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We perform a global fit to the structure function F2 measured in lepton-proton experiments at small

values of Bjorken-x, x � 0:01, for all experimentally available values of Q2, 0:045 GeV2 � Q2 �
800 GeV2. We show that the recent improvements resulting from the inclusion of running coupling

corrections allow for a description of data in terms of nonlinear QCD evolution equations. In this approach

F2 is calculated within the dipole model with all Bjorken-x dependence described by the running coupling

Balitsky-Kovchegov equation. Two different initial conditions for the evolution are used, both yielding

good fits to data with �2=d:o:f: < 1:1. The proton longitudinal structure function FL, not included in the

fits, is also well described. Our analysis allows to perform a first principle extrapolation of the proton-

dipole scattering amplitude once the initial condition has been fitted to presently available data. We

provide predictions for F2 and FL in the kinematical regions of interest for future colliders and ultra-high

energy cosmic rays. A numerical implementation of our results down to x ¼ 10�12 is released as a

computer code for public use.

DOI: 10.1103/PhysRevD.80.034031 PACS numbers: 12.38.Bx, 13.60.�r

I. INTRODUCTION

The experimental data collected in electron-proton deep
inelastic scattering (DIS) experiments [1–18] at small val-
ues of Bjorken-x constitute one of the most valuable
sources of information to test and explore the high-energy
limit of QCD. The standard analyses (see [19] and refer-
ences therein) of these data are usually made in the frame-
work of fixed-order Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equations in which various re-
summation schemes have also been essayed. On the other
hand, a description of available data in terms of the non-
linear QCD evolution equations [20–30] has—despite phe-
nomenological analyses (see e.g. [31–38]) being most
suggestive of the presence of saturation effects, a crucial
physical ingredient for the description of high-energy scat-
tering in the small-x domain of DIS—has been elusive so
far.

The saturation phenomenon is closely related to unitar-
ity of the quantum field theory and is characteristic of
dense partonic systems. It admits an intuitively clear physi-
cal picture in the infinite momentum frame. There, the
gluon distribution function xGðx;Q2Þ can be interpreted
as the number of gluons in the proton wave function
localized within a transverse area inversely proportional
to the photon virtuality Q2, and carrying a fraction of the

proton longitudinal momentum x. For fixedQ2, the number
of gluons in the proton wave function increases with
decreasing x due to additional gluon emission or gluon
branching. Such growth of gluon densities has been ex-
perimentally observed at HERA and, if extrapolated to-
wards smaller values of x, would threaten the unitarity of
the theory. Hence, the proton gets denser and gluon-gluon
recombination processes, which are essentially nonlinear,
slow down the non-Abelian avalanche towards small-x.
This mechanism tames the subsequent growth of gluon
densities, i.e. they saturate, thus preventing unitarity vio-
lations. The intrinsic momentum scale that determines the
separation between the dilute and dense domains in the
proton wave function is the saturation scale Q2

sðxÞ. This
scale can be understood as the inverse transverse area
inside which the probability of finding more than one gluon
is of order one. It is a dynamic scale whose growth is
determined by the interplay between the linear, radiative
processes and the nonlinear, recombination ones.
All these qualitative ideas are cast in a definite theoreti-

cal framework, the color glass condensate (CGC). The
CGC is endowed with a set of perturbative, nonlinear
evolution equations, the Jalilian-Marian-Iancu-McLerran-
Weigert-Leonidov-Kovner (JIMWLK) equation [21–26]
and the Balitsky-Kovchegov (BK) equation [27,28], that
describe the small-x evolution of hadronic wave functions.
However, rather than in terms of partonic densities, high-
energy QCD evolution is more naturally formulated in
terms of correlators of Wilson lines as effective degrees
of freedom. The JIMWLK equation is equivalent to an
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infinite set of coupled, nonlinear evolution equations for all
correlators of the Wilson lines—also known as Balitsky’s
hierarchy. In the limit of large number of colors (Nc) the
hierarchy reduces to a single equation—the BK equation—
for the correlator of two Wilson lines or, equivalently, for
the (imaginary part of the) dipole scattering amplitudeN .
As we shall explain in detail in Sec. II, in the dipole model
the small-x dependence of the different DIS cross sections
is completely encoded in the dipole scattering amplitude,
and thus describable by the JIMWLK-BK equations.

Even though the JIMWLK equation comprises a richer
physical input than the BK equation, the latter has become
the most widely used tool to study the small-x dynamics.
This is in part due to the relative simplicity of the BK
equation with respect to JIMWLK, whose solution de-
mands the use of rather complicated numerical methods
[39]. Further, the difference between the solutions of the
BK and JIMWLK equations turns out to be significantly
smaller, of order 0.1% [39], than the a priori expected
Oð1=N2

cÞ corrections. The origin of the smallness of the
subleading-Nc corrections have been investigated recently
in [40]. For these reasons, here we will consider the BK
equation, rather than JIMWLK, as the starting point to
analyze the experimental data on the proton structure
functions at small-x.

One of the first and most successful phenomenological
applications of saturation based ideas to the description of
small-x DIS data is due to Golec-Biernat and Wüsthoff
(GBW) [31]. Their pioneering work relies on the use of the
dipole model in QCD [41,42], together with a relatively
simple model for the dipole-proton scattering amplitude
encoding the basic features of saturation, to calculate the
DIS total and diffractive lepton-proton cross sections. In
particular, the proton saturation scale was parametrized as
Q2

sðxÞ ¼ ðx0=xÞ� GeV2. Fits to HERA data yielded x0 ¼
3� 10�4 and � ¼ 0:288. Several improvements of the
GBW model for the dipole scattering amplitude were
proposed later on in [32,34–37,43]. Very succinctly,
some of these works [32] incorporated features of BFKL
dynamics and explicit impact parameter dependence in the
scattering amplitude [33,35,36], whereas [43] focused in
including DGLAP evolution into the model, which resulted
in a improved fit to the higher Q2 data. A first attempt of
combining BK and DGLAP dynamics in the description of
DIS data was made in [33]. Finally, the relation to heavy
ion collisions was explored in [34,37]. Overall, these works
reported an evolution speed compatible with the one ob-
tained in the GBW model, �� 0:2–0:3.

A natural question arises of why the BK-JIMWLK
equations, the most solid theoretical tool available to de-
scribe the small-x dynamics of the dipole scattering am-
plitude and, in particular, the x-dependence of the
saturation scale, have not been directly applied to the study
of DIS small-x data. The answer to this question is given by
the analytical [44,45] and numerical [46–48] studies of the

leading-order (LO) BK equation. In these works the growth
of the saturation scale yielded by the LO BK equation was
determined to be Q2

s � x��LO , with �LO ’ 4:88Nc�s=�.
Thus, the LO result predicts a much faster growth of the
saturation scale (and hence of DIS structure functions) with
decreasing x than the one extracted phenomenologically.
This insufficiency of LO BK can only be circumvented by
introducing an unreasonably small value for the fixed
coupling, rendering any attempt to describe experimental
data far from meaningful.
It has been a long-standing expectation that higher order

corrections to the original LO BK-JIMWLK equations
could bring the theoretical predictions closer to experimen-
tal observations. Indeed, numerical estimates for the run-
ning coupling [47,48] and energy conservation corrections
[48,49]—both subleading physical contributions to the LO
kernel—based on heuristic modifications of the LO kernel
indicated a significant reduction of the evolution speed,
thus pointing in the right direction. Moreover, running
coupling effects appeared to dominate the contribution to
the evolution kernel with respect to energy conservation
effects [48]. However, it was not until recently that an
explicit first principle calculation of the running coupling
corrections to the evolution kernel was performed in [50–
52] by including�sNf corrections (Nf being the number of

flavors) into the evolution kernel to all orders and by then
completing Nf to the one-loop QCD beta-function. The

numerical study of the BK equation at all orders in �sNf,

performed in [53], reported a significant slowdown of the
evolution speed with respect to the solutions of the LO
equation, hence rising the hopes that the improved equa-
tion might become a useful phenomenological tool. In its
first successful application it was used to describe the
energy and rapidity dependences of particle multiplicities
produced in nucleus-nucleus collisions at the Relativistic
Heavy Ion Collider (RHIC) at the BNL [54].
Significant progress has also been made recently in the

determination of subleading physical effects, other than
running coupling corrections, to the LO BK equation,
namely, the inclusion of pomeron loops (see e.g. [55,56]
and references therein), finite-Nc corrections [40] or the
determination of the complete next-to-leading evolution
kernel [57] to the BK equation. However, our current
understanding indicates that the running coupling effects
are dominant with respect to pomeron loops (or particle
number fluctuations) [58] or finite Nc corrections [40]. We
will therefore limit ourselves in the present work to the
analysis of DIS small-x data though the BK equation
including only running coupling corrections.
The first goal of this paper is to prove the ability of the

BK equation including running coupling corrections to
account for the small-x behavior of the total, F2, and
longitudinal, FL, structure functions measured in DIS ex-
periments (a first step in this direction, yet unpublished,
was reported in [59]). To that end we shall devise a global
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fit to the available experimental data with x � x0 ¼ 10�2

and for all values of Q2. Analogously to previous works,
our starting point will be the dipole model of QCD. The
main novelty of our work is that the dipole-proton scatter-
ing amplitude, instead of being modeled, is calculated
though numerical solutions of the BK equation including
running coupling corrections. The free parameters in our
fit, to be detailed in Sec. II, are those related to the
parametrization of the initial condition for the evolution,
a global coefficient that sets the normalization and a con-
stant which relates the running of the coupling in momen-
tum space to that in dipole size. As we show in Sec. IVA,
the fits yield a good �2=d:o:f: � 1:1, thus demonstrating
that such partial improvement of the LO BK equation
suffices to reconcile the theoretical predictions with ex-
perimental results. Further, in Sec. IVB with all the free
parameters fixed by the global fit of available data, we
make predictions for the same observables at much smaller
values of x. Such predictions are completely driven by
nonlinear QCD dynamics and could be directly tested at
the proposed Electron-Ion Collider (EIC) [60] or Large
Hadron-electron Collider (LHeC) [61] experimental facili-
ties, where values of x as low as x� 10�7 for Q2 �
1 GeV2 could be reached.

Second, the upcoming LHC experimental programs in
proton-proton, proton-nucleus and nucleus-nucleus de-
mand a detailed knowledge of hadronic wave functions
or parton density functions (PDF) at very small x as an
input for the calculation of many different observables
(see, for instance, the discussions in [19,62]). While global
PDF fits provide a description of currently available data,
additional theoretical input is needed in order to safely
extrapolate towards values of x so far unexplored empiri-
cally and for which additional saturation effects appear
unavoidable. A similar situation is found in cosmic rays
physics [63,64], where the highest center-of-mass energies
reached in primary collisions are simply unattainable in
accelerator experiments in the foreseeable future. In this
work we set the ground for a systematic program oriented
to provide parameter-free extrapolations of the dipole am-
plitudes (both for proton and nuclei) to very small values of
x based on the direct solution of running coupling BK
equations computed in QCD. Parametrizations of the
dipole-proton scattering amplitudes down to very small x
based on the results of this work are publicly available
through simple numeric routines [65].

II. SETUP

In this section we briefly review, in a self-contained
manner, the main ingredients needed for the calculation
of the inclusive and longitudinal DIS structure functions.

A. Dipole model

At x � 1, the inclusive structure function of DIS can be
expressed as

F2ðx;Q2Þ ¼ Q2

4�2�em

ð�T þ �LÞ; (2.1)

where �em is the electromagnetic coupling and �T;L stands

for the virtual photon-proton cross section for transverse
(T) and longitudinal (L) polarizations of the virtual photon.
The longitudinal structure function is obtained by consid-
ering only the longitudinal contribution:

FLðx;Q2Þ ¼ Q2

4�2�em

�L: (2.2)

It is well known that at high energies or small x (where the
coherence length of the virtual photon fluctuation lc �
ð2mNxÞ�1 ’ 0:1=x fm � RN , with mN and RN the proton
mass and radius, respectively), and using light-cone per-
turbation theory, the total virtual photon-proton cross sec-
tion can be written as the convolution of the light-cone
wave function squared for a virtual photon to fluctuate into
a quark-antiquark dipole, j�T;Lj2, and the imaginary part

of the dipole-target scattering amplitude, N . For trans-
verse and longitudinal polarizations of the virtual photon
one writes [41,42]:

�T;Lðx;Q2Þ ¼
Z 1

0
dz

Z
dbdrj�T;Lðz;Q2; rÞj2N ðb; r; xÞ;

(2.3)

where z is the fraction of longitudinal momentum of the
photon carried by the quark, r is the transverse separation
between the quark and the antiquark and b the impact
parameter of the dipole-target collision (henceforth bold-
face notation indicates two-dimensional vectors). The
wave functions j�T;Lj2 for the splitting of the photon

into a q �q dipole are perturbatively computable within
QED. We refer the reader to e.g. [31] for explicit expres-
sions to lowest order in �em. All the information about the
strong interactions—along with all x-dependence—in Eq.
(2.3) is encoded in the dipole-proton scattering amplitude,
N ðb; r; xÞ. Although this quantity is a genuinely nonper-
turbative object, its evolution towards smaller values of x
can be studied perturbatively though the BK equation. On
the contrary, its impact parameter dependence cannot be
studied by means of the perturbative BK equation, since it
is governed by long distance, nonperturbative physics. To
circumvent this theoretical limitation we will resort to the
translational invariance approximation (also used in [31]),
which regards the proton as homogeneous in the transverse
plane. Under this approximation the virtual photon-proton
cross section Eq. (2.3) can be rewritten as follows:

�T;Lðx;Q2Þ ¼ �0

Z 1

0
dz

Z
drj�T;Lðz;Q2; rÞj2N ðr; YÞ;

(2.4)

where r ¼ jrj is the dipole size (the notation v � jvj for all
the 2-dimensional vectors will be also employed through-
out the rest of the paper) and �0 is a dimensionful constant
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resulting from the b integration that sets the normaliza-
tion—this will be one of the free parameters in our fits.
Note that this result relies on the assumption that a factor-
ized structure of x, r, and b dependences remains un-
changed throughout the evolution. In this case the
parameter �0 is related to the t-dependence in diffractive
events, see e.g. [66]. On the other hand, this factorized
structure may be assumed solely for the initial condition,
while small-x evolution is performed, in the translational-
invariant approximation, separately for every impact pa-
rameter (as done e.g. for nuclei in [67,68]). This results in a
�0 varying (increasing) with energy [69]. We leave this
latter aspect for future studies.

B. BK equation with running coupling

The primary physical mechanism driving the small-x
evolution of the dipole scattering amplitude is the emission
of soft gluons off either the quark or the antiquark in the
original dipole. The leading order BK equation resumming
the corresponding �s lnð1=xÞ contributions to all orders
reads

@N ðr; YÞ
@Y

¼
Z

dr1K
LOðr; r1; r2Þ½N ðr1; YÞ þN ðr2; YÞ

�N ðr; YÞ �N ðr1; YÞN ðr2; YÞ	; (2.5)

with the evolution kernel given by

KLOðr; r1; r2Þ ¼ Nc�s

2�2

r2

r21r
2
2

; (2.6)

and r2 ¼ r� r1. Here, Y ¼ lnðx0=xÞ is the rapidity vari-
able and x0 is the value of x where the evolution starts,
which should be small enough for the dipole model to be
applicable. In our case x0 ¼ 0:01 will be the highest ex-
perimental value of x included in the fit.

The calculations in [50,51] proceeded by including
�sNf corrections (Nf being the number of flavors) into

the evolution kernel to all orders and by then completing
Nf to the one-loop QCD beta-function by replacing Nf !
�6��2, with �2 ¼ ð11Nc � 2NfÞ=ð12�Þ. The calculation
of the �sNf corrections is particularly simple in the

s-channel light-cone perturbation theory (LCPT) formal-
ism used to derive the BK and JIMWLK equations: there
�sNf corrections are solely due to chains of quark bubbles

placed onto the s-channel gluon lines, as sketched in
Fig. 1(a). Importantly, at the same degree of accuracy a
new physical channel is opened, namely, the emission of a
quark-antiquark pair, instead of a gluon, as depicted in
Fig. 1(b). The calculation in [52] relied instead on the
use of dispersive methods, arriving at the same results as
in the perturbative calculation in [51].
Neglecting the impact parameter dependence, the im-

proved BK evolution equation for the dipole scattering
amplitude obtained after resumming the subleading �sNf

corrections to all orders in [50,51] can be written in the
following, rather general form [53]:

@N ðr; YÞ
@Y

¼ R½N 	 � S½N 	; (2.7)

where both R and S are functionals of the dipole scatter-
ing amplitude, N . The first, running coupling, term
R½N 	 in Eq. (2.7) gathers all the �sNf factors needed

to complete the QCD beta function, resulting in a func-
tional form identical to the LO one but involving a modi-
fied kernel which provides the scale setting for the running
of the coupling. In turn, the second term in the right-hand
side of Eq. (2.7), S½N 	, the subtraction term, accounts for
conformal, non–running-coupling contributions.
It would be erroneous to identify the gluon and quark-

antiquark emission channels with the running and subtrac-
tion terms in Eq. (2.7), respectively. Importantly, the quark-
antiquark channel contains a logarithmic ultraviolet (UV)
divergence associated to the emission of a zero size pair
which, in the large-Nc limit, is indistinguishable from one
gluon emission and therefore contributes to the running of
the coupling on an equal footing. The emission of finite
size quark-antiquark pairs is UV finite and does not con-
tribute to the running of the coupling. Thus, the decom-
position of the evolution kernel into running and
subtraction contributions, although constrained by unitar-
ity arguments, is not unique. This is due to the fact that
there is some freedom in the way in which the UV diver-
gence can be singled out from the conformal one, so in
order to perform a decomposition like the one in Eq. (2.7) a
precise separation scheme needs to be specified. Not sur-
prisingly, the separation schemes proposed in [50,51] were
different. For a detailed discussion on this subject we refer
the reader to [53].

A

x0

z

x1

x0

1x

z

z

1

21−α

α

B

FIG. 1 (color online). Schematic representation of the diagrams contributing to the evolution to all orders in �sNf. The s-channel
gluon line can be attached to either the quark (upper line) or the antiquark (lower line).
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In this work we will consider only the running term in
the evolution kernel. Ideally one would like to include the
subtraction piece of the evolution kernel in practical ap-
plications as this would eliminate the uncertainty associ-
ated to the scheme choice and would provide a richer
physical description of the small-x evolution of the dipole
scattering amplitude. Unfortunately, its numerical evalu-
ation [53] demands a very large computing time. For a
global fit like the one presented in this work, in which the
evolution is performed�103 times, such computing time is
simply unaffordable. On the other hand, as shown in [53],
the contribution to the complete evolution kernel stemming
from the subtraction term is systematically smaller—and
negligible at high rapidities—than the one arising from the
running term. In particular, we will follow the prescription
proposed by Balitsky in [50] to single out the running term
since, as demonstrated in [53], such choice minimizes the
contribution to the evolution of the subtraction term, ne-
glected in what follows, with respect to the separation
scheme proposed in [51].

Finally, after dropping the subtraction term from Eq.
(2.7), the BK evolution equation including only running
coupling corrections reads

@N ðr; YÞ
@Y

¼ RBal½N 	; (2.8)

where the running coupling functional is identical to the
LO equation:

RBal½N 	 ¼
Z

dr1K
Balðr; r1; r2Þ½N ðr1; YÞ þN ðr2; YÞ

�N ðr; YÞ �N ðr1; YÞN ðr2; YÞ	; (2.9)

but with a modified evolution kernel that includes running
coupling corrections. Using Balitsky’s prescription, the
kernel for the running term reads [50]

KBalðr; r1; r2Þ ¼ Nc�sðr2Þ
2�2

�
r2

r21r
2
2

þ 1

r21

�
�sðr21Þ
�sðr22Þ

� 1

�

þ 1

r22

�
�sðr22Þ
�sðr21Þ

� 1

��
: (2.10)

C. Regularization of the infrared dynamics

The BK equation is an integro-differential equation that
involves integration over all available phase-space for soft
gluon emission. In the running coupling case, Eqs. (2.8),
(2.9), and (2.10), the coupling has to be evaluated at
arbitrarily large values of the dipole size (small gluon
momentum), and a regularization prescription to avoid
the Landau pole becomes necessary. A celebrated feature
of the BK equation is its ability to fix [70] the problem of
infrared diffusion characteristic of its linear counterpart,
the BFKL equation. The nonlinear terms in the BK equa-
tion ensure that the dynamics in the phase-space region
within the unitarity limit, i.e. for r � 1=Qs, is frozen. Such

feature is shared by both the LO and running coupling BK
equations, since it is ultimately rooted in the nonlinear
combination of N ’s in the right-hand side of Eq. (2.9),
which is identical in both cases. Thus, if Qs is perturba-
tively large, Qs � �QCD, then all the relevant dynamics

takes place deep in the ultraviolet region of the phase
space, r � 1=Qs. In such scenario the details about the
regularization of the running coupling in the infrared be-
come irrelevant for the result of the evolution.
Unfortunately, we can anticipate that such will not be the

case in this work. Taking the results by Golec-Biernat and
Wüsthoff [31] as a guidance, one can estimate that the
proton saturation scale at the largest values of Bjorken-x to
be considered in this work, x� 10�2, is of the order of
Q2

sðx ¼ 10�2Þ �
ð3� 10�4=10�2Þ0:288 GeV2 ’ 0:36 GeV2. The fits to be
presented in Sec. IV yield even smaller values of the initial
saturation scale of the proton. Although larger than �2

QCD,

such values for the initial scale are not large enough to
avoid sensitivity to the infrared (IR) dynamics. Actually,
the detailed study of the infrared-renormalon ambiguities
carried out in [52] demonstrated that the sensitivity of the
solutions of the evolution equation to several different
prescriptions used to regularize the coupling is relatively
large even for initial saturation scales as large as Q2

s �
1–2 GeV2. On the bright side, theoretical studies of the
Schwinger-Dyson equations for the gluon propagator in the
IR and lattice QCD results (see e.g. [71–73] and references
therein) indicate that the strong coupling freezes to a
constant value, �fr, in the IR. Moreover, the value at which
the coupling freezes has been determined to be �fr �
0:5–0:7. While these results are somewhat controversial
and yet subject to discussion in the literature, in particular,
the very definition of an infrared coupling, we will take
them as a guidance to regularize the IR dynamics.
Otherwise, our prescription can be regarded as purely
phenomenological.
Thus, for small dipole sizes r < rfr, with �sðr2frÞ �

�fr ¼ 0:7, we shall evaluate the running coupling accord-
ing to the usual one-loop QCD expression:

�sðr2Þ ¼ 12�

ð11Nc � 2NfÞ lnð 4C2

r2�2
QCD

Þ ; (2.11)

with Nf ¼ 3, whereas for larger sizes, r > rfr, we freeze

the coupling to the fixed value �fr ¼ 0:7. We take�QCD ¼
0:241 GeV, such that �sðMZÞ ¼ 0:1176, withMZ the mass
of the Z boson. The factor C2 under the logarithm in Eq.
(2.11) will be one of the free parameters in the fit. It reflects
the uncertainty in the Fourier transform from momentum
space, where the original calculation of �sNf corrections

was performed, to coordinate space. Alternatively, we
could have fixed C2 to the value suggested in [51],

e�5=3�2�E , and chosen either �QCD or �fr as the free

parameters controlling the IR dynamics. Indeed, we have

NONLINEAR QCD MEETS DATA: A GLOBAL ANALYSIS . . . PHYSICAL REVIEW D 80, 034031 (2009)

034031-5



checked that such choices yield equally good fits as those
presented in Sec. IV without changing much the value of
the other free parameters. However, both �fr and, specially,
�QCD, are more tightly constrained from both theoretical

and phenomenological studies than C2.

D. Initial conditions for the evolution

Finally we have to specify the initial condition (i.c.) for
the evolution or, equivalently, the precise shape of the
proton unintegrated gluon distribution (UGD), �ðx; kÞ, at
the highest experimental value of Bjorken-x included in the
fit, x0 ¼ 0:01 (which, by definition, corresponds to rapidity
Y ¼ 0). The UGD is related to the dipole scattering am-
plitude though a Fourier transform:

�ðx; kÞ ¼
Z dr

2�r2
eik
rN ðx; rÞ: (2.12)

This is a genuinely nonperturbative object which needs to
be modeled. We will consider two different families of
initial conditions. The first one is inspired in the original
GBW ansatz [31] for the dipole scattering amplitude and
parametrized in the following way:

N GBWðr; Y ¼ 0Þ ¼ 1� exp

�
�
�
r2Q2

s0

4

�
�
�
: (2.13)

The second family of initial conditions [74] follows closely
the McLerran-Venugopalan (MV) model:

N MVðr; Y ¼ 0Þ ¼ 1� exp

�
�
�
r2Q2

s0

4

�
�
ln

�
1

r�QCD

þ e

��
;

(2.14)

where Q2
s0 is the initial saturation scale squared in both

cases.
Equations (2.13) and (2.14) differ with respect to the

original GBW and MV models in the inclusion of an
anomalous dimension, �, which will be another of the
free parameters in the fit. The GBW and MV functional
forms are recovered by setting � ¼ 1 in Eq. (2.13) and
(2.14) respectively. The anomalous dimension controls the
slope of the scattering amplitude in the transition from the
dilute region to the black disk region. The main difference
between MV and GBW i.c. is their different UV behavior,
which is more easily appreciated in momentum space. For
� ¼ 1 and large transverse momenta k, the UGD resulting
from the MV i.c. falls off as�MV � 1=k2, as expected from
rather general perturbative considerations, while the GBW
i.c. falls off exponentially, �GBW � expð�k2=Q2

sÞ. It is
well known that the solutions of the BK equation, both at
LO and including higher order corrections, do not respect
the relatively simple functional forms in Eq. (2.13) and
(2.14). On the contrary, they can be roughly characterized
by an r- and Y-dependent anomalous dimension, �ðr; YÞ,
with � ! 1 for r ! 0. Clearly a constant value of � � 1
would not respect such condition. However, the main con-

tribution to the DIS cross section given by Eq. (2.4) origi-
nates from the region 1=Q & r & 1=Qs. The contribution
from the dilute UV region r < 1=Q is much smaller and
therefore we will not consider additional refinements of the
initial conditions in Eq. (2.13) and (2.14), which would
come at the prize of adding new, spurious parameters into
the fit. [Actually, the results of the fit shows that for the
GBW i.c. the preferred value is � ¼ 1, so it will be fixed
for this initial condition.] Finally, the constant term under
the logarithm in theMV initial condition, e, has been added
to regularize the exponent for large values of r.

E. Summary of the theoretical setup
and free parameters

In summary, we will calculate the total DIS inclusive
and longitudinal structure functions according to the dipole
model under the translational invariant approximation Eq.
(2.4). The small-x dependence is completely described by
means of the BK equation including running coupling
corrections, Eqs. (2.8), (2.9), and (2.10), for which two
different initial conditions GBW and MV, Eqs. (2.13) and
(2.14), are considered. All in all, the free parameters to be
fitted to experimental data are:
(i) �0: The total normalization of the cross section in

Eq. (2.4).
(ii) Q2

s0: The saturation scale of the proton at the highest
experimental value of Bjorken-x included in the fit,
x0 ¼ 10�2, in Eqs. (2.13) and (2.14).

(iii) C2: The parameter relating the running of the cou-
pling in momentum space to the one in dipole size in
Eq. (2.11).

(iv) �: The anomalous dimension of the initial condition
for the evolution in Eqs. (2.13) and (2.14). As dis-
cussed in Sec. IV, in some cases (GBW) � can be
fixed to 1, obtaining equally good fits to data than
when it is considered a free parameter.

III. NUMERICAL METHOD AND EXPERIMENTAL
DATA

The experimental data included in the fit to F2ðx;Q2Þ
have been collected by the E665 [1] (FNAL), the NMC [2]
(CERN-SPS), the H1 [3–8] (HERA), and the ZEUS [9–16]
(HERA) experimental Collaborations. We have considered
data for x � 10�2 and for all available values of Q2,
0:045 GeV2 � Q2 � 800 GeV2.
The only published direct measurements of the longitu-

dinal structure function FLðx;Q2Þ were obtained recently
by the H1 [17] and ZEUS [18] Collaborations, and they are
not included in the fit.
All in all, 847 data points are included. Statistical and

systematic uncertainties were added in quadrature, and
normalization uncertainties not considered. [A more in-
volved treatment separating uncorrelated and correlated/
normalization errors could be done only at the expense of
adding one more fitting parameter for each of the 17 data
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sets used, thus making the minimization task impossible
due to CPU-time requirements.] Since the minimization
algorithms require a large number of calls to the function
we have implemented a parallelization of the numeric
code. Finally, the BK evolution equation including running
coupling corrections is solved using a Runge-Kutta method
of second order with rapidity step �hy ¼ 0:05, see further

details in [53].
In order to smoothly go to photoproduction, we follow

[31] and use the redefinition of the Bjorken variable

~x ¼ x

�
1þ 4m2

f

Q2

�
; (3.1)

withmf ¼ 0:14 GeV for the three light flavors we consider

in Eq. (2.4).

IV. RESULTS

A. Fits to F2 and description of FL

The values of the free parameters obtained from the fits
to data for the two different initial conditions, GBW and
MV, are presented in Table I. A partial comparison be-
tween the experimental data [1–16] and the results of the fit
for F2ðx;Q2Þ is shown in Fig. 2.

On the other hand FLðx; Q2Þ offers an additional con-
strain on the gluon distribution and is expected to have
more discriminating power on different approaches, par-
ticularly in the low-Q2 region [71]. In Fig. 3 we show a
comparison between experimental data [17,18] and our
predictions for FLðx;Q2Þ.

Several comments are in order. First, the two different
initial conditions yield very good fits to F2-data, with
�2=d:o:f:� 1, and almost identical results for FL. As
remarked in the previous section the main difference be-
tween the two initial conditions is their behavior at small r.
In principle this difference is large, but the fact that the
values of � resulting from the fit are different for the
different initial conditions, should compensate it in a lim-
ited region of r. We thus conclude that the kinematical
coverage of the existing experimental data on F2 (and FL)
is too small to allow a discrimination of the different UV
behaviors of the two employed i.c.

Second, the fits using GBW i.c. and obtained by letting �
vary as a free parameter, do not show an improvement with
respect to those obtained by fixing it to � ¼ 1. On the
contrary, the fits using MV i.c. do improve by letting � be a

free parameter, which takes a value slightly larger than 1,
� ¼ 1:13.
Third, although the two different fits yield pretty differ-

ent values of the initial proton saturation scale, this appar-
ent discrepancy is due to the different functional forms for
GBWand MV i.c. If we redefine the initial saturation scale

for the MV i.c. though the condition N MVðr ¼
1=Q0

s0;MV; Y ¼ 0Þ ¼ 1� e�1=4 (see Sec. IVC), we will

get Q02
s0;MV � 0:19 GeV2, which is closer to the GBW

result. Therefore we conclude from our study that the
saturation scale of the proton, obtained in our fit within
the dipole model (considering only three active flavors and
translational invariant initial conditions i.e. a proton with a
constant profile) at x ¼ 0:01, lies in the range

0:19 GeV2 <Q2
s0 < 0:25 GeV2:

Fourth, the values of �0 obtained from the fits are very
close to each other. This supports the assumption of trans-
lational invariance. Furthermore, the obtained values of
�0 ’ 32 mb correspond, assuming a Gaussian form factor
for the proton [66], to a diffractive exponential slope
�0=ð4�Þ ’ 6:5 GeV�2 in agreement with experimental
data [75], see the comments below Eq. (2.4).
Fifth, we have checked that the quality of the fit and the

values of the parameters are stable under the restriction of
the data range to the region Q2 < 50 GeV2 (which leaves
703 data points for the fit). While in principle the dipole
model should be more suitable for the description of struc-
ture functions in the region of low and moderate Q2, we
take this stability as a signal that there is no tension in the
fit with the large-Q2 data.
Finally, the agreement of our predictions for FLðx;Q2Þ

with the experimental data [17,18] is of the same quality as
other based on fixed-order NLO and NNLO DGLAP evo-
lution, see the comparison in [17,18]. As discussed in [76],
data at smaller Q2 may offer the possibility of discrimi-
nating different approaches.

B. Predictions for future experimental programs

Besides available experimental data, the experimental
programmes at the LHC will test [19,62,77] our under-
standing of the small-x behavior of the nucleon structure.
There are also proposals of future lepton-hadron colliders
[60,61] in which new measurements of structure functions
at smaller x would be performed. Further, the physics of
high-energy cosmic rays is expected to be influenced by
small-x phenomena [63,64]. Therefore, we find it worth to

TABLE I. Values of the fitting parameters from the fit to F2ðx;Q2Þ data from [1–16] with x �
10�2 and for all available values of Q2, 0:045 GeV2 � Q2 � 800 GeV2.

Initial condition �0 (mb) Q2
s0 (GeV2) C2 � �2=d:o:f:

GBW 31.59 0.24 5.3 1 (fixed) 916:3=844 ¼ 1:086
MV 32.77 0.15 6.5 1.13 906:0=843 ¼ 1:075
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show in Fig. 4 our predictions for F2 and FL in a broad, yet
experimentally unexplored region of x and Q2.

Two facts should be highlighted. First, the striking
agreement of the predictions—which makes them more
reliable—from both initial conditions. Second, that at large
Q2 and small x the effect of saturation, namely, the flat-
tening of the structure function, is more apparent in FL

than in F2. This fact stresses, in our view, the importance of
FL measurements to distinguish different scenarios for the
small-x dynamics: fixed order perturbative QCD, resum-
mation schemes or saturation models [76].

C. Parametrizations of the dipole-proton scattering
amplitude

With all the uncertainties associated to the initial condi-
tion for the evolution fixed by the fit to F2 presented in the
previous sections, we can now evolve the proton-dipole
scattering amplitude to much smaller values of x. Such

extrapolation is completely driven by small-x evolution
including running coupling corrections and can be used
to calculate several different observables relevant for the
LHC and cosmic ray physics. We have performed the
evolution down to x ¼ 10�12. The resulting proton-dipole
scattering amplitude is plotted in Fig. 5 for three values of x
(x ¼ 10�2, 5� 10�6 and 5� 10�9) both for MV and
GBW i.c. and has been made public through simple fortran
routines in [65]. From the solutions of the evolution in
Fig. 5 we can extract the proton saturation scale QsðxÞ
through the condition

N ðr ¼ 1=QsðxÞ; xÞ ¼ 	�Oð1Þ: (4.1)

It is important to note that the values of QsðxÞ presented in
Fig. 6 are dependent on the choice of 	 in Eq. (4.1).
Following the original GBW prescription we take

	 ¼ 1� exp½�1=4	 � 0:22: (4.2)
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FIG. 2 (color online). Comparison between a selection of experimental data [1–16] and the results from the fit for F2ðx;Q2Þ. Solid
red lines correspond to GBW i.c., and dotted blue ones to MV i.c. The error bars correspond to statistical and systematic errors added in
quadrature.
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Different choices of 	 can affect the numerical value of
QsðxÞ by a factor �2–3. Keeping in mind such ambiguity
in its extraction from the numerical solutions of the evo-
lution equation, we can estimate the value of the proton
saturation scale at LHC energies. Using 2 ! 1 kinematics
to compute the smallest value of Bjorken-x probed in
proton-proton collisions, x ¼ ð2M=

ffiffiffi
s

p Þe�y, where M is
the invariant mass of the produced system (one hadron,
dileptons, . . .),

ffiffiffi
s

p ¼ 14 TeV is the collision energy and y
the rapidity of the produced particle, we get (fixing M ¼
1 GeV) that the saturation scale of the backward-moving
proton at the LHC at rapidities y ¼ 0; 3 and 6 is Q2

s ’
0:55–0:7, 1:3–1:7, and 3–4 GeV2, respectively. Such val-
ues are large enough to suggest that saturation effects in
proton-proton collisions at the LHC may be detectable,
specially at forward rapidities.
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FIG. 4 (color online). Predictions for F2ðx;Q2Þ (top) and
FLðx;Q2Þ (bottom) versus x, for 10�8 � x � 10�2 and Q2 ¼
10�1, 1, 10, 102, 103 GeV2 (lines from bottom to top). Solid
black lines show the results obtained with GBW i.c., and dotted
red lines those obtained with MV i.c.
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Collaborations and the predictions of our model for FLðx;Q2Þ.
Red solid lines and open squares correspond to GBW i.c., and
blue dotted lines and open circles to MV i.c. The theoretical
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data, and then joined by straight lines. The error bars correspond
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data coming from [17], while they correspond to the error quoted
for the unconstrained fit for those data coming from [18].
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V. CONCLUSIONS

We presented a new approach towards a systematic
quantification of parton distributions at small-x directly
in terms of nonlinear QCD evolution equations. This ap-
proach has become feasible thanks to the recent calculation
of the running coupling corrections to the BK equation. In
this work we performed a global fit to the available experi-
mental data for F2ðx;Q2Þ measured in electron-proton
scattering for x � 10�2 and all values of Q2. The calcu-
lation of the structure functions F2 and FL is done within
the dipole model under the translational invariant approxi-
mation and considering just three active flavors. The main
novelty of this work with respect to previous phenomeno-
logical analyses is the direct use of the running coupling
BK equation to describe the small-x dependence of the
structure functions. We find a very good agreement with

experimental data with only three (four) free parameters
using GBW (MV) initial conditions for the evolution.
Available data on FL, not included in the fit, are also
well described. We present predictions for both F2 and
FL in the kinematic regime relevant for future accelerators
and ultra-high energy cosmic rays. We also provide the
evolved proton-dipole scattering amplitude down to values
of x ¼ 10�12 through a simple computer code for public
use [65]. Further extension of this work to nuclear targets
and hadronic and nuclear collisions is under way.
In conclusion, we find that the recent progress in our

knowledge of nonlinear small-x evolution brings us to an
unprecedented level of precision allowing for a direct
comparison with experimental data. This provides a solid
theoretical extrapolation of parton densities towards yet
empirically unexplored kinematic regions.
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