the ‘‘experimental’’ value gtð� ¼
mtÞ ¼ 0:935, whereas a more naive extraction from the
measured mass [4] of 172.6 GeV gives gtjnaive ¼ 0:992.
The formula used to get the running mass mt from the

‘‘naive’’ pole mass Mt ¼ gtjnaiveh�hi=
ffiffiffi
2

p
is [12]

mtðMtÞ ¼ Mt

�
1� 1:333

�sðMtÞ
�

� 9:125

�
�sðMtÞ

�

�
2
�
:

(89)

The effect described in this formula is that the top quark
found experimentally is a ‘‘bare’’ top quark surrounded by
some gluons.

Now the question is to what extent the top quarks in the
bound state are also surrounded by gluons in the same way.
Because from outside, at distances large compared to its
radius, the total bound state is seen as a colorless particle,
there must be such a destructive interference between the
gluons from the different quarks or antiquarks that there
will be no gluons at distances much bigger than the radius.
But that means that there are to first approximation no
gluons surrounding the quarks, when they are inside the
bound state. Thus the bound quarks are, from the viewpoint
of Eq. (89) the bare ones, described by the running mass.
This is the reason that we shall, in first approximation,
compare our prediction to gtð� ¼ mtÞ ¼ 0:935 rather than
to the naive value gtjnaive ¼ 0:992.

By accident the scales associated with our critical cou-
pling gtjphase transition and the experimental running mass are

essentially the same. So we do not need to make any
renormalization group correction. Nonetheless there is an
ambiguity in defining the precise scale and we will take a
typical uncertainty in the definition to be a factor of square
root of 2. In order to calculate the change �gt in the top-
quark coupling generated by a shift in the scale � by a

factor
ffiffiffi
2

p
, we need to use the 	 function

dgt
d ln�

¼ gt
16�2

�
9

2
g2t � 8g23 �

9

4
g22 �

17

12
g21

�
: (90)

Here g3 ¼ gs, g2, and g1 are the SUð3Þ � SUð2Þ �Uð1Þ
running gauge coupling constants, related to their associ-
ated fine structure constants by �i ¼ g2i =ð4�Þ.
Using the experimental values gt ¼ 0:935, g23 ¼ 4� �

0:109, g22 ¼ 4�=30, and g21 ¼ 4�=100 and taking
� ln� ¼ lnð2Þ=2 ¼ 0:347, we get that � lngt ¼
0:347 � ð3:9340� 10:958� 0:942� 0:178Þ=ð16�2Þ ¼
1:79%. Rounding this off to 2%, we claim that the result for
the correction due to the renormalization group running
scale is just 0%� 2%.

XIII. COLLECTING RESULTS.

It is the value gtjphase transition ¼ 1:19 from Eq. (25) that

has to be changed by the total correction factor, resulting
from all the corrections to Eq. (25) discussed throughout
the paper and presented in Table I. The collected ‘‘total’’
percentwise logarithmic correction turns out to be
�17:3%� 14:2%. Thus the running Yukawa coupling
for the top quark at the mt scale is predicted, under our
basic assumption that the mass of the bound state shall be
just tuned in—mysteriously—to be small, to be

gt ¼ gtjphase transition ¼ expð�17:3%Þ � 1:19
¼ 1:001� 14:2% ¼ 1:00� 0:14: (91)

This result is to be compared with the value from experi-
ment [4], obtained from a top-quark pole mass of 172:6�
1:4 GeV:

gtðmtÞ ¼ 0:935� 0:008: (92)

This means that our prediction from the masslessness of
the bound state is fulfilled up to ð1:001� 0:935Þ=0:142 ¼
0:46 standard deviations.
At least this calculation means that the very exotic

bound state we propose has a mass squared which is
down by a factor of the order of 0.142 relative to the natural
mass squared scale for this type of bound state, namely, the
mass squared of 12mt, i.e., 144m

2
t � 4 TeV2. That is to say

that the mass of the bound state must be at least as small as

of the order 12mt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � 0:142p ¼ 1560 GeV. However,

TABLE I. Collecting corrections.

Name of correction Section Logarithmic % Estimated theoretical uncertainty in %

Adjustment eaten IV 4.0 8.0

Higgs mass V 5.2 4.0

s channel VI �18:8 6.0

mt field dependence VII 2.0 3.0

Finite speed VIII �17:2 6.0

Many body IX 14.2 4.6

Z0 and W exchange X �5:0 4.0

Uð1Þ-gauge exchange XI �1:7 0.6

Renorm group XII 0.0 2.0

Total �17:3 14.2
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the real point is that it could easily within the errors be
much lighter, e.g., zero mass. Looked upon as such an
estimate of the bound state mass, our calculation at first
sight appears to not be so impressive. However, it means
that if the top-quark Yukawa coupling gt deviated outside
our error estimate, it would be likely that either (i) there
would be such strong binding that a condensate would
unavoidably have formed and we would live in a phase
with such a condensate safely dominating, or (ii) the bind-
ing would be very tiny compared to 12mt. Essentially the
case of binding with a binding energy just of the order of
12mt is what corresponds, in the gt formulation, to a rather
narrow and impressive range in which the experimental
coupling quite remarkably lies.

The really remarkable thing coming out of our calcula-
tion is that, by requiring the masslessness for the bound
state, we get the empirical Yukawa coupling with such a
high accuracy of 14.2% that there is a rather striking
agreement. In itself it is remarkable even to get the right
order of magnitude for the Yukawa coupling. However the
fact that we get it just right with a 14.2% accuracy is
something that would only occur, even if the agreement
within a factor e were already guaranteed, in one out of 8
cases. So it almost calls for some underlying theory to
explain that coincidence. We would say that the ‘‘multiple
point principle’’ of requiring many vacua with the same
energy density [1,6] would function as such a theory, if we,
namely, take there to be two vacua, one with and one
without a bose condensate of the bound state discussed in
this article. We can say it is a case of a strange fine-tuning
of the Yukawa coupling for the top quark and that a fine-
tuning machinery is called for.

XIV. CONCLUSIONS

The main content of the present article has been a
calculation, performed inside the standard model, of the
mass of a special bound state. In fact we calculated the
mass of the bound state formed from 6 top quarks and 6
antitop quarks. The importance of just this set of quarks
and antiquarks is that they form a closed shell, so that there
is a significant decrease in the strength of binding when the
next quark or antiquark is added to the system. The re-
markable result we found is that the top-quark Yukawa
coupling experimentally has just the value that allows this
bound state of the 6tþ 6�t to be totally massless. That is to
say, within the uncertainty, it can very easily be that the
binding is so strong as to just cancel the mass energy of the
constituents. In fact we formulated our calculation so as to
evaluate just that specific value of the top-quark Yukawa
coupling, which gives precisely zero mass for the bound
state of its 12 constituents. It must be admitted that this
conclusion of the 6 top and 6 antitop quark state even
binding—let alone so strongly as to get zero mass—is at
variance with the conclusion of Kuchiev, Flambaum, and
Shuryak [5] who do not even have it bind. But we have

included several further important effects—such as eaten
Higgses and corrections to the Higgs mass to be used inside
the bound state—in our calculation of the binding strength.
As suggested by a toy model calculation in Appendix J,
there is reason to believe that the mass of the bound state—
including the question of binding—has a kink behavior as a
function of, e.g., the Yukawa coupling gt. So two calcu-
lations performed on different sides of such a kink value of
the variable gt could a priori give quite different results.
Depending on where exactly ‘‘the phase transition’’ is only
one of two such calculations would be correct, the other
one being analogous to calculating the properties of fluid
superheated water for a temperature where the true phase is
the vapor phase.
So we can suspect that, provided one included enough of

our above-mentioned corrections, the correct ‘‘phase’’ for
the calculation would be the one with a ‘‘collapsed’’ Higgs
field inside the hoped for bound state. However Kuchiev
et al. [5] made their calculation in the phase with an
uncollapsed Higgs field, i.e., the calculation is in the wrong
phase. But presumably, without the inclusion of eaten
Higgs exchange and our other corrections, the experimen-
tal value of gt would lie in the phase in which Kuchiev
et al. worked.
Our aim was then to see to what accuracy the rather

mysterious coincidence of bound state masslessness ac-
tually works in the phase with a collapsed Higgs field. So
we wanted to compute the critical Yukawa coupling
gtjphase transition, defined here as the one making the bound

state massless, as accurately as possible. We did that by
first calculating it in a rather crude way, leading to the value
gtjphase transition ¼ 1:19 in Eq. (25). In this first step in the

calculation we included both Higgs exchange and gluon
exchange in the t channel and the u channel, but did not yet
include the s-channel exchange (which is more difficult to
calculate); we also very crudely corrected for the fact that
there could also be left-handed b quarks and antiquarks
virtually present in the bound state, essentially replacing
the t quarks from time to time. We also, in this first
calculation, used a very crude approximation of letting
each quark encircle a conglomerate of all the other 11
quarks concentrated into one point. However we did take
the double counting into account and thus really calculated
with only 11=2 particles in the center. We made the calcu-
lation totally nonrelativistically, as is almost needed to
calculate a bound state without having to truly go to the
Bethe-Salpeter equation.
After this first calculation, we then made a series of 9

corrections listed in Table I in the foregoing section.
Together these corrections led to lowering the predicted
critical Yukawa coupling by 17.3% counted logarithmi-
cally. The resulting Yukawa coupling that would give just
zero mass for the bound state of 6tþ 6�twas thus computed
to be gtjphase transition ¼ 1:00� 0:14. This uncertainty of

14% is only a very crude estimate of the uncertainties in
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the many corrections added up in quadrature. At first sight
this 14% uncertainty appears to be a small error. However,
one should bear in mind that what we really estimate is g4t
rather than gt itself. Therefore the true uncertainty on our
calculation, namely, for g4t , is in fact rather of the order of
70%. We performed the calculation so as to estimate the
running Yukawa coupling at the mt mass scale, where the
pole mass correction performed on the experimentally
measured top-quark mass leads to the experimental run-
ning Yukawa coupling value gtð� ¼ mtÞ ¼ 0:935�
0:008. This experimental value has thus fallen, within an
uncertainty of only 0.46 standard deviations, on the value
needed to make the bound state massless.
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APPENDIX A: NOTATION

In Sec. II we work with just one Hermitian (‘‘real’’) field
for the physical Higgs particle�h. Here we shall give some
notation for this field and the related complex doublet field
�H.

We take the Lagrangian for the real field �h to be
normalized as

LðxÞ ¼ 1

2
ð@��hÞ2 þ 1

2
jmhbj2�2

h �
�

8
�4

h þ
gtffiffiffi
2

p �c tc t�h

þ �c t�
�@�c t þ � � � : (A1)

Phenomenologically we know that the vacuum expectation
value of the Higgs field is

h�hi ¼ jmhbj=
ffiffiffiffiffiffiffiffiffi
�=2

p ¼ v ¼ 246 GeV; (A2)

while the physical Higgs mass becomes

mh ¼
ffiffiffi
2

p jmhbj ¼
ffiffiffiffi
�

p
v: (A3)

So, for example, for a Higgs mass of mh ¼ 115 GeV, we
find in this notation that

� ¼ ð115 GeVÞ2
ð246 GeVÞ2 ¼ 0:218:

In order to treat the eaten Higgses too, as we do in
Sec. III, we must introduce the Higgs doublet complex
field notation in which

�H ¼ �þ
�0

� �
; (A4)

where then we take

�0 ¼ 1ffiffiffi
2

p ð�h þ i�2Þ; (A5)

with �h and �2 real. With this relation we are then forced
to take the Lagrangian density for the complex field dou-
blet to be

LH ¼ jD��Hj2 þ jmhbj2�y
H�H � �

2
ð�y

H�HÞ2: (A6)

With the substitution (A5), the Yukawa interaction term
in (A1) becomes

LH ¼ � � � þ gtð �c tR�
y
Hc tbL þ H:c:Þ þ � � � : (A7)

Here we have introduced the splitting of the Dirac spinor
into its Weyl representation components—meaning left
and right being considered separately—and also intro-
duced the left-handed b field, so that we have now a
doublet of left-handed fields under the weak isospin:

c tbL ¼ c tL

c bL

� �
: (A8)

We also denote the right-handed components of the t field
by c tR.

APPENDIX B: INFINITE MOMENTUM FRAME
FOR NONRELATIVISTIC APPROXIMATION AND

ANALYTICITY

We shall here see how a nonrelativistic atomlike theory
gets written in the infinite momentum frame. Let us con-
sider a cluster of n constituent particles numbered by i ¼
1; . . . ; n with masses mi and longitudinal momenta pzi

written as

pzi ¼ xipz: (B1)

Here pz is some very large momentum used to specify the
very fast moving frame that is the IMF. Then the energy of
the cluster of particles in this frame, in which we think and
in which the particles move very fast, is expanded as
follows:

EIMF cluster ¼ pz þ
�Xn
i¼1

m2
i þ ~p2

Ti

2xi

��
pz þ 1

2

X
i;j;i�j

Vij=�ij:

(B2)

We use the notation ~pTi for the transverse part of the
momentum of particle i and ~pT ¼ P

n
i¼1 ~pTi ¼ 0. Here

the nonrelativistic scalar potential Vij, for particle i influ-

encing particle j, is being boosted from the cluster rest
frame to the infinite momentum frame and thereby Lorentz
contracted. Because of the Lorentz contraction of the wave
function for particle j, its scalar interaction goes down by

the factor 1=�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

lj

q
, where vlj is the longitudinal

velocity of particle j. If we had thought about the interac-
tion the opposite way around, we would have gotten 1=�i

instead. But if the particles keep interacting they must run
with the same speed and that would mean �i � �j, so that

we can put �ij equal to both of them.
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Since the longitudinal �i ¼ pzxi=mi in the infinite mo-
mentum limit, we have in this case of the same longitudinal
velocity that xi=xj ¼ mi=mj.

It is also obvious that (B1) implies the well-known
normalization

Xn
i¼1

xi ¼ 1: (B3)

Especially in the first nonrelativistic approximation for
the internal motion of the cluster, the relative velocities are
small and thus the xi’s are proportional to the correspond-
ing mi’s. Also, in this first approximation of xi / mi, we
could for instance write, using the average of 1=�i and
1=�j for 1=�ij:

EIMF cluster ¼ pz þ
�Xn
i¼1

m2
i þ ~p2

Ti

2xi

þ 1

2

X
i;j;i�j

Vij � 12
�
mi

xi
þmj

xj

���
pz (B4)

¼ pz þ 1

2pz

�Xn
i¼1

�
m2

i

xi
þ 2

~p2
Ti

2xi

�

þ 1

2

X
i;j;i�j

Vij �
�
mi

xi
þmj

xj

��
: (B5)

Comparing with the IMF expansion (13) of EIMF, we see
that the squares of the eigenmasses for the bound states in
the channel considered are given as eigenvalues of the
operator�Xn

i¼1

�
m2

i

xi
þ 2

~p2
Ti

2xi

�
þ 1

2

X
i;j;i�j

Vij �
�
mi

xi
þmj

xj

��
;

so that we determine the bound state masses from the
eigenvalue equation:�Xn

i¼1

�
m2

i

xi
þ 2

~p2
Ti

2xi

�
þ 1

2

X
i;j;i�j

Vij �
�
mi

xi
þmj

xj

��
�

¼ m2
bound�: (B6)

The remarkable thing for us here is that there is no obvious
reason why this eigenvalue equation should have any sin-
gular behavior for m2

bound at zero. Therefore we expect that

the eigenvalues, meaning the masses squared of the bound
states, will behave smoothly as a function of the parameters
such as gt. That suggests confidence in using a low order
Taylor expansion in the parameters, even when the bound
state mass squared m2

bound comes close to zero. In other

words we expect to have no singularities at m2
bound ¼ 0,

when we use the eigenvalue equation (B6) to obtain the
IMF-mass squared of the bound state.

In order to check that we do indeed get to the slightly
surprising factor 1=2 in (20), meaning that the binding
energy in the formal nonrelativistic calculation should

only compensate one-half of the mass in order to make
the bound state just massless, we shall here take the non-
relativistic approximation to our IMF formalism: With the
nonrelativistic approximation in mind, in the frame of the
bound state, we define the �xi’s by

xi ¼ miP
j
mj

þ �xi � xi old þ�xi: (B7)

Below we shall prove that, by Taylor expanding the term
m2

i

xi

in the expression (B5) for EIMF=cluster, we obtain the longi-

tudinal part of the kinetic energy quite analogous to the
transverse part already present.
Neglecting the �xi and inserting xi ¼ xi old ¼ miP

j
mj

into

(B5), we get

EIMF cluster ¼ pz þ 1

2pz

��Xn
i¼1

mi

�
2

þ 2

�X
k

mk

�
�
�X

i

~p2
Ti

2mi

þ 1

2

X
i;j;i�j

Vij

��
(B8)

¼ pz þ
P
j
mj

2pz

��X
k

mk

�
þ 2

�X
i

~p2
Ti

2mi

þ 1

2

X
i;j;i�j

Vij

��

(B9)

¼ pz þ 1

2pz

Xn
i¼1

mi

xi old
ðmi þ 2Hij?Þ; (B10)

where

Hij? ¼ ~p2
Ti

2mi

þ 1

2

X
j;i�j

Vij: (B11)

Actually we will now show that the Taylor expansion of

the main term ðPi
m2

i

xi
Þ=ð2pzÞ in (B5) has a dependence on

the longitudinal momentum of the constituents, which can
be interpreted as the missing longitudinal momentum de-
pendent part of the kinetic energy, looking quite analogous
to the transverse part.
In the ‘‘at rest’’ limit, in which the particles in the cluster

lie still in the cluster rest frame, we have pzi¼xi �pz with
xi¼xiold¼mi=ð

P
jmjÞ. However, if the particles are not at

relative rest, the xi’s will deviate from the xi old as in (B7):

xi ¼ xi old þ �xi: (B12)

Of course

�xi ¼ �pzi

pz

; (B13)

where �pzi stands for the deviation of the longitudinal
momentum of the ith particle from the value
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xi oldpz ¼ mipzP
j
mj

;

which is the momentum it would have in the ‘‘resting’’
approximation. This �pzi could roughly be considered to
be the result of the boosting of the longitudinal component
of momentum pnr i of the particle i, measured in the rest
frame of the cluster, from the rest frame of the cluster to the
infinite momentum frame we consider. In the nonrelativ-
istic approximation, in which the velocity of this cluster
rest frame is given by the velocity v with associated �
satisfying v� ¼ pz=ð

P
jmjÞ (or approximately for very

large pz just � ¼ pz=
P

jmj), we have

�pzi ¼ �pnr i ¼ pzP
j
mj

pnr i: (B14)

The Taylor expansion of the main xi-dependent term in the
EIMF cluster now gives

1

2pz

m2
i

xi
¼ 1

2pz

�
m2

i

xi old
� m2

i

x2i old
�xi þ m2

i

x3i old
�x2i þ � � �

�
:

(B15)

With the insertion of (B14) into the third term in this
expansion, which is proportional to �x2i , we get

1

2pz

m2
i

x3i old
�x2i ¼

1

2pz

m2
i

x3i old

�p2
zi

p2
z

(B16)

¼ 1

2p3
z

ðP
j
mjÞ3

mi

�p2
zi (B17)

� p2
nr i

2pzxi old
: (B18)

We see that this term (B18) is precisely analogous to the

transverse term
p2
Ti

2pzxi
. The second term in the Taylor ex-

pansion, the one going linearly in�xi, is quickly seen to be
proportional to the sum

P
i�xi which is zero, provided one

keeps to the normalization
P

ixi ¼ 1.
Now, adding these terms proportional to �x2i to (B10),

we obtain

EIMF cluster ¼ pz þ 1

2pz

Xn
i¼1

mi

xi old
ðmi þ 2HiÞ; (B19)

where

Hi ¼ ~p2
i

2mi

þ 1

2

X
j;i�j

Vij: (B20)

Here ~p2
i ¼ ~p2

Ti þ p2
nr i is the total momentum squared of

particle i in the cluster rest frame.

APPENDIX C: RADIUS ESTIMATE

In order to estimate the radius of our bound state in the
critical coupling case, we may use Eq. (24) and the virial
theorem. From the virial theorem for a 1=r potential, it
follows that the total binding energy comes about by the
average of the potential energy making up twice the bind-
ing energy (being negative like the binding energy), while
the kinetic energy is numerically equal to the binding
energy but is positive and thus compensates away one-
half of the potential energy. Now, according to (24), the
binding energy per constituent particle must bemt=2 in the
critical case. It therefore follows, from the above virial
theorem consideration, that we must have

mt=2 ¼ hTi ¼
�

~p2

2mt

�
¼ hp2

xi þ hp2
yi þ hp2

zi
2mt

: (C1)

For symmetry reasons it then follows that

hp2
xi ¼ hp2

yi ¼ hp2
zi ¼ m2

t

3
: (C2)

Now we want to use the fact that, in the ground state, the
Heisenberg uncertainty relation

hx2ihp2
xi 	 1=4 (C3)

is actually an approximate equality, so that we really have

hx2ihp2
xi � 1=4: (C4)

The ground state of a system like ours, or an atom, is
achieved by concentrating the constituents with minimal
energy as closely together as the Heisenberg uncertainty
relation allows. Now the true equality is achieved only for a
Gaussian wave function. However the deviation from
Gaussian form only comes in to second order (in some
parameter measuring the deviation from the Gaussian form
of the wave function) because, imagining an abstract
Taylor expansion for the deviation from the Heisenberg
uncertainty relation, it could only have second order terms
without violating the inequality.
Inserting hp2

xi ¼ m2
t =3 from (C2) into (C4), we get in the

ground state in the critical case

hx2i ¼ hy2i ¼ hz2i � 3

4m2
t

: (C5)

From here

hr2i ¼ 3hx2i � 9

4m2
t

: (C6)

With the wave function c / expð�r=r0Þ, one easily finds

hr2i ¼ 3r20 (C7)

and so derives that
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r0 �
ffiffiffiffiffiffiffiffi
3=4

p 1

mt

(C8)

from (C6) and (C7).
Note that this argument is true independent of whether

we have gluon or Higgs exchange or a mixture, provided
the exchanged particle is sufficiently light so that the
scaling properties assumed about the potential, when using
the virial theorem, remain valid.

APPENDIX D: EATEN HIGGSES FROM W AND Z

We shall explain how the nonconserved part of the
current, coupling toW, causes a propagator to be inversely
proportional to the gauge coupling squared for small four-
momentum transfer q2 and which, thus, can cancel the
squared gauge coupling coming from the vertices. In this
way we can, even in the limit of the gauge coupling going
to zero, have a nonzero exchange force due to the gauge
particles W and Z0.

When, for instance, a top quark is converted into a
bottom quark by emission of a W, the transition current
j�
Wþ ¼ g2ffiffi

2
p �c bL�

�c tL is not conserved due to the masses of

the top and bottom quarks. [Here we took the general
W current to be ja� ¼ g2

2
�c btL�

��ac btL and the normal-

ization Wþ ¼ 1ffiffi
2

p ðW1 þ iW2Þ, so that Wþ will couple to

the current j�
Wþ ¼ g2ffiffi

2
p �c bL�

�c tL.] In fact, using the equa-

tions of motion for the quarks in the background of the
Higgs field, the divergence of the current becomes

@�j
�

Wþ ¼@�j
�¼�i

g2ffiffiffi
2

p mt
�c bLc tRþ i

g2ffiffiffi
2

p mb
�c bRc tL�0:

(D1)

Here mt and mb are the top and bottom quark masses,
which are given by

mt ¼ gtffiffiffi
2

p h�hi; mb ¼ gbffiffiffi
2

p h�hi: (D2)

(If we consider the b quark massless as a good approxi-
mation, then gb ¼ 0 and mb ¼ 0.)

Considering the inverse propagator for the gauge boson,
as obtained from �1=4 � Fi

�
F
i�
 �m2

WA
i
�A

i�, we see

that the kinetic part of this inverse propagator can be
zero for currents having the direction of a four gradient
(as is a consequence of the gauge invariance of this kinetic
part). Thus the propagator goes as the inverse of m2

W in
such cases. But now the W only got its mass mW nonzero
due to the Higgs field and this mass is actually proportional
to the gauge coupling mW ¼ g2

2 h�hi ¼ g2ffiffi
2

p h�Hi. Thus the
propagator for (nonconserved) currents not coupling to the
kinetic part of the inverse propagator becomes proportional
to the inverse gauge coupling constant squared / 1=g22.
The exchange amplitude for this nonconserved contribu-
tion thus has its g2 dependence canceled. This then means
that, even in the limit of the gauge coupling g2 ! 0, the

exchange of the massive gauge boson cannot be ignored
when the current is not conserved. In this limit the ex-
change amplitude can only depend on the other coupling
constant, the Yukawa coupling, and indeed it is physically
really just the exchange of the eaten Higgs components that
comes out of this limit from the gauge particle exchange.
The conclusion we want to draw in this Appendix is this:

In the formalism in which one considers massive gauge
bosons, such as W and Z0, one only has to consider, in
addition, the physical Higgs particle components.
However, in the limit of letting the gauge couplings g2
and g1 go to zero, the gauge boson exchange does not fully
decouple. Rather, in this limit, the gauge boson exchange
simply becomes what one would get, in addition to the
physical�h Higgs exchange contribution, by including the
full Higgs field �H with all its four real components. So in
this limit one is truly led to the pure Higgs model, but with
all the components, including the previously eaten ones.
Although the above argument was very suggestive of

what likely goes on in the limit of very weak gauge
couplings, we actually should check that we do obtain
the correct exchange amplitude corresponding to the eaten
Higgs. A simple check of this can be done as follows, if it is
accepted that we can be allowed to talk about the non-
conserved part of the current and take it to be in momentum
representation:

j�
Wþjnonconserved ¼ j�jnonconserved ¼ 1

q2
q�q
j


 (D3)

¼ 1

q2
q�

1

i
@
j




¼ 1

q2
q�

�
� g2ffiffiffi

2
p mt

�c bLc tR þ g2ffiffiffi
2

p mb
�c bRc tL

�
: (D4)

Using this ‘‘only nonconserved part of the current’’ to-
gether with a W propagator put equal to just 1

m2
W

, as is

expected to be a good approximation for g2 ! 0, we can
formally obtain an expression for the amplitude corre-
sponding to the W-exchange diagram for the scattering
of a pair of quarks. For the quark transitions from t to b
and oppositely from b to t at the two vertices and putting
mb ¼ 0 for simplicity, we get the following expression:

j
�
nonconservedj

y
�nonconserved

m2
W

� ðg2=
ffiffiffi
2

p Þ2mt
�c bLc tR

�mt
�c tRc bL � 1

q2m2
W

(D5)

� gt �c bLc tR � 1

q2
gt �c tRc bL: (D6)

This scattering amplitude for the quark transitions is pre-
cisely what you get by exchange of an ‘‘eaten’’ Higgs.
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APPENDIX E: COUNTING EATEN HIGGSES

In Sec. III we introduced the extra Higgs components,
which are eaten by the gauge particles, together with the b
quark. They were used to consider (formally) the contri-
bution of a box diagram to the elastic scattering of the weak
singlet right-handed top quark tR and its antiparticle �tR.
Because of the fact that there were now 4 real components
of the complex doublet Higgs field �H propagating in the
loop rather than just the one real physical Higgs field �h

considered in Sec. II, we argued that the scattering ampli-
tude must increase by a factor of 4. In this Appendix we
shall now confirm this factor of 4, by simply evaluating the
ratio of box-diagram amplitudes for tR �tR scattering in the
two cases: (i) including only the physical Higgs component
�h and the left-handed top quark tL in the loop, and
(ii) including all 4 components of the Higgs field �H and
both the left-handed top tL and bottom bL quarks in the
loop.8

Using the notation of Appendix A, we see that the box
diagram—with two left-handed top or bottom quarks and
two Higgses in the four-sided loop—gets changed in the
following ways, when going from case (i) including only
the physical Higgs component to case (ii) including the full
4 component Higgs field of the standard model:

(1) We get rid of the 1=
ffiffiffi
2

p
in the Yukawa coupling

Lagrangian density. This means that the scattering

amplitude goes up by a factor of
ffiffiffi
2

p
4 relative to

case (i) with only the physical Higgs.
(2) After including all four components, we have to

evaluate an SUð2Þ trace for the box diagram, corre-
sponding to the fact that a weak isodoublet circles
around the box loop. This means that the amplitude
goes up by a factor of 2.

(3) There is a type of diagram which is allowed for
case (i) with the physical Higgs field �h alone, but
which is forbidden for case (ii) when we consider
the complex doublet Higgs field �H which carries a
charge of weak hypercharge. In fact there is for
case (i), with only the physical Higgs field being
considered, the possibility of ‘‘crossing’’ the two
Higgs propagators in the box diagram. Because of
this possibility, we get a factor of 2 bigger amplitude
for case (i). This means that going from case (i) to
the four component case (ii), one gets a factor of
1=2.

Altogether we thus get an increase by a factor of
ffiffiffi
2

p
4 �

2 � 1
2 ¼ 4, by including all four components instead of just

the physical Higgs, and that is just what we argued for in
Sec. III.

APPENDIX F: DISTRIBUTION OF LENGTHS OF
LOOPS

In Sec. IV we made the assumption that, without the
weighting coming from the number of isodoublet states
that can circle in a loop of n ‘‘propagators’’, the number of
such loops statistically had a smooth distribution as a
function of n, although there only are loops with an even
number n.
We here want to consider this assumption in a little more

detail: Imagine that we construct a random diagram by
going along in small steps following the construction of a
loop of propagators for the isodoublet particles [i.e., left-
handed b or t quarks or Higgs particles (including the eaten
Higgses)]. Then as one goes along it is sensible to think
that, almost all the time, there is the same chance of getting
back to the starting point of the initiated loop. This chance
of getting back to the starting point should, namely, all the
time be roughly 1 divided by the number of possible
attachment points (say the order of the diagram) for an
isodoublet propagator getting inserted. We must admit
however that we have not clearly stated which way one
should imagine to build up the diagram. One way would be
to imagine that the structure of the diagram is already given
and one just successively attaches a label, doublet or
singlet, to the propagators in an already given diagram.
One would still have to think of the given diagram statis-
tically only and that the chance for the doublet loop being
followed reaching any a priori vertex could be taken to be
the same all through the construction. Then, although in
principle the possible attachment points at any stage of the
construction become all the vertices not yet used, we do not
correct for this fact that vertices already used are no longer
accessible.
This crude argumentation will give an exponentially

decaying distribution for the distribution of the loop length
n. However it will fall off so slowly with large n that the
average loop length gets of the order of the full number of
attachment possibilities. This means, assuming a large
diagram, a very flat distribution for the first few n values
to the extent that they can at all be realized. (For instance,
n ¼ 2 would only occur inside self-energy diagrams for
the right-handed top quark, and also only even n are
possible.)

APPENDIX G: FLATTENING OF POTENTIAL FOR
SMALL r

For the purpose of estimating an effective Higgs mass to
take into account the difference between the Yukawa and
Coulomb potentials, we want first to estimate how the
Higgs field varies with the distance r from the center of
the bound state. Strictly speaking we should calculate the
wave function distribution for the constituents and evaluate
the Higgs field with this density of constituents used as the
source. However, we shall here approximate the correct

8Note that when we formally only consider the left-handed
quarks in a loop, it means that we have ignored the quark mass
and left it as a perturbation to be considered later.
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density distribution by a distribution, �0, that is constant in
3-space inside a radius R, i.e., for r < R, and zero outside.
Its value is chosen so as to correspond to there being a

‘‘charge’’ (i.e. the number of constituents times gt=
ffiffiffi
2

p
) of

ð11=2Þgt=
ffiffiffi
2

p
. We shall take the R parameter then to be the

average radius of the wave function distribution, i.e.,

R ¼ hri ¼ 3
2r0: (G1)

In the very center there must (statistically) be a certain
density of constituent particles having an extremum there.
This means that, in the immediate neighborhood of the
center, the density of constituents goes as

�ðrÞ � �ð0Þ: (G2)

This leads to a spherically symmetric potential or Higgs
field, satisfying the Laplace equation with the source term

gt=
ffiffiffi
2

p � � ¼ �0 ¼ 1

r2
@

@r

�
r2

�h

@r

�
: (G3)

The resulting potential is

V ¼ �0

6
r2 þ C for r 
 R: (G4)

The physical number of constituents inside the average
radius R is half the number of constituents in total and
we thus identify it with our number of effective constitu-
ents in the center Z ¼ 11=2. Thus we find

�0 � Zgt=
ffiffiffi
2

p
4�R3=3

� 11=2 � gt=
ffiffiffi
2

p
4�=3 � hri3 : (G5)

If we also use Z ¼ 11=2 for the outside field, being ap-
proximated as a Coulomb potential, we shall automatically
get that the slope of the potential is continuous:

V ¼
	 �0

6 r
2 þ C for r 
 R;

� Zgt=
ffiffi
2

p
4�r for r 	 R:

(G6)

Inserting (G5) and adjustingC to make the two expressions
coincide for r ¼ R leads to

V ¼
	 Zgt=

ffiffi
2

p
8�R3 ðr2 � 3R2Þ for r 
 R;

� Zgt=
ffiffi
2

p
4�r for r 	 R;

(G7)

¼ Zgt=
ffiffiffi
2

p
8�R3

	
r2 � 3R2 for r 
 R;
� 2R3

r for r 	 R:
(G8)

It is easily seen that the variation of this potential, or the
deviation of the Higgs field from the usual VEV, over the
range r running from R to1 is twice that over the range of
r going from 0 to R. Thus the potential variation from r !
1 to r ¼ 0 is 3=2 times that from r ! 1 to r ¼ R (which
we took as the average radius).

As we saw in Sec. V, for the case where gluons are
ignored, the Higgs field became zero at the average radius,
R. So, in this case, the central value of the Higgs field

would be

�hjr¼0 ¼ �1
2h�hi ¼ �1

2v; (G9)

i.e., opposite in sign and half the magnitude of the usual
VEV v. However, when we take into account the gluon part
of the binding (see Sec. VA), we only need the potential at
the average distance to be 4=9 of what it was for the case of
ignoring the gluons. In this case we got the Higgs field at
the average distance R ¼ hri to be ð1� 4=9Þv ¼ 5v=9.
Then the field strength at the center becomes

�hjr¼0 ¼ ð1� 3=2 � 4=9Þv ¼ v=3: (G10)

For r 
 rinflection the second derivative of the effective
potential Veffð�hÞ for the Higgs field is negative, so that the
effective Higgs mass in this region is imaginary. We now
want to get a typical average value for this second deriva-
tive to be used in estimating the effective imaginary Higgs
mass in this range.
For orientation we note that, while the second derivative

of Veffð�hÞ at the inflection point where r ¼ rinflection is by
definition just zero, we have that the Higgs field takes the
value v=3 at r ¼ 0 when gluons are included. Now, for the
Higgs field �h ¼ v=3, the second derivative of the Veff is
� 1

3 times its value at the minimum of the effective poten-

tial Veff , i.e., where it is equal to the physical Higgs mass
squared. Thus the effective Higgs mass squared at the value
of the field in the central region of the bound state is
� 1

3m
2
h, where mh is the physical Higgs mass.

In order to get an estimate of the effective imaginary
Higgs mass in the region of r going from 0 to rinflection, we
may linearly interpolate the second derivative as a function
of r but then remember to weight the importance of the
various r regions with the weight factor r2. The first step in
our crude estimate is to approximate the second derivative
as a linear function in the distance from the center r,

d2VðrÞ
d�2

h

¼ � 1

3
m2

h

�
1� r

rinflection

�
: (G11)

Introducing the notation x ¼ r
rinflection

, we then see that the

average value of d2VðrÞ
d�2

h

, weighted with r2, in the range r 2
½0; rinflection� is�

d2VðrÞ
d�2

h

�
¼ � 1

3
m2

h

R
1
0 x

2ð1� xÞdxR
1
0 x

2dx
¼ �m2

h

12
: (G12)

It is easily seen that indeed the effective mass squared
m2

h eff of the Higgs is just

m2
h eff ¼

d2VðrÞ
d�2

h

: (G13)

So that for its average value we get

m2
h eff ¼ �m2

h

12
: (G14)
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APPENDIX H: BOUND STATE MASS
DEPENDENCE ON THE NUMBER OF

CONSTITUENTS

In Sec. VI E we need an estimate of the mass of the 10-
constituent bound state rather than that of the 12-
constituent bound state, which we are requiring to be
massless. We shall therefore present here a first estimate
of the form of the dependence of the mass squared of our
family of bound states on the number of (t and �t) constit-

uents Ẑ ¼ Zþ 1.
We argued in Appendix B that the mass squared M2 ¼

m2
bound of the bound state should be an analytic function of

the ‘‘parameters’’, such as gt or even, as we shall use here,

of Ẑ. In other words we shall assume that the mass squared

of the bound state M2ðẐÞ is an analytic function of the

number of constituents Ẑ.
In the weak coupling approximation (i.e., gt and �s

small), the mass of the bound state becomes MðẐÞ �
mtẐ, since it is essentially given by adding the masses of
the constituents. This is a reasonable approximation for

small Ẑ and thus we obtain

M2ðẐÞ � m2
t Ẑ

2 (H1)

as a valid approximation for small Ẑ.
Now, however, there is a binding energy term, which

becomes bigger and bigger as Ẑ increases. The total po-
tential energy of the constituents is proportional to the

number of interacting pairs and is thus proportional to Ẑ2

or strictly speaking ẐðẐ� 1Þ. Hence each constituent feels
a potential proportional to Ẑ2=Ẑ ¼ Ẑ or strictly ẐðẐ�
1Þ=Ẑ ¼ Ẑ� 1. At the same time the average distance of
the constituent from the center of the bound state is dimin-
ished, as in the hydrogen atom, in the same proportion. It
follows that the binding energy per particle becomes pro-
portional to the square of this factor. So the total binding

energy of the bound state is proportional to ẐẐ2 or strictly

ẐðẐ� 1Þ2.
Thus we are led to the following Taylor expansion of

M2ðẐÞ:
M2ðẐÞ ¼ ðmtẐ� AẐ3 þ � � �Þ2 ¼ m2

t Ẑ
2ð1� BẐ2 þ � � �Þ;

(H2)

or strictly speaking

M2ðẐÞ ¼ ðmtẐ� A0ẐðẐ� 1Þ2 þ � � �Þ2
¼ m2

t Ẑ
2ð1� B0ðẐ� 1Þ2 þ � � �Þ: (H3)

The main point of the present article is to investigate the
hypothesis that the top-quark Yukawa coupling is fine-

tuned, so as to make the mass of the bound state with Ẑ ¼
12 constituents just zero. Imposing this requirement onto
the above Taylor expansion leads to a smooth ansatz of the
form

M2ðẐÞ ¼ m2
t Ẑ

2

�
1�

�
Ẑ

12

�
2
�
; (H4)

or strictly speaking we should have

M2ðẐÞ ¼ m2
t Ẑ

2

�
1�

�ðẐ� 1Þ
11

�
2
�
: (H5)

We now use the Taylor expansion (H4) to give a first
order estimate of the masses for the 11- and 10-constituent
bound states:

m11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
112m2

t

�
1�

�
11

12

�
2
�s
¼ 4:4mt ¼ 760 GeV; (H6)

while

m10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102m2

t

�
1�

�
10

12

�
2
�s
¼ 5:5mt ¼ 950 GeV: (H7)

The full spectrum is shown in Fig. 1.

APPENDIX I: GAUSSIAN WAVE FUNCTION
ANSATZ

We shall now construct an ansatz for an approximation
to the multiparticle wave function for our system, consist-
ing of the 6 top and 6 antitop particles, based on Gaussian
functions. The main purpose of this exercise is to confirm
from a concrete model ansatz the major part, namely, a
factor 2 in the binding energy, of the many body correction
of Sec. IX.
The ansatz wave function for the N-particle system

proposed here is simply of the form

c ð ~x1; . . . ; ~xNÞ ¼ N
YN
i¼1

expð�ai ~x
2
i Þ: (I1)

Of course, in our case of 12 constituents, we have N ¼ 12.
The idea then is to use the Hamiltonian based on the
application of the potential Vtotal from Eq. (8) and the
kinetic energy summed over the N particles, or we may
simply use H ¼ P

iHi with Hi taken from Eq. (22):

0 2 4 6 8 10 12
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0

200

400

600

800

1000
Bound state mass in GeV

FIG. 1. Mass spectrum of bound states.
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H ¼ XN
i¼1

~p2
i

2mi

þ 1

2

X
i;j;i�j

Vij: (I2)

Here Vij ¼ A
4�rij

is given by Eq. (23), with rij ¼ j ~xi � ~xjj
being the distance between particle number i and particle
number j.

The idea now is that we imagine to find the best possible
wave function of this form for the bound state system, by
evaluating the average energy in such an ansatz state as a
function of the parameters ai. In practice, for our symmet-
ric case, we obtain the same value for all the N ai’s and
simply minimize the energy with respect to their common
value ai ¼ a. Using our Gaussian ansatz, we obtain

hHii ¼ 3a

2mt

� ðN � 1Þ A

4�

ffiffiffiffi
a

�

r
(I3)

for the expectation value of the single particle Hamiltonian
Hi. Minimizing this energy determines our variational
parameter to be

a ¼ ðN � 1Þ2
�
A

4�

�
2 m2

t

9�
: (I4)

This gives, using

hHi ¼ NhHii ¼ �NðN � 1Þ2A2mt

96�3

¼ �ðe2t�t þ 4g2t Þ2
32�2

4

3�
mt (I5)

for the factorizable Gaussian wave function estimate of
(minus) the binding energy of the bound state, where we
have substituted N ¼ 12 and the expression for A from
Eq. (23).

We can now compare this value (I5) for the binding
energy9 with the ‘‘Bohr model’’ approximation Ebinding of

Eq. (10):

� hHi ¼ Ebinding � 12 �
12

11
� 8

3�
¼ Ebinding

2:16
: (I6)

Thus we have basically reproduced the expected main
reduction in the binding energy by a factor of 2 due to
many body effects. We note that the extra factor of 1112 arises

from the reduced mass of a single quark moving relative to
the other 11 quarks after removing the center of mass
motion. The final factor of 8

3� corresponds to the reduction

in the Bohr model binding energy obtained by using a
Gaussian form rather than the exact Bohr wave function.

APPENDIX J: PHASE TRANSITION IN BOUND
STATE CALCULATION

We shall illustrate the possibility for the appearance of a
phase transition in the bound state calculation, which can
explain the disagreement between the present paper and
Ref. [5]. For reasons of tractability we do not consider the
genuine bound state calculation, but rather a toy model that
simulates a continuous material made from such bound
states and extended to infinity.
Really our toy model is a material with an a priori fixed

density of both top and antitop quarks. But then the idea is
to adjust the density of top and antitop quarks so as to
correspond to the situation in which the bound states just
fill the space completely without overlapping.
It is important that we treat top and antitop quarks as

different species of the same type of particle, which are
separately conserved. So it only matters how many top or
antitop quarks there are together in states with a given
momentum. The number of possible states for a given
momentum is denoted by Nsp ¼ 2 � 2 � Nc. Here Nc is

the number of colors. So Nsp ¼ 12 is the case of interest

for nature and is the value we use below. As part of our toy
model we ignore annihilation completely, so that particles
and antiparticles are separately conserved. Then we take
the Fermi momentum pf as an ansatz parameter. From this

alone we can derive the density of the top quarks and
antitop quarks in the ansatz state:

� ¼ Nsp

4�p3
f

3ð2�Þ3 : (J1)

Their energy density is then

“ energy density of fermions”

¼ Nsp

ð2�Þ3
Z pf

0
4�p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
dp: (J2)

Now the fermion mass comes from the Higgs field and
we have

m ¼ gth�hi=
ffiffiffi
2

p
: (J3)

The potential energy for the Higgs field �h is of the form

Veffð�hÞ ¼ � 1

2
jmhbj2�2

h þ
�

8
�4

h: (J4)

For use in the present Appendix, we introduce the effective
potential normalized to be just zero at the (usual) mini-
mum:

Veffnormð�hÞ ¼ � 1

2
jmhbj2�2

h þ
�

8
�4

h � Veffðh�hiÞ (J5)

¼ � 1

2
jmhbj2�2

h þ
�

8
�4

h þ
jmhbj4
2�

: (J6)

We consider the approximation in which the Higgs field�h

is taken to have a constant value inside the bound state. So

9We note that this value is in agreement with the calculation of
the many body effect in a recent paper [5] by Kuchiev,
Flambaum, and Shuryak, when the correction by a factor of 2
mentioned in footnote 1 and the reduced mass factor of 11=12
are taken into account. In fact it means that in the notation of
Ref. [5] we would obtain k ¼ 1=6� � 0:053, while in their
variational calculation they obtain k ¼ 25=512 � 0:049.
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the kinetic energy of the Higgs field can be ignored and
thus the total energy density U in our toy model ansatz
becomes

U ¼ Nsp

2�2

Z pf

0
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðgt�h=

ffiffiffi
2

p Þ2
q

dpþ Veffnormð�hÞ
(J7)

¼ Nsp

32�2

�ðgt�hÞ4
4

�
log

ðgt�hÞ2
2

� 2 logðpf þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
f þ ðgt�hÞ2=2

q
Þ
��

þ Nsp

32�2

�
2pf

�
2p2

f þ
ðgt�hÞ2

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
f þ ðgt�hÞ2=2

q �
þ Veffnormð�hÞ: (J8)

The Fermi momentum pf really determines the density

of quarks or antiquarks and thus—if bound states are
effectively present—also the density of the bound states.
Now we want to adjust the density in such a way as to
crudely represent the fact that the space is filled up with
bound states, so that in every point of space there is just one
of the bound states present. That is to say we must adjust
the Fermi momentum pf to such a value that we achieve

this density corresponding to totally filling space with
bound states. After adjusting pf in such a way, we can

obtain the mass or rather the energy of the bound state by
using the fact that the number of bound states per unit
volume is

4�

3ð2�Þ3 p
3
f ¼

p3
f

6�2
: (J9)

So the mass or rather the energy of the potential bound
state (ENBS) is

ENBS ¼ 6�2

p3
f

U: (J10)

Now the density needed to have filled space with the
bound states can—crudely at least—be found by minimiz-
ing the bound state energy ENBS with respect to the
variable determining the density, i.e., with respect to pf.

The argument for this runs as follows:
(1) If we make an ansatz ‘‘material’’ with a lower

density of bound states than there is place for, then
each bound state can be imagined to be surrounded
by a little piece of essentially vacuum the energy of
which must be added to the value ENBS as calcu-
lated from (J10). Now we have normalized the
effective potential Veff normð�hÞ by making it vanish
at its minimum. So the pieces of new vacuum in any
ansatz will have positive energy. Thus, if we make
the density in the ansatz too low, the result for ENBS
will always be larger than the true bound state
energy.

(2) On the other hand if we make an ansatz with a too
high density so that the bound states get squeezed
together, this will also cause the energy per bound
state ENBS to increase compared to that of a free
bound state.

So we see that the energy formally calculated from an
ansatz ENBS will be bigger both when the density is higher
and when it is lower than the one corresponding to the
bound states just touching or filling the space. This then
means that there must be a minimum in the energy per
bound state ENBS as a function of the density parameter
pf.

Since we are working in the approximation of letting the
Higgs field be constant inside the bound state, we really
just want to adjust this Higgs field�h so as to minimize the
energy of the bound state. Combined with the above-
mentioned adjustment of pf, we end up with the rule that

we shall adjust both parameters pf and �h so as to mini-

mize the expression (J10) for ENBS. Then we should
obtain, in our ansatz approximation, the right mass or
rather energy for the bound state if there is a bound state.
If there is no binding, we should get the energy of the Nsp

‘‘constituents’’ that were meant to be bound. In the case of
a potential bound state made from Nsp ¼ 12 top or antitop

quarks, this constituent energy would be Nsp times the top-

quark mass (or energy, but we expect that the speed would
be low in our ansatz).
The main point of this Appendix is that the mass or

energy of the bound state appears as the result of taking a
minimum so that it will not normally be a nice analytical
function of the parameters that are input into the calcu-
lation such as gt, but rather tends to have a kink as a
function of the inputs.
Without taking into account on which side of the ‘‘phase

transition’’ a given value of gt may lie, one can a priori
make a severe error in the calculation. According to our toy
model, the correct side of the phase transition is deter-
mined by the question of whether or not the Higgs field in
the region of the potential bound state has been pushed so
much as to deviate strongly from its value in the usual
vacuum. The calculation in Ref. [5] has been made on the
small gt side of the phase transition, where to a very good
approximation we have the usual vacuum with the usual
246 GeV Higgs field expectation value. On the other hand,
in this paper we have worked in the regime where we take
the Higgs field in the interior of the hypothesized bound
state to deviate significantly from that in the usual vacuum.
Indeed the typical field value inside the bound state in our
calculation is rather small. So we have worked on the large
gt side of the phase transition.
We now present the results of our toy model calculation,

which exhibit the existence of such a phase transition. Here
we use a Higgs mass of mh ¼ 115 GeV. The results ob-
tained for the mass or really the energy of the potential
bound state ENBS are plotted in Fig. 2 as a function of gt.
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They were calculated by simply minimizing, for each
choice of the Yukawa coupling gt, the value of ENBS as
given by (J10) with respect to both variables, the Fermi
momentum pf and the Higgs field (in the interior of the

bound state)�h. The little step in the figure is an artifact of
the calculational accuracy, but the kink is of course due to
the minimum giving the smallest ENBS jumping discon-
tinuously at gt ¼ 1:191. Indeed the minimum jumps from
ð�h; pfÞ ¼ ð246; 0:18 GeVÞ to (0, 211 GeV).

This jumping is partly illustrated by Fig. 3, where the
potential bound state mass or rather energy ENBS is plot-
ted as a function of �h, when the latter is imposed as the
approximate value of the Higgs field inside the bound state
region. It means that for every�h value the function ENBS
from (J10) has been minimized with respect to effectively
the density of bound states, meaning minimization with
respect to pf. Figure 3 is made for the specific value gt ¼
1:191, which is the phase transition value. This is reflected
by the fact that you see two essentially degenerate minima
in Fig. 3.

For gt greater than the phase transition value of 1.191,
the mass or energy remains constant as the Yukawa cou-
pling gt increases. This means that the binding gets
stronger and stronger, in as far as the binding energy is
really

“ binding” ¼ Nspgtffiffiffi
2

p 246 GeV� ENBS: (J11)

Thus, for example, in our toy model the binding energy
becomes equal to half the mass of the constituents for gt ¼
2:42. According to our discussion in Sec. II D, this is the
formal requirement for a massless bound state. Thus, in the
bad approximation of ignoring the exchange of eaten
Higgses, gluon exchange, etc. and even taking the Higgs
field inside the bound state as constant, we obtain gt ¼
2:42 as the value of the Yukawa coupling which gives a
massless bound state in our toy model.
For the case of gt less than the phase transition value of

1.191, we get a very small value for pf compared to our

own results from the Bohr atom approximation. We get
pf � 0:18 GeV rather than of order g2t mt. This very small

value of pf may be interpreted as supporting (as does Fig. 2

for gt < 1:191) the result of Kuchiev et al. according to
which the system does not bind. Completely zero binding
would correspond to each particle standing still and well
separated from each other, which would imply a very low
density and thus correspond to pf ¼ 0.
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