
Extraction of spin-dependent parton densities and their uncertainties

Daniel de Florian* and Rodolfo Sassot†

Departamento de Fisica, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 1 (1428) Buenos Aires, Argentina

Marco Stratmann‡

Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany,
and Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany

Werner Vogelsangx

Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
(Received 28 April 2009; published 27 August 2009)

We discuss techniques and results for the extraction of the nucleon’s spin-dependent parton distribu-

tions and their uncertainties from data for polarized deep-inelastic lepton-nucleon and proton-proton

scattering by means of a global QCD analysis. Computational methods are described that significantly

increase the speed of the required calculations to a level that allows one to perform the full analysis

consistently at next-to-leading order accuracy. We examine how the various data sets help to constrain

different aspects of the quark, antiquark, and gluon helicity distributions. Uncertainty estimates are

performed using both the Lagrange multiplier and the Hessian approaches. We use the extracted parton

distribution functions and their estimated uncertainties to predict spin asymmetries for high-transverse

momentum pion and jet production in polarized proton-proton collisions at 500 GeV center-of-mass

system energy at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, as well as forW

boson production.
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I. INTRODUCTION

The last 20 years have witnessed remarkable improve-
ments in the sophistication and precision of methods de-
voted to the extraction of parton density and fragmentation
functions from experimental hard scattering data. These
distributions are essential ingredients for any phenomeno-
logical study of hard scattering processes involving iden-
tified hadrons in the initial and final state, respectively.
Their precise knowledge is not only critical for testing the
very successful framework of perturbative quantum chro-
modynamics (pQCD) but, in more general terms, also for
quantifying uncertainties for precision studies of the stan-
dard model and searches of ‘‘new physics’’ at high energy
accelerators like the CERN LHC. At the same time, parton
densities and fragmentation functions give fundamental
insights into nucleon structure and the hadronization
mechanism.

With the gain in precision and refinements of analyses,
modern parton distribution functions (PDFs) have often
revealed intriguing aspects of hadronic structure, such as
the sizable breaking of isospin symmetry in the light sea
quark sector, suggestions of differences between the
strange quark and antiquark distributions, the steep rise
of the distributions at small momentum fractions, and an

interesting pattern of modifications of the distributions in
nuclei, to name just a few. Certainly one of the most
striking results is the unexpectedly small fraction, about
a quarter, of the proton’s spin that can be attributed to the
intrinsic angular momenta of quarks and antiquarks. This
finding, famously dubbed ‘‘proton spin crisis,’’ has trig-
gered a flurry of experimental and theoretical activity
aiming at clarifying the contributions of gluons and orbital
angular momenta of partons to the spin of the proton [1].
The only way to effectively deconvolute the experimen-

tal information on PDFs, which in its raw form is smeared
over the light-cone momentum fraction x, summed over
many different partonic subprocesses, and taken at differ-
ent hard scales Q for each data point, is a ‘‘global QCD
analysis.’’ It treats all available probes simultaneously, in
order to extract the set of universal PDFs that yields the
optimal theoretical description of the combined data. For
the case of polarized PDFs, the available world data are
from polarized deep-inelastic scattering (DIS) [2–13],
semi-inclusive DIS (SIDIS) [10,14–16], photo- and elec-
troproduction of hadrons and charm [17–21], and proton-
proton (pp) collisions at the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Laboratory
(BNL) [22–27]. The different data sets are complementary
in the sense that they probe different aspects of the helicity-
dependent PDFs. Fully inclusive DIS data from the many
different experiments are pivotal in precisely determining
the sums of quark and antiquark distributions, SIDIS data
help to tell different quark flavors and quark and antiquarks
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apart, and RHIC pp data give a first direct constraint on
gluon polarization.

A global QCD analysis of nucleon spin structure at full
next-to-leading (NLO) accuracy was completed recently
[28]. The present paper gives in large part a more detailed
account of the methods and results of [28]. It also addresses
the issue of the uncertainties of the PDFs in a more detailed
and comprehensive way. As customary for recent unpolar-
ized PDF analyses [29,30], we provide sets of polarized
PDFs associated with displacements in the PDF parameter
space in the vicinity of the best fit which greatly facilitate
the propagation of PDF uncertainties to any observable of
interest.

As a new feature over all previous fits based only on DIS
[31–35], or combined DIS and SIDIS data [36], the analy-
sis [28] included for the first time also results from polar-
ized pp scattering at RHIC in a NLO framework. It
benefited significantly from an improved knowledge of
parton-to-hadron fragmentation functions [37] which are
an essential nonperturbative input for the theoretical de-
scription of all processes with identified hadrons in the
final state, such as SIDIS. For the first time, these frag-
mentation functions provide a good description of identi-
fied hadron yields in the entire kinematic regime relevant
for the analysis of polarized SIDIS and pp data [37]. For
the time being, hadron and charm production data from
fixed-target experiments [17–21], which constrain the
gluon polarization at momentum fractions around x ’
0:1, were not included in the analysis [28] since NLO
calculations of the relevant cross sections are not yet
complete [38]. We will provide a comparison to these
data in order to demonstrate their consistency with the
results of the global fit. RHIC data for charged pion spin
asymmetries [27] are also not taken into account as they
are still preliminary and statistically not as significant as
the neutral pion or jet data [22–26]. With sufficient statis-
tics, however, they can provide an important constraint on
the gluon polarization as will be shown below.

The use of parton distributions in predictions for stan-
dard model benchmark processes, e.g., as ‘‘luminosity
candles’’ at the LHC, or in understanding fundamental
properties of a nucleon like its spin, not only requires a
careful extraction of PDFs from data but also a proper
assessment of their uncertainties and how they propagate
to other observables of interest. In spite of a great deal of
activity and many significant achievements for both parton
distribution and fragmentation functions (FFs), this has
shown to be a rather formidable task in practice
[29,30,37,39,40]. The specific challenge of a global QCD
analysis is to incorporate a large body of data from many
experiments with diverse characteristics and errors. The
complications are compounded by uncertainties inherent to
the theoretical framework used to describe the data, which
are notoriously difficult to quantify. Examples are the
choice of the factorization scale, the functional form used

to parametrize the PDFs, or unavoidable approximations
and assumptions limiting the parameter space.
Several complementary strategies have been devised and

implemented to estimate uncertainties of PDFs and FFs
[41–43]. In general, one starts with introducing an effective
�2 function that combines all phenomenological inputs to
the analysis as a quantitative measure of the goodness of
the global fit. Minimizing this �2 function yields the
optimal set or ‘‘best fit’’ of parameters in the multidimen-
sional space defining the PDFs. The most common method
to determine the range of uncertainties is to study the
dependence of �2 near its global minimum based on a
Taylor expansion and keeping only the leading term as
characterized by the error matrix or its inverse, the Hessian
matrix [43]. This assumes a quadratic form in the displace-
ments of all parameters from their optimum values. The
Hessian also determines the uncertainties of any other
physical observable O, provided that the dependence of
O on the fit parameters is approximately linear around the
minimum. Both assumptions are not necessarily adequate
in the complex global analysis environment, and their
range of applicability needs to be carefully scrutinized.
The more robust method of Lagrange multipliers [42]

circumvents all these shortcomings and is free of assump-
tions concerning the functional dependence of �2 on the fit
parameters. The idea is to explore directly how the fit to
data deteriorates if one enforces certain values for an
observable O away from its best-fit value. In practice,
one performs a series of constrained fits in which �2 is
minimized for particular values of O, in order to map out
the parametric relationship between �2 andO. The method
is straightforward to implement and can be applied to any
combination of physical observables or even to fit parame-
ters themselves. We will pursue and compare both meth-
ods, Hessian and Lagrange multiplier, to estimate
uncertainties for the shape and truncated first moments of
helicity-dependent PDFs using the analysis presented in
[28] as the starting point. The Lagrange multiplier tech-
niquewill provide the necessary benchmarks for testing the
accuracy of approximations within the Hessian method.
We note that alternative approaches recently proposed in
the literature include studies of uncertainties based on
neural networks or large samples of PDFs generated with
Monte-Carlo methods [40].
In any case, all of these methods require an extensive

number of calculations and minimizations of the effective
�2 function, in order to explore the very complex and
entangled sensitivity of the data to variations of the pa-
rameters describing the PDFs. This calls for new and more
efficient calculational tools to include all observables used
in the global fit consistently at NLO accuracy without
resorting to potentially unreliable approximations. In par-
ticular, numerical computations of NLO cross sections in
hadron-hadron scattering are prone to being very time-
consuming.
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In order to deal with this problem, Ref. [28] employed a
method based on the Mellin transform technique proposed
in Refs. [44,45], which allows one to speed up the relevant
NLO computations to a level that they can be incorporated
in the global analysis. An important improvement of this
Mellin transform method was the implementation of a
novel Monte-Carlo sampling technique. This new compu-
tational strategy proved already very useful for the analysis
of single-inclusive observables in pp scattering that are
presently relevant at RHIC. However, it is completely
general and becomes especially powerful when less inclu-
sive observables like two-particle correlations in hadronic
collisions need to be incorporated in the global QCD fits, as
will soon be the case. In the present paper we will describe
the Mellin transform technique and its improvement in
detail. We note that the fast and efficient Mellin technique
for incorporating NLO pp processes is, of course, not
restricted to analyzing helicity-dependent PDFs, but could
equally find important applications for QCD processes at
the LHC.

The paper is organized as follows: in the next section we
describe all technical details of a global PDF analysis. We
first discuss the �2 function and the underlying ideas of the
Hessian and Lagrange multiplier approaches for estimating
PDF uncertainties. We next describe in detail our Mellin
moment and Monte-Carlo sampling techniques as imple-
mented for fast evaluations of NLO pp cross sections in
our global QCD analysis. In Sec. III we apply all tech-
niques to the global analysis of helicity-dependent PDFs
[28]. We discuss the results for the best fit and its uncer-
tainties. We argue that the range of applicability of the
Hessian method is limited to estimating uncertainties of
helicity-dependent PDFs consistent with only small depar-
tures from the best global fit, corresponding to ��2 � 1.
We present sets of polarized PDFs associated with dis-
placements along the eigenvector directions of the
Hessian matrix and resulting in��2 ¼ 1, which character-
ize the PDF parameter space in the vicinity of the global
minimum in a process-independent way. We also explore
the impact of the individual data sets on the results and
uncertainties obtained for helicity-dependent PDFs in the
global fit. In Sec. IV we study the potential of upcoming

measurements at RHIC at
ffiffiffi
S

p ¼ 500 GeV center-of-mass
system (c.m.s.) energy for further constraining the polar-
ized PDFs. We focus on predictions for single-inclusive
pion and jet production, and on W boson single-spin
asymmetries. We conclude in Sec. V.

II. TECHNIQUES FOR NLO GLOBAL PDF
ANALYSES

In this section, we will describe all techniques we use for
the global analysis of polarized PDFs. The first two sub-
sections discuss the �2 function and the various methods
for the analysis of PDF uncertainties. Much of the discus-
sion here will follow the pioneering work in Refs. [41–43].

We then lay out the details of our Mellin moment and
Monte-Carlo sampling techniques.

A. The effective �2 function

Global QCD extractions of PDFs [28–30,39,46,47] or
FFs [37] are implemented around an effective �2 function
that quantifies the goodness of the fit to data for a given set
of theoretical parameters faig, i ¼ 1; . . . ; Npar that deter-

mines the PDFs or FFs at some initial scale �0. The
simplest �2 function, convenient for the search for opti-
mum PDFs by minimization, is usually taken as

�2ðfaigÞ ¼
XNexp

n¼1

XNðnÞ
data

j¼1

!j

�
Dj � TjðfaigÞ

�Dj

�
2
; (1)

where Nexp counts the individual experimental data sets

and NðnÞ
data the corresponding number of data points in each

set. Each data value Dj is compared to the corresponding

theoretical estimate Tj, which depends in general non-

linearly on the Npar parameters faig, weighted with the

estimated uncertainties combined in �Dj. In Eq. (1) !j is

a special weighting factor for each data point with default
value one. It can be set to zero if a certain data point is to be
removed from the analysis due to some physics consider-
ations. For instance, such cuts are routinely introduced in a
global fit to remove kinematical regions where the frame-
work of perturbative QCD used to compute TjðfaigÞ is

known to be not adequate for describing the available
data. The simple form (1) for �2 is appropriate only in
the ideal case of data sets with uncorrelated errors, and
�D2

j is then given by statistical and point-to-point system-

atic errors added in quadrature.
For most experiments, additional information on the

fully correlated normalization uncertainty �N n can be
found, i.e., on a systematic shift common to the entire
data set. Equation (1) is straightforwardly extended to
account for such normalization uncertainties:

�2ðfaigÞ ¼
XNexp

n¼1

��
1�N n

�N n

�
2

þ XNðnÞ
data

j¼1

!j

�N nDj � TjðfaigÞ
�Dj

�
2
�
: (2)

Here, N n are the normalization factors, which can be
either fitted along with the faig, or even determined analyti-
cally in each step of the minimization by solving
@�2=@N n ¼ 0 [42].
There are several equivalent methods of extending fur-

ther the simple �2 function in Eq. (1) in the presence of

KðnÞ sources of correlated systematic errors for a data point
Dj in data set n [42,46]. The numerically most efficient

method treats the correlated systematic errors analytically
in the optimization procedure like for the global normal-
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ization uncertainties discussed in (2). This avoids the con-
struction and inversion of large covariance matrices used in
the conventional approach. The resulting �2 function has
the form (assuming !j ¼ 1 for simplicity) [42,46]

�2ðfaigÞ ¼
XNexp

n¼1

�XNðnÞ
data

j¼1

�
Dj � TjðfaigÞ

�DðuÞ
j

�
2

� XKðnÞ

k;k0¼1

BkðA�1Þkk0Bk0

�
; (3)

where

Bk ¼
XNðnÞ
data

j¼1

�kjðDj � TjðfaigÞ
�DðuÞ

j

(4)

Akk0 ¼ �kk0 þ
XNðnÞ
data

j¼1

�kj�k0j

�DðuÞ
j

: (5)

Here, ð�DðuÞ
j Þ2 is the quadratic sum of the statistical and

uncorrelated systematic errors, and �kj specifies the kth

correlated systematic error of data point Dj.

We note that most global analyses of unpolarized PDFs
now start to include correlated systematic errors whenever
this information is available from experiment. This is of
much importance, as very precise PDF uncertainty studies
are a key ingredient for reliably estimating new physics
signals and standard model backgrounds at the Tevatron or
the LHC. For the time being, and keeping in mind that our
analysis is the first fully global one of this kind for polar-
ized PDFs, we stick to an effective �2 function based on
the simplest expression in Eq. (1). Also, most of the
relevant experiments do not publish the full information
on correlated systematic errors. Whenever a global nor-
malization uncertainty is provided, we have explored the
possibility of normalization shifts to improve the global fit
by minimizing �2 according to Eq. (2). We have not found
any significant improvements of the fit from this. Since
data sets are continuously evolving and more and more
precise information becomes available, the proper inclu-
sion of correlated systematic errors is certainly needed in
future global analyses of helicity PDFs.

As mentioned in the introduction, there are considerable
complications when statistical methods are applied to
global QCD analyses based on a large body of diverse
data and a theoretical model with many parameters faig.
In particular, the statistical value of the definitions given in
Eqs. (1)–(3) has been under considerable debate
[29,30,41–43,46,47], since both the theoretical [TjðfaigÞ]
and the experimental inputs [Dj, �Dj; . . . ] are far from

being ideally suited for statistical analysis. For instance,
uncertainties inherent to the theoretical framework used to
describe the data are notoriously difficult to quantify and

usually correlated. In addition, it is often the case that even
in a best fit to data, the values of �2 per data point for
individual experiments vary considerably around unity,
sometimes by much more than the expected amountffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=NðnÞ

data

q
. Therefore, conclusions drawn on a tolerable

range of uncertainty from a certain increase ��2, must
be considered keeping in mind this complex situation.

B. Uncertainty estimates: Hessian and Lagrange
multiplier methods

An important objective is to estimate uncertainties of the
spin-dependent PDFs obtained from the �2 optimization.
To this end one must study the behavior of the effective
�2ðfaigÞ function in the neighborhood of the global mini-
mum �2

0 � �2ðfa0i gÞ, using reliable statistical methods

rather than some subjective tuning of selected parameters.
Basically two complementary tools have been put forward,
refined to deal with the complexity of global PDF analyses,
and applied to characterize uncertainties in the extraction
of unpolarized PDFs. We pursue and compare both, the
Hessian [43] and the Lagrange multiplier [42] methods, in
our uncertainty estimates. We only briefly recall the main
elements of the two approaches and highlight potential
problems and limitations. For a detailed account we refer
the reader to Refs. [41–43].
In the more standard Hessian approach, the exploration

of the uncertainties associated with the fit is implemented
through a Taylor expansion of �2ðfaigÞ around the global
minimum �2

0ðfa0i gÞ. Keeping only the leading quadratic

terms, the increase ��2 can be written in terms of the
Hessian matrix

Hij � 1

2

@2�2

@yi@yj

��������0
(6)

as

��2 ¼ �2ðfaigÞ � �2
0ðfa0i gÞ ¼

X
ij

Hijyiyj; (7)

where yi � ai � a0i and the derivatives in Eq. (6) are taken
at the minimum.
Global QCD fits are usually characterized by very dis-

parate uncertainties in different directions of the multi-
parameter space, so that standard methods to evaluate Hij

by finite difference, as implemented in, e.g., the MINUIT

package [48], tend to be numerically unstable and hence
unreliable. To overcome such difficulties, a new iterative
algorithm to compute the derivatives in (6) was devised in
Ref. [41] and subsequently used in global analyses of
unpolarized PDFs. We apply this improved Hessian
method also in our studies.
Instead of working in the parameter basis faig, the

Hessian Hij is expressed in terms of its Npar eigenvectors

vðkÞ
i and eigenvalues "k. The displacements yi in Eqs. (6)

and (7) are replaced by a new set of parameters fzig defined
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by [41,43]

yi �
X
j

vðjÞ
i sjzj: (8)

The fzig are appropriately normalized by scale factors sj /ffiffiffiffiffiffiffiffiffiffi
1="j

q
such that surfaces of constant �2 turn into hyper-

spheres in fzig space, with the distance from the minimum
given by

��2 ¼ X
i

z2i : (9)

Large eigenvalues "k correspond to steep directions in
which �2 changes rapidly and the parameters are tightly
constrained by the data, while small eigenvalues belong to
directions where the parameters are only weakly
determined.

Within the eigenvector representation, it is convenient to
construct 2Npar eigenvector basis sets of PDFs which

greatly facilitate the propagation of PDF uncertainties to
arbitrary observables O [43]. These basis sets S�k are

defined in fzig space by
ziðS�k Þ ¼ �T�ik (10)

and hence correspond to positive and negative displace-
ments along each of the eigenvector directions by the

amount T ¼ ffiffiffiffiffiffiffiffiffiffi
��2

p
still tolerated for an acceptable global

fit. To estimate the error �O on a quantityO away from its
best-fit estimate OðS0Þ it is only necessary to evaluate O
for each of the 2Npar sets S

�
k [43], i.e.,

�O ¼ 1

2

�XNpar

k¼1

½OðSþk Þ �OðS�k Þ�2
�
1=2

: (11)

One must keep in mind that the propagation of PDF
uncertainties in the Hessian method has been derived under
the assumption that a first order, linear approximation is
adequate. Of course, due to the complicated nature of a
global fit, deviations, also from the simple quadratic be-
havior in Eq. (7), are inevitable, and error estimates based
on the Hessian method are not necessarily always accurate.

A strategy based on Lagrange multipliers avoids all
these assumptions and probes the uncertainties on any
quantity OðfaigÞ much more directly. The result is a para-
metric relationship between one or more observables
OjðfaigÞ and the effective �2 function used to determine

the goodness of the global fit. Its application to global QCD
analyses was proposed in Ref. [42] not only to estimate
uncertainties of observables depending on PDFs but also to
test the range of applicability of the Hessian approach
described above.

In practice, the method is implemented by minimizing a
function

�ðfaig; f�jgÞ ¼ �2ðfaigÞ þ
X
j

�jOjðfaigÞ (12)

with respect to the set of PDF parameters faig for fixed
values of the Lagrange multipliers f�jg. Each multiplier is

related to one specific observable Oj, and the choice �j ¼
0 corresponds to the best-fit S0. By repeating this minimi-
zation procedure for many values of �j one can map out

precisely how the fit to data deteriorates as the expectation
for the observableOj is forced to change. Here, contrary to

the Hessian method, no assumptions are made regarding
the dependence of �2 or the observable Oj on the parame-

ters faig of the fit. The Lagrange multiplier method also
generates a large set of sample PDFs along the curve of
maximum variation of the observable(s) used in Eq. (12).
In principle, the Lagrange multiplier method is superior

to the Hessian approach for reliably estimating uncertain-
ties. For a given ��2 it finds the largest range of OjðfaigÞ
allowed by the data used in the global fit and the theoretical
ansatz, independent of the approximations involved in the
Hessian method. The entire parameter space faig is ex-
plored in minimizing Eq. (12), not necessarily limited to
the vicinity of the best-fit fa0i g. In practice, a large number
of global fits is required to map out all �2 profiles of
interest. Thanks to our novel Monte-Carlo sampling tech-
nique to be described below, this is no longer a serious
limitation computationally. The only drawback to this
method is that it requires access to the full machinery of
global fitting to estimate uncertainties of a given observ-
able of interest, contrary to the Hessian method for which
the eigenvector PDF sets S�k make it very simple to propa-

gate PDF uncertainties to arbitrary observables.
In this paper, Lagrange multipliers will mainly be the

method of our choice for estimating uncertainties and to
monitor to what extent the approximations involved in the
Hessian approach are justified.

C. Computational technique: The Mellin method

As is evident from the previous subsections, the extrac-
tion of PDFs in a global QCD analysis of a large body of
data at NLO accuracy requires an extensive number of
time-consuming computations of the corresponding ob-
servables in each step of the �2 minimization procedure.
The large number of parameters specifying the functional
form of the PDFs in the fit, typically ofOð20Þ, and the need
for a proper assessment of their uncertainties, add to this.
Assuming a representative analysis with about 500 data
points, 5000 iterations to reach the optimum set of parame-
ters, and a modest computing time of 1 s per cross section
calculation at NLO, one easily realizes that computational
improvements are very much in demand.
We stress at this point that approximating NLO correc-

tions by parametrizing them by a K factor, K �
�NLO=�LO, which is a possible strategy in the spin-
averaged case in order to speed up the analysis
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[29,30,39,40,46,47], is not a viable option in the polarized
case. In the latter, the parton distributions as well as the
hard scattering cross sections may have nodes and change
sign within the kinematic region of interest. As a result,
different partonic subprocess contributions can have very
different NLO corrections that are never well approxi-
mated by a single K factor. This problem is even more
prominent at the present time when the spin-dependent
parton distributions, in particular, the gluon distribution,
are still poorly known. Also, from a more theoretical point
of view, the NLO corrections are expected to decrease the
factorization/renormalization scale dependence of the cal-
culation. In the ideal case that the NLO cross section has
relatively little scale dependence, this would imply that the
K factor inherits the full LO scale dependence and thus
cannot serve well as a proxy for the NLO corrections. We
thus do not really see a useful work-around that would
avoid inclusion of the full NLO calculation in the global
analysis.

The required numerical calculations also involve the
scale evolution of the PDFs from some initial scale �0 �
Oð1 GeVÞ to each of the scales relevant for the data points.
The evolution is governed by a well-known set of integro-
differential equations [49,50] that can be solved analyti-
cally after an integral transform from Bjorken x space to
complexMellinN-moment space. The Mellin transform of
a generic function ’ depending on the light-cone momen-
tum fraction x is defined as

�ðNÞ �
Z 1

0
xN�1’ðxÞdx; (13)

and its inverse reads

’ðxÞ � 1

2�i

Z
CN

x�N�ðNÞdN: (14)

Here CN denotes a suitable contour in the complex N plane
that has an imaginary part ranging from �1 to þ1 and
that intersects the real axis to the right of the rightmost pole
of �ðNÞ. In practice, it is beneficial to choose the contour
to be bent at an angle <�=2 toward the negative real-N
axis [51]. The integration in (14) can then be very effi-
ciently performed numerically by choosing the values of N
as the supports for a Gaussian integration.

The transformation (13) has the welcome property that
convolutions factorize into ordinary products, which
greatly simplifies calculations based on Mellin moments.
It can be carried out analytically not only for the splitting
functions governing the scale evolution of the PDFs but
even for the partonic hard scattering cross sections for both
inclusive and semi-inclusive DIS. The latter case requires
straightforward extensions of Eqs. (13) and (14) to double
transformations as was discussed in Refs. [44,52]. This
reflects the fact that SIDIS depends on two scaling varia-
bles, the momentum fractions x and z taken by the struck
parton from the parent nucleon and by the final-state

hadron from the scattered parton, respectively. The useful-
ness of the Mellin technique was demonstrated in practice
in a global analysis of helicity-dependent PDFs using all
available DIS and SIDIS data [36].
However, the inclusion of observables in hadron-hadron

collisions or in less inclusive reactions in lepton-hadron
scattering, which are crucial for determining, e.g., the
gluon distribution, require a more elaborate framework.
They involve multiple convolution integrals between one
or more PDFs, partonic cross sections, and, depending on
the process, fragmentation functions. More importantly,
they typically depend on several kinematic variables, so
that there is no direct way of taking Mellin moments of the
cross section under which it would become a simple prod-
uct of Mellin moments of PDFs and partonic cross sec-
tions. An example is single-inclusive pion production in
proton-proton collisions, pp ! �X, at measured trans-
verse momentum pT and rapidity � of the pion. While

xT ¼ 2pT=
ffiffiffi
S

p
is the typical scaling variable of the process,

taking Mellin moments of the cross section in x2T does not
lead to a simple expression involving the moments of the
PDFs. An efficient computational scheme that allows one
to circumvent this complication has been devised in
Refs. [44,45]. Its main feature is to use the inverse
Mellin transforms of the PDFs in the theoretical expres-
sion, which makes it possible to store all numerically time-
consuming calculations involving the lengthy and compli-
cated expressions for the underlying hard scattering cross
sections on large ‘‘look-up tables’’ or ‘‘grids’’ in Mellin
moment space. Here, we review the technique of [44] and
describe a method to compute these grids very efficiently
using Monte-Carlo sampling techniques. The latter allows
one to generalize the Mellin moment technique beyond the
single-inclusive processes considered in Ref. [44].
A typical observable of interest, the spin-dependent

cross section for pp ! �X at RHIC, has the following
general factorized structure:

��jbin � 1

2
½��jbinðþþÞ ���jbinðþ�Þ� (15)

¼ X
i;j;k

Z
�fiðx1Þ�fjðx2ÞDkðzÞ

� d��̂ij!kXðx1; x2; zÞSdx1dx2dz: (16)

Here we have suppressed the dependence on kinematic
variables other than momentum fractions, and on the fac-
torization and renormalization scales. In (16), �fi and Dk

denote the spin-dependent parton distribution and spin-
averaged fragmentation functions for flavor i and k, re-
spectively, and d��̂ij!kX the relevant partonic hard scat-

tering cross sections. S represents a ‘‘measurement
function’’ that defines details of the observable ��jbin in
each bin, such as the kinematical ranges explored and the
relevant experimental cuts. The symbols � in Eq. (15)
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denote the helicity combinations of the colliding longitu-
dinally polarized protons defining the cross section ��jbin.

Following the strategy developed in Ref. [44], we re-
place the PDFs in Eq. (16) by their representations as
Mellin inverses, Eq. (14), and subsequently interchange
integrations to obtain

��jbin ¼ � 1

4�2

X
ijk

Z
CM

Z
CN

LijðN;MÞ

� d�~̂�ijkðN;MÞdNdM; (17)

where

LijðN;MÞ � �fiðNÞ�fjðMÞ (18)

and

d� ~̂�ijkðN;MÞ �
Z

dx1dx2dzx
�N
1 x�M

2 DkðzÞ
� d��̂ij!kXðx1; x2; zÞS: (19)

Here and in the following, we assume that only the spin-
dependent PDFs are subject to the global analysis and that
the fragmentation functions Dk are known.

In the next step, one can now calculate the quantities

d� ~̂�ijkðN;MÞ in Eq. (19) prior to the actual fit, as they do

not depend on the PDFs, and store them in large look-up
tables in the Mellin variables M and N along the contours
CM;N . In practice, it is convenient to chooseM andN on the

supporting points of a Gaussian integration; see Ref. [44]
for details. As can be seen from (19), this effectively
amounts to computing the NLO cross sections for all
partonic subprocesses using complex ‘‘dummy PDFs’’
x�N
1 x�M

2 . Even after making use of all symmetry relations,
e.g., among different subprocesses ij ! kX, setting up all
look-up tables for a typicalN �M grid size of 64� 64 is a
rather time-consuming step in practice, although it has to
be done only once. This is where our new Monte-Carlo
sampling technique has considerable advantages over a ‘‘-
brute-force’’ computation.

First, we recall that a Monte-Carlo algorithm reduces the
multiple integrations in (15) to a finite sum over random
‘‘events’’ n,

��jbin ¼ 1

	

XI
n¼1

wðnÞS (20)

with weightswðnÞ and scaled by the number of iterations, 	,
used to generate large samples of I events. The weight
includes the dependence on the parton distribution and
fragmentation functions and the hard scattering cross sec-
tions for each event. In Eq. (20) we keep the measurement

function S separate from wðnÞ, as it is usually implemented
only after an event has been generated.

The most efficient strategy to compute all the required

d� ~̂�ijkðN;MÞ in Eq. (19) is to choose a suitable set of trial
PDFs �fi and to perform a single high-statistics Monte-

Carlo integration calculation of the cross section in
Eq. (16). During the calculation one stores, for each event

n, the momentum fractions xðnÞ1;2 and the corresponding

weights wðnÞ
ijk for all of the subprocesses ij ! kX.

Renormalizing each weight by

wðnÞ0
ijk � wðnÞ

ijk=L
ðnÞ
ij (21)

with

LðnÞ
ij � �fiðxðnÞ1 Þ�fjðxðnÞ2 Þ; (22)

removes its dependence on the assumed set of PDFs. The

d� ~̂�ijkðN;MÞ are then straightforwardly obtained as

d�~̂�ijkðN;MÞ � 1

	

XI
n¼1

ðxðnÞ1 Þ�MðxðnÞ2 Þ�NwðnÞ0
ijk S: (23)

In other words, knowledge of the set xðnÞ1 , xðnÞ2 , wðnÞ0
ijk , which

corresponds to a profile of the integrand in Eq. (19), allows
one to simultaneously compute the moments

d� ~̂�ijkðN;MÞ for all N, M, without having to do an

individual Monte-Carlo integration for each of them as in
(19). This greatly reduces the computational burden. To
give an example, for our global analysis of polarized PDFs,
which currently includes about 50 very time-consuming
NLO calculations of single-inclusive jet and pion produc-
tion at RHIC in each step of the �2 minimization, all the
necessary grids in Eq. (23) can be computed within ap-
proximately 1 d of CPU time on a single standard PC with a
CoreDuo processor running at 2 GHz. Once these grids are
available, a full PDF fit can be finalized in about 15–30
minutes. A detailed PDF uncertainty assessment, which
requires a very large number of �2 minimizations, can then
be performed easily in about 1–2 weeks. We note that in
practice one does not even need to physically store the set

xðnÞ1 , xðnÞ2 , wðnÞ0
ijk , since the summations (23) can in fact be

done simultaneously with the generation of the events n.
The formula in Eq. (20) applies to any computation of

the theoretical cross section when a Monte-Carlo integra-
tion is employed. This is the case for analytical NLO
calculations of single-inclusive jet or hadron rates [53,54]
where Monte-Carlo integration techniques are just used to
perform the convolution with the parton distributions, or
for NLO parton-level Monte-Carlo generators evaluating
general infrared-safe observables [55,56]. Therefore our
method based on Mellin moments and Monte-Carlo sam-
pling techniques outlined in Eqs. (13)–(23) above is com-
pletely general and can be straightforwardly applied to any
observable for which a perturbative QCD description is
available. It can be applied to global analyses of polarized
PDFs, pursued in this paper, extractions of fragmentation
functions (see Refs. [37]), but equally well to analyses of
ordinary spin-averaged PDFs incorporating Tevatron and
future LHC data consistently at NLO or beyond. We note
that for the latter case an alternative method, called
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‘‘fastNLO’’ [57], has been developed, which also allows
one to include NLO corrections to hadronic scattering in a
fast and efficient way in a global PDF analysis. Like our
method, it amounts to preparing huge look-up tables that
contain all the time-consuming NLO calculations prior to
the actual fit. In the fastNLO case, this is done in x space,
and interpolations between the various support points in x
are used. This step appears to be rather time-consuming
and the method has so far been tested only for inclusive jet
production data. In addition, the evolution of the PDFs
needs to be performed as a separate calculation, whereas
in our approach it is immediately included in Mellin mo-
ment space.

This latter advantage can in fact be used for further
improvements of our Mellin technique. The scale depen-
dence of the PDFs, which we have so far suppressed, can
be schematically written as

�fiðN;�Þ ¼ X
i0
Eii0 ðN;�0; �Þ�fi0 ðN;�0Þ: (24)

Here, Eii0 ðN;�0; �Þ denotes the appropriate evolution ma-
trix from the initial scale �0 where we parametrize the
PDFs to the scale � relevant for a certain observable O.
Inserting (24) into Eq. (17) allows one to absorb also the
scale evolution of the PDFs into the precalculated Mellin
grids by extending Eq. (23) to

d� ~̂�ijkðN;MÞ � 1

	

XI
n¼1

X
i0j0

x�M
1 x�N

2 Ei0iðN;�0; �Þ

� Ej0jðM;�0; �ÞwðnÞ0
i0j0kS; (25)

so that the luminosity function in Eq. (18) now only refers
to the PDFs at the initial scale �0, LijðN;MÞ ¼
�fiðN;�0Þ�fjðM;�0Þ. An advantage of this reshuffling

is that now all dependence on the scale � is contained in
the look-up tables (25), eliminating the need to perform the
scale evolution later in the fitting code. More importantly,
if the experimental observable used in the global fit in-
volves an integration over a bin in, say, the transverse
momentum pT of a jet, which also acts as the factorization
scale, the� dependence of the PDFs is correctly taken care
of in the integration. While we have not made use of this
particular improvement in the present analysis, we expect
it to be useful in the future for further optimizing the
performance of the global analysis code.

III. GLOBAL ANALYSIS AND UNCERTAINTY
ESTIMATES FOR POLARIZED PDFS

In this section we give a detailed account of the first
global analysis of polarized PDFs presented in Ref. [28]
which in the following will be referred to as DSSV
(de Florian-Sassot-Stratmann-Vogelsang). We first discuss
the data selection and the determination of the best fit,
which we compare to the fitted data. We then focus on the

studies of uncertainties, including a comparison of the
Lagrange multiplier method used in [28] and the more
standard Hessian error matrix approach. For the latter we
present a new family of eigenvector PDFs, as described
above, which greatly facilitates estimates of the PDF un-
certainties of any given observable of interest.

A. Determination of the optimal fit

Our first physics objective is to establish the set of
polarized PDFs that gives the optimum theoretical descrip-
tion of the available hard scattering data. The data sets for
the spin asymmetries we use in our analysis are listed in
Table I, along with the number of data points fitted. We
minimize the effective �2 function in Eq. (1). Attempts to
further improve the global fit by introducing normalization
shifts for each experiment and minimizing �2 according to
Eq. (2) were to no avail. All theoretical spin asymmetries in
Eq. (1) are calculated at NLO, using the appropriate fac-
torized leading-twist expressions. We use the modified

minimal subtraction MS scheme throughout , and all our
results for the polarized PDFs will refer to this scheme.
In case of inclusive DIS, the asymmetries are computed,

as in our previous analyses [31,36], as the ratios between
the polarized and unpolarized structure functions,

A1ðx; Q2Þ ¼ g1ðx;Q2Þ
F1ðx;Q2Þ ; (26)

with

g1 ¼ 1

2

X
q

e2qf�qþ ��qþ 
s

2�
½�Cq � ð�qþ ��qÞ

þ �Cg ��g�g; (27)

and the corresponding expression for F1ðx;Q2Þ, both com-
puted at NLO using the appropriate coefficient functions
[50,58]. For DIS off a deuteron target, we take into account
the !D ¼ 5:8% D-wave state probability in relating the g1
structure function of the deuteron to those of proton and
neutron: gd1 ¼ ð1� 1:5!DÞðgp1 þ gn1Þ=2. The extension of

the expression in (26) to SIDIS is straightforward, using
the NLO coefficient functions given in [59].
For the case of pp scattering, the spin asymmetries are

computed using the generic expression in Eq. (16) at NLO,
and its spin-averaged counterpart. The NLO corrections for
high-pT single-jet and hadron production can be found in
[53,54], respectively. We have always chosen the renor-
malization and factorization scales as the transverse mo-
mentum pT of the observed final state, a choice that leads
to good agreement of NLO calculations [37,53,54] and
experimental data from RHIC [22,60] in the spin-averaged
case. For the computation of the unpolarized cross sec-
tions, we always use the NLO unpolarized PDFs of
Ref. [47]. Whenever fragmentation functions are needed,
as is the case for SIDIS and the RHIC pp ! �X data, we
use the DSS (de Florian-Sassot-Stratmann) set [37] for
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pions, kaons, and unidentified charged hadrons, which was
recently obtained from a global analysis of hadron produc-
tion data. The use of up-to-date fragmentation functions
that are consistent with HERMES and RHIC unpolarized
data and have quantified uncertainty estimates [37] is a
crucial ingredient of our analysis. It is a major difference

with respect to the polarized PDF analysis in Ref. [36],
where also SIDIS data were included. In the computation
of the �2 contribution from SIDIS asymmetries we have
taken into account the uncertainty coming from the set of
fragmentation functions. In practice, this was done by
determining for each data point the maximum variation
of the theoretical estimates Tj in Eq. (1) due to the FFs

within their own uncertainty ranges quoted in [37]. This
variation was treated as an additional uncertainty and
added in quadrature to the experimental error �Dj. Since

at least for pions the FFs are fairly well determined, this
amounts to additional uncertainties of a few percent at
most. We do note, however, that this uncertainty estimate
does not reflect possible systematic problems in interpret-
ing the available spin-averaged kaon SIDIS data within a
leading-twist pQCD analysis, a point to which we will
return later.
We do not systematically include any higher twist (or,

more generally, power-suppressed) contributions in the
theoretical calculations that enter our analysis, neither for
the inclusive and semi-inclusive DIS observables, nor for
proton-proton collisions. We employ a cut ofQ2 > 1 GeV2

for all DIS and SIDIS data, and of pT > 1 GeV for the
RHIC high-pT polarized pp data. These cuts have the
purpose to exclude regions where contributions beyond
the leading-twist, factorized framework of pQCD become
crucially important. For example, for the SIDIS and RHIC
pp data, it is known that the underlying unpolarized cross
sections in the same kinematic domain, i.e., for scales
above 1 GeV, can be quite successfully described by
pQCD [37].
That said, it is known [61] that the relation between A1

and g1=F1 in Eq. (26) is corrected by a factor ð1þ �2Þ �
ð1þ 4M2x2=Q2Þ on the right-hand-side, corresponding to
a target-mass correction. It has been pointed out [62] that
this correction is non-negligible in some kinematic regimes
accessed by the lower energy fixed-target experiments,
typically at relatively lowQ2 and high x. We have therefore
corrected for this factor where necessary. Specifically,
since our set of polarized PDFs is defined and related to
the measured asymmetries through the leading-twist rela-
tions (26) and (27), our choice is to multiply data sets that
are given in terms of measured g1=F1 by the factor (1þ
�2), but to leave data sets for measured A1 unchanged. The
resulting data are confronted with the NLO leading-twist
calculation. We stress that various other choices have been
adopted in the literature [32–34], using, for example, pa-
rametrizations of experimental data for F2ðx;Q2Þ and
Rðx;Q2Þ ¼ F2=ð2xF1Þ � 1. All choices are equivalent in
the strict leading-twist sense, but will in general differ in
the amount of power corrections needed to describe the
data at lowerQ2 and/or higher x. As we shall see below, we
find that for our choice without inclusion of any power
corrections an excellent description of all data sets within
our specified cuts is achieved (cf. also Table I), with no

TABLE I. Data used in our NLO global analysis of polarized
parton densities, the individual �2 values for each set, and the
total �2 of the fit.

Experiment Process Ndata �2

EMC [2] DIS (p) 10 3.9

SMC [3] DIS (p) 12 3.4

SMC [3] DIS (d) 12 18.4

COMPASS [4] DIS (d) 15 8.1

E142 [5] DIS (n) 8 5.6

E143 [6] DIS (p) 28 19.3

E143 [6] DIS (d) 28 40.8

E154 [7] DIS (n) 11 4.5

E155 [8] DIS (p) 24 22.6

E155 [9] DIS (d) 24 17.1

HERMES [10] DIS (He) 9 6.3

HERMES [11] DIS (p) 15 10.5

HERMES [11] DIS (d) 15 16.9

HALL A [12] DIS (n) 3 0.2

CLAS [13] DIS (p) 10 5.9

CLAS [13] DIS (d) 10 2.5

SMC [14] SIDIS (p, hþ) 12 18.7

SMC [14] SIDIS (p, h�) 12 10.6

SMC [14] SIDIS (d, hþ) 12 7.3

SMC [14] SIDIS (d, h�) 12 14.1

HERMES [15] SIDIS (p, hþ) 9 6.4

HERMES [15] SIDIS (p, h�) 9 4.9

HERMES [15] SIDIS (d, hþ) 9 11.4

HERMES [15] SIDIS (d, h�) 9 4.5

HERMES [10] SIDIS (He, hþ) 9 4.7

HERMES [10] SIDIS (He, h�) 9 6.9

HERMES [15] SIDIS (p, �þ) 9 9.6

HERMES [15] SIDIS (p, ��) 9 4.9

HERMES [15] SIDIS (d, �þ) 9 9.4

HERMES [15] SIDIS (d, ��) 9 19.5

HERMES [15] SIDIS (d, Kþ) 9 6.2

HERMES [15] SIDIS (d, K�) 9 5.8

HERMES [15] SIDIS (d, Kþ þ K�) 9 3.4

COMPASS [16] SIDIS (d, hþ) 12 6.2

COMPASS [16] SIDIS (d, h�) 12 12.0

PHENIX [22] pp (200 GeV, �0) 10 14.2

PHENIX [23] pp (200 GeV, �0) 10 7.1 [13.8]a

PHENIX [24] pp (62 GeV, �0) 5 3.1 [2.8]a

STAR [25] pp (200 GeV, jet) 10 8.8

STAR (prel.) [26] pp (200 GeV, jet) 9 6.9

TOTAL: 467 392.6

aThe PHENIX data were still preliminary when the global
analysis [28] presented here was performed. The �2 value quoted
in brackets is evaluated with the published data [23,24] but
without refitting.
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visible discrepancies even at rather low scales. For the time
being, we thus regard our choice as one that ‘‘empirically’’
alleviates the need for power-suppressed corrections in
spin asymmetries. Despite some significant progress on
the analysis of higher twist effects in polarized DIS
[33,62], further detailed investigations will be needed in
this area, including implementation of the full target-mass
corrections [63], the effects of yet higher orders [64,65]
which generally reduce the need for higher twist contribu-
tions [64,66], and so forth.

In order to find the optimal helicity-dependent PDFs
from a �2 minimization, we parametrize them at an input
scale of �0 ¼ 1 GeV by the following flexible form [28]

x�fiðx;�2
0Þ ¼ Nix


ið1� xÞ�ið1þ �i

ffiffiffi
x

p þ �ixÞ; (28)

with independent parameters for �uþ��u, �dþ� �d, ��u,
� �d, ��s � �s, and �g (note that here and in the following
we interchangeably use �fu ¼ �u, �fg ¼ �g, etc., to

denote the polarized PDFs). The minimization is carried
out with respect to the set of parameters faig ¼
fNi; 
i; �i; �i; �ig. The PDFs are evolved to the scales�>
�0 relevant in experiment. The particular functional form
and the value for �0 are not too crucial, as long as the
parametrization is flexible enough to accommodate all hard
scattering data within their ranges of uncertainties. The
ansatz (28) deviates considerably from the standard form
used in fits to DIS data only [31–34,36], where �i ¼ �i ¼
0, inasmuch as it allows the PDFs to develop nodes and to
deviate from an SUð3Þ flavor symmetric sea. As will be
seen from our results presented below, this extra freedom
in parameter space faig is crucial in a comprehensive
analysis of DIS, SIDIS, and RHIC pp data.

In addition to the much more flexible input parametri-
zation proposed in the preceding paragraph, we have re-
peated the analysis with alternative parametrizations, some
of them even more flexible than the one we choose. For
example, we have chosen the powers of x in the last two
terms different from 1=2 and 1, even allowing the fit to vary
them. None of these modifications resulted in any signifi-
cant improvement in the quality of the fit to data, or
changes of the uncertainty bands. This indicates that the
present data is not really able to discriminate between
various forms of the input distributions, as long as a
sufficiently flexible choice is made. Therefore our present
choice does not introduce large additional uncertainty in
that respect.

Analyses of polarized PDFs routinely use constraints
that can be derived from baryonic semileptonic � decays
under the assumption of SUð2Þ and SUð3Þ flavor symme-
tries [67]. These relate combinations of the first moments
of the PDFs to the constants F and D parametrizing the
�-decay rates. We make use of these constraints in our
present analysis; however, rather than imposing the exact
SUð2Þ and SUð3Þ flavor symmetry relations, we allow for
deviations in our fit within the uncertainty ranges of the F,

D values. Specifically, we set

��u � ��d ¼ ðFþDÞ½1þ "SUð2Þ�; (29)

��u þ ��d � 2��s ¼ ð3F�DÞ½1þ "SUð3Þ�; (30)

where

��f � ½�f1i þ � �f1i �ð�2
0Þ �

Z 1

0
½�fi þ� �fi�ðx;�2

0Þdx;
(31)

"SUð2;3Þ parametrize the departures from exact SUð2Þ and
SUð3Þ symmetries, and where we use the latest values Fþ
D ¼ 1:269� 0:003 and 3F�D ¼ 0:586� 0:031 (see,
e.g., Ref. [11]). As a practical matter, we trade the input
parameters Nuþ �u and Ndþ �d in Eq. (28) for "SUð2;3Þ and fit

the latter. Here the relative uncertainties of FþD and
3F�D are assumed to represent the typical ranges of
"SUð2;3Þ; we use them to include the deviations from

"SUð2;3Þ ¼ 0 as additional contributions to �2, similarly to

the case of normalization uncertainties shown in the first
term of Eq. (2). We note that the relative uncertainties of
FþD and 3F�D are rather modest and may not fully
reflect the actual breaking of the SUð2Þ and, in particular,
SUð3Þ symmetries, for which larger breaking effects have
been discussed in the literature [68]. This issue may need to
be revisited in the future. For now we note that as a result of
this the PDFs in our fits will naturally have a tendency to
have relatively small "SUð2;3Þ.
Rather than determining also the strong coupling 
s in

the global fit along with the PDFs, we take �QCD ¼
334:2 MeV for nf ¼ 4 flavors from the analysis of unpo-

larized PDFs in Ref. [47]. The scale dependence of 
s is
computed by numerically solving its renormalization
group equation at NLO accuracy. The charm and bottom
quark thresholds are crossed at mc ¼ 1:43 GeV and mb ¼
4:3 GeV, respectively. As already mentioned, the scale
evolution equations for the PDFs are solved analytically
in Mellin moment space by explicitly truncating the solu-
tions at NLO. Likewise, all observables used in our fit are

computed consistently at NLO accuracy in the MS facto-
rization scheme. All quarks are treated as massless, and
charm and bottom PDFs are turned on in the evolution at
Q ¼ mc;b. We note that for all presently available spin-

dependent observables heavy quarks play a negligible role,
and, for the time being, we can safely refrain from intro-
ducing more elaborate variable flavor number schemes
which take into account quark mass effects near threshold
(see, e.g., Refs. [29,30]).
The parameters fa0i g representing our best global fit of

polarized parton densities �fi in Eq. (28), henceforth
denoted as ‘‘set S0,’’ are given in Table II. A few additional
remarks are in order here. The currently available data do
not fully constrain the entire x dependence of �fi imposed
in Eq. (28), and we are forced to make some restrictions on
the parameter space faig. For the sea quark and gluon
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densities we set �i ¼ 0 in Eq. (28). This only marginally
limits the freedom in the functional form and still allows
nodes. In addition, we tie the small x behavior, represented
by the 
i in Eq. (28), of �uþ ��u and �dþ � �d to that of
��u and� �d, respectively, which is reasonable as sea quarks
likely dominate in this region. The parameter 
�s always
came out close to 
 �d, so we set them equal. Since the
SIDIS data are not yet sufficient to distinguish�s from��s,
we assume �s ¼ ��s throughout. In general, the x ! 1
behavior of all PDFs is rather unconstrained as is the
case even for current sets of unpolarized PDFs. This is
because there are no data sensitive to x * 0:6. To avoid
problems with the fundamental positivity constraint

jd��j 	 d�; (32)

we make sure that all�fi vanish at large x at least as fast as
the fi of our reference set of unpolarized PDFs [47], which
puts constraints on the �i. Choosing any other recent set of
unpolarized PDFs, like CTEQ6 [46], does not alter our
results. We note that implementing the positivity constraint
at the level of PDFs [69], i.e.,

j�fiðx;Q2Þj 	 fiðx;Q2Þ (33)

is strictly valid in LO only, but in the MS scheme is
sufficient to guarantee (32) also in NLO. The parameters
�uþ �u and �dþ �d come out very close to their corresponding
values for the unpolarized case, implying ð�uþ ��uÞ=ðuþ
�uÞ ! const as x ! 1, and likewise for ð�dþ � �dÞ=ðdþ
�dÞ. Since the other �i in Eq. (28) are only very weakly
determined by the fit, we fix them to their preferred values
within the positivity constraints whenever we examine
uncertainties of the PDFs, in order to avoid extremely flat
directions in parameter space where �2 varies only very
slowly. Therefore, and as is in general the case in PDF
studies, our uncertainty estimates for helicity-dependent
PDFs are valid only in the x region explored by experi-
ment. Notice that the near equality of �dþ �d and � �d is not
imposed but a result of the fit (in fact, the actual values for
these parameters before rounding are 98.9384 and 98.9354,
respectively).

In total this leaves us with 19 free parameters in the fit
[or 17, if we fix also �uþ �u and �dþ �d], which we include
later on also in our uncertainty estimates. We tried to relax
the imposed constraints discussed above, but found that

present data, i.e., the effective �2 function, are not really
sensitive to them. In Table II we have converted the fitted
values for "SUð2;3Þ, defined in Eqs. (29) and (30), back to

Nuþ �u and Ndþ �d for convenience. For the optimal DSSV fit
(set S0) we find

"SUð2Þ ¼ 0:0011; "SUð3Þ ¼ �0:0035; (34)

which corresponds to only very minor violations of the
canonical constraints on the first moments ��u � ��d

and ��u þ��d � 2��s assumed in most fits so far. As
we have discussed above, the smallness of "SUð2;3Þ is not
really a surprise in view of the relatively small nominal
uncertainty of the FþD and 3F�D values in Eqs. (29)
and (30). If correct, the small value for "SUð3Þ has interest-
ing implications on the behavior of the �sðxÞ ¼ ��sðxÞ
distribution in the best fit, as we shall see later.

B. Comparison to fitted data

The total �2 of the best-fit S0 is 392.6 for 467 data points
used in our NLO global analysis. We list in Table I also the
individual �2 values for each experiment. As one can see,

there are only very few cases where the �2=NðnÞ
data is sig-

nificantly larger than 1. In each case, this is due to large
fluctuations of some of the data points in that particular set
which are impossible to accommodate in the fit. Figure 1
shows the comparison of our fit to the fitted DIS data, while
the comparison to the SIDIS data is shown in Fig. 2. Notice
that in Fig. 1 the plots are generically labeled as asymme-
tries ‘‘A1’’; however, in the case of the E143, E155, CLAS,
and Hall A data, they actually show the reported structure
function ratios and are compared to the DSSVestimates for
the asymmetries, divided by the factor (1þ �2). The over-
all agreement of the experimental sets in the global analy-
sis is excellent. All data can be very satisfactorily described
by a universal set of polarized PDFs as is assumed by the
fundamental factorization theorem. The agreement with
the RHIC pp data is equally good; we have shown the
corresponding comparison in our previous paper [28] and
will come back to it in the next subsection.
Figures 1 and 2 also show the results obtained for the set

of polarized PDFs of [36] in the following labeled as DNS
(de Florian-Navarro-Sassot). Apart from the fact that not
all of the present data sets were available at the time of
[36], a main difference between the two analyses resides in
the fragmentation functions used when including the
SIDIS spin asymmetries in the fit. To illustrate this point,
we have used here the new fragmentation functions of [37]
also for the calculations with the DNS set [36]. As can be
seen from Fig. 2, this leads to significant differences, in
particular, in the kaon and, to a lesser extent, the isospin
sensitive (proton target) SIDIS asymmetries. This is
mainly due to the strange fragmentation functions, which
directly affect the strange quark polarization, and also to
differences in the light sea quark distributions. Figure 1
shows that there is, however, little difference between the

TABLE II. Parameters fa0i g describing our optimum NLO
(MS) x�fi in Eq. (28) at the input scale �0 ¼ 1 GeV.

Flavor i Ni 
i �i �i �i

uþ �u 0.677 0.692 3.34 �2:18 15.87

dþ �d �0:015 0.164 3.89 22.40 98.94

�u 0.295 0.692 10.0 0 �8:42
�d �0:012 0.164 10.0 0 98.94

�s �0:025 0.164 10.0 0 �29:52
g �131:7 2.412 10.0 0 �4:07
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two sets as far as the inclusive DIS asymmetries are con-
cerned. The changes in the strange quark and other sea
polarizations are thus compensated here, either mutually or
by the other parton distributions.

C. Extracted PDFs, their uncertainties, and their
physics

Figure 3 shows the extracted polarized PDFs at Q2 ¼
10 GeV2, along with estimates of their uncertainties for the
Hessian and Lagrange multiplier methods, both for a tol-
erance of��2 ¼ 1. The results for the Lagrange multiplier
method were already shown in our previous paper [28]
along with a more conservative estimate of the PDF un-
certainties based on ��2=�2 ¼ 2%. For this method, the
estimates were obtained by varying the first moments of
the distributions, truncated to the region of momentum
fractions 0:001 	 x 	 1 covered by the data included in
the fit. The distributions corresponding to the maximum
variations of the truncated moments for a given increase
��2 were then taken as faithful estimates of the range of
variation of the PDFs. In the case of the polarized gluon
distribution, this procedure was found to be not adequate
[28] because of the fact that there is a significant amount of
rather precise proton-proton collision data constraining the
gluon density in however a relatively narrow region of
momentum fraction, 0:05 & x & 0:2. In this way the var-
iations of the gluon distribution’s integral in the full region
0:001 	 x 	 1 tend to produce distributions that favor the
variations outside the pp kinematic region, misrepresent-

ing the uncertainties inside. In order to circumvent this
problem, we performed variations of the integral of the
gluon distribution in three different x regions, 0:001 	 x 	
0:05, 0:05 	 x 	 0:2, and 0:2 	 x 	 1, allowing them to
jointly contribute a change in �2 of ��2 ¼ 1. Clearly, the
choice for these regions and the way they share the increase
in ��2 is not unique. In order to specifically focus on the x
region accessed at RHIC, we also performed a dedicated
study of the truncated moment of �g in this region, allow-
ing variations of ��2 ¼ 1 from this region alone. The
results for the truncated moments of our polarized PDFs,

�f1;½xmin!xmax�
i ðQ2Þ �

Z xmax

xmin

�fiðx;Q2Þdx; (35)

are given in Table III.
Inspection of Fig. 3 and Table III reveals that the Hessian

and the Lagrange multiplier methods yield fairly similar
��2 ¼ 1 uncertainties, except for the spin-dependent
gluon distribution, for which the Lagrange multiplier ap-
proach yields a still significant but generally smaller un-
certainty than the one predicted by the Hessian method
using Eq. (11). The agreement between the two often
becomes better when the observable is better constrained
by the data, as is the case for the integral of �g over only
the x range probed at RHIC, or for the actual physical
observables that determine �g. As an example, in Fig. 4
we show the estimated uncertainties for the double-
longitudinal spin asymmetry,
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FIG. 1 (color online). Inclusive DIS spin asymmetries [2–13] compared to the best-fit results of our global analysis (DSSV, solid
lines), and for the set of polarized PDFs of [36] (DNS, dashed lines).
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ALL � �þþ � �þ�

�þþ þ �þ� (36)

for pp ! �0X at RHIC, where the superscripts denote the
helicities of the incoming protons, computed with both the
Lagrange multiplier and the improved Hessian approaches.
As can be seen, the two give very similar results. This
feature can be traced back to correlations between the
parameters, in the sense that some of them can compensate
variations forced in the others. We note that such kinds of
correlations are fully accounted for in the Lagrange multi-
plier approach, whereas it is not generally clear how well
are they represented by the approximated Hessian matrix.
We shall investigate the distinctive features between the
two methods later, but will focus first on the physics
aspects related to our extracted polarized PDFs.

Table IV shows the evolution of the central values for the

truncated first moments �f1;½0:001!1�
i with Q2. �� denotes

the quark singlet combination, i.e., the sum of all quarks
and antiquarks. We also show the evolution of the full first
moments �f1i . These obviously rely on an extrapolation of
the PDFs to x values outside the measured region, and it is
difficult to estimate the uncertainty associated with this.
Total up and down distributions: �uþ��u and �dþ

� �d, which inclusive DIS probes primarily, are by far the
best determined distributions. Their uncertainty bands are
very narrow (see Fig. 3) and also our results agree very well
with the determinations in previous analyses [31–34,36].
We note that recent lattice QCD results [70] of the full first
moments ��u � �u1 þ ��u1 and ��d � �d1 þ� �d1 (al-
beit excluding disconnected diagrams) also agree very well
with the values we extract, which may shed light on the
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FIG. 2 (color online). Same as Fig. 1, but for the semi-inclusive DIS asymmetries [10,14–16]. In all calculations the fragmentation
functions of [37] have been used.

EXTRACTION OF SPIN-DEPENDENT PARTON DENSITIES . . . PHYSICAL REVIEW D 80, 034030 (2009)

034030-13



validity of assumed extrapolations of the parton distribu-
tion functions to small x.

We have mentioned earlier that in our fit Ru � ð�uþ
��uÞ=ðuþ �uÞ and Rd � ð�dþ� �dÞ=ðdþ �dÞ become con-
stant in the ‘‘valence region’’ as x ! 1, where the sea
quark contributions become small. Figure 5 shows the
ratios Ru, Rd along with the most relevant experimental

data. The information at the highest values of x comes from
the Jefferson Laboratory Hall A experiment [12]. As one
can see, our Ru goes to unity at high x, which is consistent
with expectations in relativistic constituent quark models
[71], but also in perturbative QCD, using power counting
and hadron helicity conservation [72]. We furthermore find
that Rd remains negative in the region where it is con-
strained by data and presently shows no tendency to turn
towardþ1 at high x. The latter behavior would be expected
for the pQCD based models. We note that it has recently
been argued [73] that the upturn of Rd in such models could
set in only at relatively high x, due to the presence of
valence Fock states of the nucleon with nonzero orbital
angular momentum that produce double-logarithmic con-
tributions �ln2ð1� xÞ in the limit of x ! 1 on top of the
nominal power behavior. The corresponding expectation is
also shown in the figure. In contrast to this, relativistic

TABLE III. Truncated first moments �f1;½0:001!1�
j at Q2 ¼ 10 GeV2 and their uncertainties for ��2 ¼ 1 obtained with the Lagrange

multiplier and the Hessian methods. For future reference, we also recall the results for the Lagrange multiplier method obtained in [28]
under the assumption ��2=�2 ¼ 2%, which are to be considered more realistic estimates of the uncertainties. In the last line, �gRHIC

represents the first moment but truncated to ½0:05 ! 0:2�.
Lagrange multiplier ��2 ¼ 1 Hessian Lagrange multiplier ��2=�2 ¼ 2%

�uþ��u 0:793þ0:011
�0:012 0:793� 0:012 0:793þ0:028

�0:034

�dþ� �d �0:416þ0:011
�0:009 �0:416� 0:011 �0:416þ0:035

�0:025

� �u 0:028þ0:021
�0:020 0:028� 0:022 0:028þ0:059

�0:059

� �d �0:089þ0:029
�0:029 �0:089� 0:029 �0:089þ0:090

�0:080

��s �0:006þ0:010
�0:012 �0:006� 0:012 �0:006þ0:028

�0:031

�� 0:366þ0:015
�0:018 0:366� 0:017 0:366þ0:042

�0:062

�g 0:013þ0:106
�0:120 0:013� 0:182 0:013þ0:702

�0:314

�gRHIC 0:005þ0:051
�0:058 0:005� 0:056 0:005þ0:129

�0:164
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FIG. 3 (color online). Our polarized PDFs of the proton at
Q2 ¼ 10 GeV2 in the MS scheme, along with their ��2 ¼ 1
uncertainty bands computed with Lagrange multipliers and the
improved Hessian approach, as described in the text.
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FIG. 4 (color online). Uncertainties of the calculated A�0
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RHIC in our global fit, computed using both the Lagrange
multiplier and the Hessian matrix techniques. We also show
the corresponding PHENIX data [23].
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constituent quark models predict Rd to tend to �1=3 as
x ! 1, perfectly consistent with the present data.

Light sea quark polarizations: The light sea quark and
antiquark distributions turn out to be better constrained
now than in previous analyses [36], thanks to the advent
of more precise SIDIS data [10,14–16] and of the new set
of fragmentation functions [37] that describes the observ-
ables well in the unpolarized case. Figure 6 shows the
changes in �2 of the fit as functions of the truncated first

moments ��u1;½0:001!1�, � �d1;½0:001!1� defined in Eq. (35),
obtained for the Lagrange multiplier method. On the left-
hand side, Figs. 6(a) and 6(c), we show the effect on the
total �2, as well as on the �2 values for the individual
contributions from DIS, SIDIS, and RHIC pp data and
from the F, D values. It is evident that the SIDIS data
completely dominate the changes in �2. On the right-hand
side of the plot, Figs. 6(b) and 6(d), we further split up��2

from SIDIS into contributions associated with the spin
asymmetries in charged pion, kaon, and unidentified had-
ron production. One can see that the latter dominate,
closely followed by the pions. The kaons have negligible

impact here. For ��u1;½0:001!1�, charged hadrons and pions
are very consistent, as far as the location of the minimum in

�2 is concerned. For � �d1;½0:001!1� there is some slight
tension between them, although it is within the tolerance
of the fit.
Of particular physics interest is a possible flavor sym-

metry breaking in the light sea, i.e., ��u � � �d, given the
well-established significant difference between �u and �d in
the spin-averaged case [29,30]. Figure 3 indeed clearly
points to a largely positive ��u distribution, but a negative
(and larger) � �d. Figure 7 specifically shows the difference
xð��u� � �dÞ, which is positive within uncertainties. Note

TABLE IV. Truncated first moments, �f1;½0:001!1�
i , and full ones, �f1i , of our polarized PDFs at various Q2.

x range in Eq. (35) Q2 [GeV2] �uþ��u �dþ� �d ��u � �d ��s �g ��

0.001–1.0 1 0.809 �0:417 0.034 �0:089 �0:006 �0:118 0.381

4 0.798 �0:417 0.030 �0:090 �0:006 �0:035 0.369

10 0.793 �0:416 0.028 �0:089 �0:006 0.013 0.366

100 0.785 �0:412 0.026 �0:088 �0:005 0.117 0.363

0.0–1.0 1 0.817 �0:453 0.037 �0:112 �0:055 �0:118 0.255

4 0.814 �0:456 0.036 �0:114 �0:056 �0:096 0.245

10 0.813 �0:458 0.036 �0:115 �0:057 �0:084 0.242

100 0.812 �0:459 0.036 �0:116 �0:058 �0:058 0.238
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FIG. 5 (color online). High-x behavior of our Ru ¼
ð�uþ��uÞ=ðuþ �uÞ and Rd ¼ ð�dþ � �dÞ=ðdþ �dÞ, shown by
the solid curves, along with the data from [12,13,15], as shown
in [73]. The dashed lines present the predictions based on power
counting and perturbative QCD, taking into account nonzero
orbital angular momentum Fock states [73]. We note that these
results, as well as some of the experimental data, are for the
ratios �u=u and �d=d rather than for Ru and Rd, which,
however, makes little difference for the large x values we
consider here. The arrows show the expectations for �u=u and
�d=d in relativistic constituent quark models [71].
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that we show both the ��2 ¼ 1 and the more conservative
��2=�2 ¼ 2% uncertainty bands here.

The pattern of symmetry breaking in the light antiquark
sea polarizations shown by Figs. 3 and 7 has been predicted
at least qualitatively by a number of models of nucleon
structure. A simple intuitive consideration of the Pauli
principle roughly gives the observed picture: if valence-u
quarks primarily spin along the proton spin direction, u �u
pairs in the sea will tend to have the u quark polarized
opposite to the proton. Hence, if such pairs are in a spin
singlet, one expects ��u > 0 and, by the same reasoning,
� �d < 0. Expectations based on the Pauli principle have
been made quantitative in [74] and the ‘‘valence’’ scenario
of [31], and the resulting predictions are shown by the dot-
dashed line in Fig. 7. They tend to lie somewhat higher than
our extracted ��u� � �d, but are certainly qualitatively
consistent, given the still relatively large uncertainties.
The same is true for the case of the chiral quark soliton
model [75], represented by the dotted line in the figure.
Within the large-Nc limit of QCD on which this model is
based, one in fact expects j��u�� �dj> j �u� �dj. As com-
parison of our extracted xð��u�� �dÞwith the result of [46]
for xð �d� �uÞ in Fig. 7 shows, one can presently not yet
decide whether this expectation is fulfilled. Predictions for
��u�� �d have also been obtained within meson cloud
models [76]; it has been found in [77] that also here a
flavor asymmetry of similar size is possible. Finally, also
statistical parton models [35,78] obtain a similar size of
��u�� �d. We note that predictions for the individual ��u
and � �d, where available, agree on ��u > 0, � �d < 0, con-
sistent with our results in Fig. 3, but may differ in the
relative size of the distributions. For example, the results of

[31,74] have j� �dj> ��u, as in Fig. 3, while the statistical
models find the two distributions to be of more equal
absolute size.
Strange quark polarization: The polarization of strange

quarks has been a focus since the very beginning of the
proton spin crisis. The reason is that in the parton model
and assuming SUð3Þ symmetry (see Sec. III A) one has

�� � �u þ �d þ �s ¼ ð3F�DÞ þ 3��s; (37)

where the ��f are as defined in Eq. (31) but now for

arbitrary scale Q, and �� is the total quark and antiquark
spin contribution to the proton spin. If the latter is found to
be small experimentally,��� 0:25, the implication is that
strange quarks make a significant negative contribution to
the proton spin. Indeed, most fits to only inclusive DIS data
have preferred a large and negative strange quark polariza-
tion. The samewas found in Ref. [36], even though here the
SUð3Þ flavor symmetry was not enforced.
At variance with these results, the best fit in our present

analysis has a polarized strange distribution �s that is
positive at large x, but negative at small momentum frac-
tions. Before we discuss the origin and significance of this
result, we note that a prerequisite for it is that we have
adopted a more flexible parametrization for the strange
quark distribution in this work, which permits a node.
This is again in contrast with the previous fits in which
the initial �s always had the same sign for all x. We have
assumed however �s ¼ ��s, since the fit is unable to
discriminate strange quarks from antiquarks. This is really
an assumption: unlike the spin-averaged case where the
distributions s and �s will be rather similar (the integral of
s� �s has to vanish), there is a priori no need for�s and��s
to have the same size or even the same sign.
Qualitatively, the main features of our extracted strange

sea distribution arise in the following way: the (kaon)
SIDIS data, within the leading-twist framework we em-
ploy, turn out to prefer a small and likely positive �s at
medium x, while inclusive DIS and the constraints from �
decays demand a negative integral of�s and so force�s to
turn negative at low x. Given the importance of �s, we
address these constraints and their significance and impli-
cations in more detail in the following.
We start by analyzing the behavior of the truncated first

moment, �s1;½0:001!1�, around the minimum defining the
best fit. Figure 8 shows the increase of �2 of the fit against

variations of �s1;½0:001!1�, along with the partial contribu-
tions of the various data sets. Evidently, the best fit has a
truncated moment close to zero and only slightly negative,
as we also saw in Table III. The shape of ��2 around the
minimum is dominated by the SIDIS data, and here pri-
marily by the data for kaon production. All other data sets,
pion SIDIS, inclusive DIS, and RHIC pp data, play less
important roles, as expected (here one has of course to keep
in mind that the impact of individual data sets seen in the
Lagrange multiplier scans is always estimated in the ‘‘pres-
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FIG. 7 (color online). The difference between x��u and x� �d at
Q2 ¼ 10 GeV2, along with the uncertainty bands for ��2 ¼ 1
and ��2=�2 ¼ 2%. The dot-dashed and dotted lines show the
predictions of the valence scenario of [31] and the chiral quark
soliton model of [75], respectively. We also show the result
obtained in an earlier global analysis [36] of DIS and SIDIS
data (light dotted line), for which the fragmentation functions of
[37] were not yet available. The dashed line displays for com-
parison the flavor asymmetry xð �d� �uÞ in the spin-averaged case,
using the PDFs of [46].
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ence’’ of the other data sets, and therefore should not be
construed as an independent fit result). As can be seen from
Fig. 8 and Table III, the truncated moment of �s remains
close to zero if changes of ��2 ¼ 1 are permitted. For the
more realistic choice��2=�2 ¼ 2%, one finds that a much

larger range of �s1;½0:001!1� is allowed, extending from
significantly negative to positive values. The size and
even the sign of the considered truncated moment are,
therefore, presently not well constrained. Nonetheless,
there is a trend for �sðxÞ to be positive at medium x�
0:1, even for the choice��2=�2 ¼ 2% (see Fig. 2 of [28]).
We note that the COMPASS experiment has recently pre-
sented a LO extraction of the polarized strange distribution
from their kaon SIDIS data [79], which are not yet included
in this work. These are consistent with small strangeness
polarization down to below x� 0:01, but also allow a
significantly negative �s at x� 0:005. Furthermore, an
extraction of the integral of �s over the range 0:02 	 x 	
0:6 by the HERMES Collaboration [80] yields 0:037�
0:019� 0:027, consistent with our result.

We stress that beyond the ‘‘data-driven’’ uncertainties
that we find for the polarized strangeness distribution, there
could well be effects that are outside the leading-twist
framework we are using here and that may have a signifi-
cant impact on the extracted �s. Given the generally low
hadron multiplicities in kaon events in the present SIDIS
measurements, it is not ruled out that the kaon SIDIS data
are affected by higher twist contributions and not suited for
an extraction of leading-twist strangeness distributions. We
note that the information on the parton-to-kaon fragmen-
tation functions in [37] also primarily comes from unpo-
larized kaon SIDIS data and would not be reliable in the
latter case either. A recent determination of the unpolarized
strange distribution in the nucleon by HERMES from their
SIDIS multiplicities shows an unexpected shape of the
distribution [80]. SIDIS measurements at smaller x, as
well as at presently available x, but higher Q2, will likely
be vital for clarifying these issues. These would become
available at an electron-ion collider [81].

As can be seen from Fig. 8, the effects due to SUð2Þ and
SUð3Þ flavor symmetry breaking in usage of the baryon
semileptonic decay data [see Eqs. (29) and (30)], have only

a very limited impact on the truncated moment of�s. This,
however, changes dramatically when the full first moment
of �s is considered, i.e., the contribution to its integral
from x < 0:001. This region is presently not constrained by
any DIS or SIDIS data, but we remind the reader that the
breaking parameters "SUð2;3Þ come out very small [see

Eq. (34)] in our analysis, as a result of the relatively small
nominal uncertainty in the F, D values, as we discussed in
Sec. III A. This implies that the strange sea distribution will
have a large and negative total first moment,��s ¼ �s1 þ
��s1 ¼ �0:114, as seen from Table IV, which in turn can
only occur if the distribution shows a sign change to
negative values at small x, visible in Fig. 3.
It will clearly be important in the future to better under-

stand the strange contribution to nucleon spin structure. If
the full first moment ��s is small, SUð3Þ symmetry in
relating hyperon � decays to nucleon spin structure would
have to be broken at the 40% level or so, which is not ruled
out [67,68]. If, on the other hand, SUð3Þ symmetry is not
broken significantly, the implication is that either �s turns
large and negative at small x, as in our fit, or that the
present kaon SIDIS data do not allow a reliable extraction
of �sðxÞ. On the theoretical side, there have been very
recent lattice determinations of the integral ��s [82],
which point to small values. Models of nucleon structure,
on the other hand, have led to quite varied predictions for
the integral of �s, ranging from small to large negative
values [83]. We note that the ‘‘valence scenario’’ of [31]
has a first moment of the polarized strange distribution very
close to zero, which is consequently at the expense of
significant violation of the SUð3Þ flavor symmetry relation
in Eq. (30). We finally stress that the size of �s is not a
topic of interest just for nucleon spin structure enthusiasts:
as was pointed out recently [84], the uncertainty in ��s

provides the single largest uncertainty in predictions of the
spin-dependent elastic scattering cross sections of super-
symmetric dark matter particles on protons and neutrons.
Total quark and antiquark spin contribution ��: In

Fig. 9 we show the �2 profile associated with variations
of the truncated moment of the quark singlet distribution,
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FIG. 8 (color online). Same as Fig. 6, but for the truncated first
moment of the polarized strange distribution �s1;½0:001�1:0�.
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FIG. 9 (color online). Same as Fig. 6, but for the truncated first
moment of the quark singlet distribution ��1;½0:001�1:0�.
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��1;½0:001!1� � R
1
0:001 dx½�uþ ��uþ �dþ� �dþ �sþ

��s�, at Q2 ¼ 10 GeV2. As expected, the main constraints
come from the DIS and SIDIS data. The value for the
truncated first moment obtained in the best fit is signifi-
cantly higher than that for the full first moment given in
Table IV, which is a manifestation of the large negative
contribution from strange quarks and antiquarks that arises
in our fit at small x. Thus, keeping in mind the discussion
about strangeness above, we conclude that if SUð3Þ flavor
symmetry in relating hyperon � decays to nucleon spin
structure is strongly broken, �� would be as large as
�0:36 or so, whereas it will be about 30% smaller if
SUð3Þ holds well and the first strange moment ��s turns
out to be large and negative. We note that such lower values
of ��� 0:24 or so have usually been obtained in previous
analyses relying on the use of SUð3Þ symmetry [31–34,36].
In any case, �� is certainly much smaller than the typical
expectation of �� * 0:6 in quark models.

Spin-dependent gluon distribution �g: We have already
noted in our DSSV paper [28] that the polarized gluon
distribution �gðx;Q2Þ comes out rather small in the pres-
ently accessed range of momentum fraction x, and prefers
to have a node. At variance with the findings of Ref. [34],
we do not find any nonoverlapping best-fit solutions with
gluon polarizations of opposite signs. This duplicity is
readily excluded by the RHIC pp data. The RHIC data
in fact turn out to play a crucial role in constraining �g
[28]. The result is shown again in Fig. 3. We do not repeat
the plot of the �2 profile as a function of the truncated first
moment of�g here, which may be found in [28]. As can be
seen from Table III, the integral of �g over the RHIC x
region 0.05 to 0.2, �gRHIC, is found to be almost zero,
while Table IV shows that extrapolation to all x results in
the gluon spin contribution �g1 ¼ �0:084 at Q2 ¼
10 GeV2. We stress, however, that this result is not yet
reliable due to the large uncertainty in extrapolation to x !
0. In any case, there are presently no indications of a
sizable contribution of gluon spins to the proton spin.
This is in line with recent theoretical expectations obtained
within an effective low-energy theory of broken scale
invariance of QCD [85]. Recent bag model estimates also
point to relatively modest (but positive) values [86]. Very
large values of the integral of the spin-dependent gluon
distribution,�g1 � 1:5 or so atQ2 ¼ 1 GeV2, as predicted
based on considerations of the QCD axial anomaly [87],
become increasingly disfavored, unless �g would show a
steep rise at small x. Future data from RHIC for spin
asymmetries in forward production of correlated hadron
or jet pairs, and from running at 500 GeV c.m.s. energy, are
expected to shed light on �g at lower momentum fractions
[88]. Again, also a polarized electron-ion collider [81]
would be ideally suited to address this important question
and to quantify the amount of gluon polarization at small x
from measurements of scaling violations of the structure
function g1. Other promising channels are, for instance, the

polarized photoproduction of single-inclusive hadrons [89]
or jets [90].
We have shown the comparison to some of the RHIC

data in Fig. 4 (see also Ref. [28]). A way to access �g in
lepton-nucleon scattering is to measure final states that
dominantly select the photon-gluon fusion process,
heavy-flavor production, ‘p ! hX, and ‘p ! hþh�X,
where the hadrons have large transverse momentum.
Figure 10 shows the corresponding results for the extracted
�g=g from SMC, HERMES, and COMPASS [18–21],
which have not yet been included in our global analysis.
We also show in the figure our result, for two representative
Q2 scales. It should be noted that this comparison is not
quite consistent, as the extraction of �g=g by the experi-
ments was performed at LO level based on Monte-Carlo
generators. Nonetheless, a small �g at x ’ 0:08–0:2 as
found in our analysis is also well consistent with the data
from lepton-nucleon scattering. We expect that the data for
the measured spin asymmetries will be included in our
global analysis in the future, after the NLO framework
for them has been fully developed and been compared to
data for the corresponding spin-averaged cross sections.

D. Exploring the fit parameter space

In this section we briefly present a few more details of
the behavior of our total �2 near its minimum, which has
ramifications, in particular, for the use of the Hessian
matrix method for estimating uncertainties. As we noted
before, an advantage of the Hessian technique is that it
allows one to produce sets of ‘‘eigenvector PDFs’’ [43],
which in turn can be straightforwardly used in computa-
tions of other observables, in order to estimate their PDF
uncertainty based on Eq. (11). For this, however, it is very
important to know the range of validity of the method, i.e.,
to which degree �2 is parabolic around its minimum.

COMPASS 2-had, Q2<1 GeV2
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HERMES (prel.)
SMC
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Q2=10 GeV2

x

∆g/g
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FIG. 10 (color online). Comparison of �g=g for our best fit, at
two representative Q2, to the extracted �g=g from photon-gluon
fusion processes investigated by SMC [19], HERMES [18], and
COMPASS [20,21]. These data were not included in our global
analysis since a consistent NLO framework is not available at
present.
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As described in Sec. II B, the first step in the Hessian
method is to transform the fit parameters faig to a new set
fzig such that surfaces of constant �2 turn into hyperspheres
in fzig space; see Eqs. (8) and (9) [43]. Figure 11 shows the
overlap of each of the original fit parameters faig with the
eigenvector directions fzig; the larger the box size the larger
the contribution of a certain eigenvector direction to a fit
parameter ai. The zi are ordered in terms of the eigenvalues
of the Hessian matrix: z1 corresponds to the largest eigen-
value, i.e., a direction in parameter space where �2 changes
rapidly, whereas z19 is only very weakly constrained by
data. One can see that in many cases there is a fairly strong
correlation between a given original fit parameter ai and a
single eigenvector direction zi. The parameters which ap-
pear to be constrained best by current data are the normal-
izations of the sea quarks, N �u, N �d, and N�s, "SUð2;3Þ
controlling the breaking of SUð2; 3Þ symmetry, and 
uþ �u,

dþ �d related to the small x behavior of �uþ ��u, �dþ
� �d. Parameters determining the gluon distribution,Ng, 
g,

and �g are less well constrained and mainly correlated

with eigenvector directions z7 to z12. � �d, �dþ �d, �dþ �d, and
� �s receive contributions from eigenvector directions which
are only weakly constrained by data. As we shall see
below, this general picture agrees rather well with results
for the �2 profiles for each fit parameter obtained with the
Lagrange multiplier method.

In Fig. 12 we investigate the behavior of �2 around its
minimum, making use of the transformed parameters fzig.
We vary one of the parameters zi at a time, keeping all
others fixed. Of course, since each zi has in principle
overlap with all fit parameters faig, the latter all vary in

this procedure. The variation is done in such a way that a
given change of ��2 ¼ T is produced. For truly quadratic
behavior near the minimum, as is the underlying assump-
tion in the Hessian approach, the quantity T2 � ��2

i ,

where ��2
i is the change in �2 contributed by the parame-

ter zi that is varied, is trivially zero. This can be compared
to the actual dependence of �2 on the varied parameter,
making no use of the quadratic expansion in (6). Any
deviation of T2 ���2

i from zero will signal a departure

from the quadratic behavior near the minimum. One can
see from the figure that a choice ��2 ¼ 1 works reason-
ably well overall, in the sense that overall only fairly small
deviations from zero occur. This implies that the Hessian
matrix method is reliable for ��2 ¼ 1 and our eigenvector
sets S�k will produce faithful uncertainty estimates. Some

eigenvector directions starting from z12 and higher do show
a certain departure from the ideal behavior even for��2 <
1. This is most pronounced for z17 to z19 which are the least
constrained parameters. In general we have found that the
Hessian method breaks down rapidly once one goes be-
yond ��2 ¼ 1. Therefore we cannot provide eigenvector
sets S�k corresponding to the more conservative error esti-

mate ��2=�2 ¼ 2% preferred in [28].
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FIG. 11 (color online). Correlations between the fit parameters
faig and the eigenvector directions fzig. The larger the box size
the larger the overlap (see text).

[T2 - ∆χi[T2 - ∆χ2] + i i

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

T

0

5

10

15

20

-1 -0.5 0 0.5 1

FIG. 12. Deviations from the expected parabolic behavior
��2 ¼ T2 for the eigenvector directions fzig (see text). Note
that for better separation of the curves we have added an offset i
for each parameter zi.
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Figure 13 shows the �2 profiles including the individual
contributions from the DIS, SIDIS, and RHIC pp data sets
and from the F, D values for the fit parameters faig,
obtained with the Lagrange multiplier approach. Clearly,
while for some of the parameters the profiles are smooth
and parabolic as expected in the simplest approach, for
others they are not, showing not only nonparabolic behav-
ior but variously asymmetric shapes, multiple minima, or
almost flat regions. It is worth pointing out that these
behaviors are not related to a lack of flexibility of the input

parametrizations, but to features of the data itself. For
example, the double minima observed for N �d and � �d are
associated with two possible ‘‘best-fit solutions’’ to the
pion SIDIS asymmetries, which show strong fluctuations.
In most cases, the behavior is still reasonably quadratic

within ��2 < 1, however, which further justifies the ap-
plicability of the Hessian method for ��2 ¼ 1. Beyond
that, simple extrapolation based on an assumed quadratic
behavior may give misleading results. We recall that the
central values for the parameters can be found in Table II.
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FIG. 13 (color online). The �2 profiles obtained with the Lagrange multiplier approach for the parameters faig of the fit. The solid
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Reducing the number of parameters of the fit would
improve the constraints on the remaining ones, however
at the expense of reducing the quality of the fit. The
resulting constraint in that case would be strongly depen-
dent on the functional form assumed for the PDFs. In this
sense, the robust error analysis based on Lagrange multi-
pliers allows one to use more flexible functional forms.

IV. APPLICATIONS OF OUR UNCERTAINTY
ESTIMATES

The 38 eigenvector PDF sets S�k that we have con-

structed for the Hessian matrix method are ideally suited
for estimating the PDF uncertainty of other observables. In
this way, one can, for example, gauge the accuracy that
future additional measurements will need to have in order
to have a significant impact on our knowledge of the PDFs.
In this section, we will present a few examples for the case
of RHIC. In view of the fact that RHIC has just completed

its first physics run at
ffiffiffi
S

p ¼ 500 GeV, we will focus on
predictions for this c.m.s. energy.

Figure 14 shows the NLO double-spin asymmetries ALL

defined in Eq. (36) for pp ! hX (h ¼ �0, ��) and pp !
jetX, for our central DSSV fit (solid lines), including the
Hessian uncertainty bands for ��2 ¼ 1 using Eq. (11).
One can see that the asymmetry for �0 remains very small
until about pT � 20 GeV, as could be expected from a

simple scaling of the asymmetry ALL at
ffiffiffi
S

p ¼ 200 GeV

shown in Fig. 4 with xT � 2pT=
ffiffiffi
S

p
. It then rapidly in-

creases. The asymmetry for negatively charged pions re-
mains small for all transverse momenta and in fact turns

slightly negative at high pT . In contrast, A
�þ
LL is higher than

A�0

LL, reaching about 3% at the highest pT shown. The

behavior of the various pion asymmetries is closely tied
to that of the polarized gluon distribution: at high pT ,
relatively large values of x are relevant, where our �g is
positive, and quark-gluon scattering dominates. An impor-
tant contribution to the spin-dependent cross section thus
involves the combination ð�u �D�

u þ ��u �D�
�u þ �d �

D�
d þ � �d �D�

�d
Þ � �g of parton distributions and frag-

mentation functions. For �þ production, the u quark and
�d antiquark contributions are expected to dominate, as
these are valence quarks in a �þ. The combination �uþ
� �d is positive as Fig. 3 shows. The large negative contri-
bution associated with �d is suppressed here. For �0

production, the participating fragmentation functions are
all equal, and one probes the sum of up- and down-quark
and antiquark distributions, which is positive but smaller
than �uþ� �d. Finally, for �� production, the main con-
tribution involves �dþ ��u, which explains the downturn
of A��

LL to negative values at high pT . Clearly, the three pion

asymmetries are also sensitive to the sign of �g. We note

that preliminary results for A��
LL at

ffiffiffi
S

p ¼ 200 GeV have

recently been reported from RHIC [27].

Similar features as for the �0 asymmetry are observed

for jets. Very roughly, one finds that Ajet
LLðpTÞ � A�0

LLðkpTÞ,
where k � 0:5 or so, corresponding to the fact that on
average only the fraction k of the total jet momentum is
taken by an observed �0. This implies that, at a given pT ,
the jet spin asymmetry is smaller than that for �0.
We have seen in the previous section that the SIDIS data

have given some first insights into the flavor structure of
the polarized sea distributions of the nucleon. On the other
hand, the uncertainties in SIDIS are still quite large, and it
is, in particular, difficult to quantify the systematic uncer-
tainty of the results related to the fragmentation mecha-
nism at the relatively modest energies available so far.
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FIG. 14 (color online). Double-spin asymmetries ALL for jet
and pion production at RHIC at

ffiffiffi
S

p ¼ 500 GeV as functions of
the transverse momentum pT of the produced final state. We
show the results for the best-fit parton distributions from our
global analysis, along with the uncertainties estimated using the
Hessian method, allowing changes of one unit in �2. We also
show the results for the standard scenario of [31] [dashed lines;
in the lower plot the result for �þ (��) is given by the top
(bottom) curve]. We have used the CTEQ6M unpolarized parton
distributions [46] for the calculation of the denominator of the
asymmetry. For the pions, we have assumed pseudorapidity
coverage of j�j< 0:35, and for the jets of �1 	 � 	 2.
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Complementary and clean information on�u,��u,�d, and
� �d will come from pp ! W�X at RHIC, where one will
exploit the maximally parity-violating couplings of pro-
duced W bosons to left-handed quarks and right-handed
antiquarks [88,91]. The high scale set by theW boson mass
makes it possible to extract quark and antiquark polar-
izations from inclusive lepton single-spin asymmetries in
W boson production with minimal theoretical uncertain-
ties, as higher order and subleading terms in the perturba-
tive QCD expansion are suppressed [92–95].

As a further application of our Hessian uncertainty
PDFs, we show in Fig. 15 the single-longitudinal spin
asymmetries,

AL � �þ � ��

�þ þ �� ; (38)

for the processes ~pp ! ‘�X, where the arrow denotes a
longitudinally polarized proton and ‘ ¼ e or �. The
charged lepton is assumed to have been produced by a
leptonic decay of the W� boson. The asymmetries are
shown as functions of the charged lepton’s rapidity �lept,

with �lept counted positive in the forward direction of the

polarized proton. We have integrated over pT > 20 GeV,
where pT is the lepton transverse momentum. The results
shown in the figure are based on a simple LO calculation of
the processes q �q0 ! W� ! ‘��; the NLO corrections
which we should in principle include for consistency are
negligible for this observable [92–95].
For W� production, neglecting all partonic processes

but the dominant �ud ! W� one, the spin-dependent cross
section in the numerator of the asymmetry is found to be
proportional to the combination [93]

��uðx1Þdðx2Þð1� cosÞ2 ��dðx1Þ �uðx2Þð1þ cosÞ2;
(39)

where  is the polar angle of the electron in the partonic
c.m.s., with  ¼ 0 in the forward direction of the polarized
parton. At large negative �lept, one has x2 
 x1 and  

�=2. In this case, the first term in Eq. (39) strongly domi-
nates, since the combination of parton distributions,
��uðx1Þdðx2Þ, and the angular factor, ð1� cosÞ2, each
dominate over their counterpart in the second term. Since
the denominator of AL is proportional to �uðx1Þdðx2Þð1�
cosÞ2 þ dðx1Þ �uðx2Þð1þ cosÞ2, the asymmetry provides a
clean probe of ��uðx1Þ= �uðx1Þ at medium values of x1.
Indeed, the Hessian uncertainty band for ��u shown in
Fig. 3 is directly reflected in the band we show in
Fig. 15. We also show in the figure the spin asymmetries
obtained for the ‘‘standard’’ and valence scenarios of [31].
The latter has a large and positive ��u distribution at the
relevant x� 0:1, which clearly shows in the asymmetry.
By similar reasoning, at forward rapidity �lept 
 0 the

second term in Eq. (39) dominates, giving access to
��dðx1Þ=dðx1Þ at relatively high x1. We have discussed
in subsection III C that there is interest in the question if the
polarized down-quark distribution turns positive in the
large-x region, for which there are currently no indications;
see Fig. 5. As Fig. 15 shows, the asymmetry for W�
production becomes large and positive at high �lept, which

precisely reflects the fact that �dðxÞ remains negative at
high x in our DSSV fit. It is interesting to investigate how
the asymmetry might look if �d=d were to turn to þ1 as
x ! 1. In order to do this, we have produced two fits where
�d=d is forced to have this behavior. The two fits are
characterized by the value x0 where �dðx;M2

WÞ changes
sign from negative to positive values. We have chosen x0 ¼
0:67 and x0 ¼ 0:55. The �2 values for these two fits are of
course significantly worse than for our DSSV best fit, by
about four units for x0 ¼ 0:67 and about 25 units for x0 ¼
0:55. The results for the two fits are shown by the dotted
lines in Fig. 15. It should be well possible at RHIC to
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FIG. 15 (color online). Single-longitudinal spin asymmetries
for charged-lepton production at RHIC through production and
decay of W bosons. The bands correspond to our uncertainty
estimates based on the Hessian ��2 ¼ 1 eigenvector PDFs. We
also show in the figure the spin asymmetries obtained for the
standard and valence scenarios of [31]. For the case of W�, we
also show the results of two fits for which the ratio �dðxÞ=dðxÞ is
forced to turn to þ1 as x ! 1 (see text).
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measure the asymmetry for values�lept out to* 2 [88]. We

note that the behavior of�d=d at high xwill also be further
addressed by experiments at Jefferson Laboratory after the
12 GeV upgrade [96].

For Wþ production, one has the following structure of
the spin-dependent cross section [93]:

� �dðx1Þuðx2Þð1þ cosÞ2 ��uðx1Þ �dðx2Þð1� cosÞ2:
(40)

Here the distinction of the two contributions by consider-
ing large negative or positive lepton rapidities is less clear-
cut than in the case of W�. For example, at negative �lept

the partonic combination �dðx1Þuðx2Þ will dominate, but at
the same time  
 �=2 so that the angular factor ð1þ
cosÞ2 is small. Likewise, at positive �lept the dominant

partonic combination �uðx1Þ �dðx2Þ is suppressed by the
angular factor. So both terms in Eq. (40) will compete
essentially for all �lept of interest. This is reflected in the

behavior of the calculated spin asymmetry AWþ
L shown in

Fig. 15, which does not show as clear features as the one
for W� bosons. Nonetheless, the Wþ measurements at
RHIC will of course still be of great value. In fact, our
global analysis technique is precisely suited for extracting
information on the polarized PDFs even if there is no single
dominant partonic subprocess.

V. CONCLUSIONS

We have presented details of a recent study of the
helicity parton distribution functions of the nucleon, which
used experimental information available from inclusive
and semi-inclusive polarized deep-inelastic lepton-nucleon
scattering and from polarized proton-proton scattering at
RHIC. The data sets were used jointly in a next-to-leading
order global QCD analysis, which allows one to extract the
set of parton distributions that provides the optimal overall
description of the data, along with estimates of its uncer-
tainties. We have presented techniques and computational
methods that speed up the next-to-leading order calcula-
tions for pp scattering to the level required in practice for a
global analysis. Our technique is formulated in Mellin
moment space. A key feature is that the computationally
most challenging parts are done only once, prior to the fit.
Use of a Monte-Carlo sampling method allows us to per-
form this one-time calculation very efficiently.

Our extracted parton distributions show particularly in-
teresting features in the sea quark and gluon sector. We find
evidence for a mostly positive ��u and a negative � �d
distribution, so that ��u�� �d is positive. This behavior
has been predicted by a number of models of nucleon
structure. The polarized strange quark distribution �s
comes out slightly positive at medium x, which is driven
by the semi-inclusive kaon DIS data and could be subject
to rather large systematic uncertainties. �s turns negative
at x & 0:02 as a result of constraints from SUð3Þ symmetry,

which have a relatively small nominal error. If true, this
means that �s acquires its large negative integral essen-
tially completely from the small-x region. As a further
consequence, quark and antiquark spins combined contrib-
ute about a fourth to a third of the proton’s spin, with the
lower value arising if strange quarks and antiquarks are
indeed strongly negatively polarized at low x. Finally, we
have found that the gluon helicity distribution �gðx;Q2Þ is
small in the region of momentum fraction accessed directly
so far by RHIC, with likely a node and an almost vanishing
integral over that region. Reliable statements about the full
gluon spin contribution to the proton spin are presently not
yet possible.
We have performed uncertainty estimates for our polar-

ized parton distributions, using both the Lagrange multi-
plier technique and the improved Hessian approach. To
obtain these, a large number of additional fits are neces-
sary, for which the computational techniques we have
developed are particularly important. We find that both
approaches yield consistent results for moderate departures
from the best fit, typically ��2 ¼ 1. For larger ��2,
significant differences develop as a result of departures
from parabolic behavior of �2 around its minimum. This
implies that the Hessian matrix method becomes unreli-
able. We have produced a set of 38 eigenvector parton
distributions for the Hessian method with ��2 ¼ 1 [97],
which may be used to estimate the uncertainty of any
observable that depends on the distributions. We stress,
however, that we presently prefer a more conservative
choice of ��2=�2 ¼ 2% as a tolerance criterion for ac-
ceptable parton distributions. Unfortunately, the behavior
of �2 around its minimum does not warrant use of the
Hessian method for producing eigenvector parton distribu-
tions in this case.
We have used the ��2 ¼ 1 eigenvector distributions to

obtain predictions for spin asymmetries for high transverse
momentum pion and jet production in polarized proton-
proton collisions at 500 GeV center-of-mass energy at
BNL-RHIC, as well as for W boson production. The for-
mer would give information on �g at lower x, while the
latter would provide a clean new probe of the polarized
quark and antiquark distributions, which is important in
view of the uncertainties inherent in semi-inclusive DIS.
Our results indicate that there is significant potential for
RHIC to provide further important insights into nucleon
helicity structure. It will be straightforward to include all
the forthcoming data in the global analysis.
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