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Chiral magnetic conductivity
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Gluon field configurations with nonzero topological charge generate chirality, inducing - and CP-odd
effects. When a magnetic field is applied to a system with nonzero chirality, an electromagnetic current is
generated along the direction of the magnetic field. The induced current is equal to the chiral magnetic
conductivity times the magnetic field. In this article we will compute the chiral magnetic conductivity of a
high-temperature plasma for nonzero frequencies. This allows us to discuss the effects of time-dependent
magnetic fields, such as produced in heavy ion collisions, on chirally asymmetric systems.
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L. INTRODUCTION

Quantum chromodynamics (QCD) contains gauge field
configurations which carry topological charge [1]. These
configurations interpolate between the different vacua of
the gluonic sector of QCD [2] and induce interesting P-
and CP-odd effects [3]. Neglecting the masses of quarks
(as appropriate at high energies), it holds for each individ-
ual flavor that [4]

ANs = A(Ng = Np) = =20, (D

where ANs denotes the change in chirality (Ns) which is
the difference between the number of modes with right-
and left-handed chirality. In the limit of zero quark mass N5
is also equal to the total number of particles plus antipar-
ticles with right-handed helicity minus the total number of
particles plus antiparticles with left-handed helicity. Right-
handed helicity means that spin and momentum are paral-
lel, whereas left-handed helicity implies they are opposite.

There exist different mechanisms to generate topologi-
cal charge during heavy ion collisions. One possible way is
by longitudinal fields created just after the collision [5-7],
another due to QCD sphaleron transitions in the quark-
gluon-plasma [8—11], and also plasma instabilities can lead
to generation of topological charge [12]. Furthermore, it
has been argued that instanton “‘ladders” may describe a
significant fraction of multiparticle production at high en-
ergies [13-15]. Finally, metastable - and CP- odd do-
mains may exist in the quark-gluon plasma close to the
critical temperature [16]. No matter what the precise
mechanism behind the generation of topological charge
is, this leads to generation of chirality as can be seen
from Eq. (1).

Assuming that the 8 angle vanishes, there is no explicit
P and CP breaking in QCD. Hence positive and negative
topological charges are being generated with equal proba-
bility. But because of fluctuations, a finite amount of
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topological charge can be generated in each event within
a given region of phase space determined by the experi-
mental acceptance. Only if one averages over many events
the net produced topological charge should vanish.
Therefore in each event a difference between the total
number of right- and left-handed particles can be expected.

When two heavy ions collide with a nonzero impact
parameter, a (electromagnetic) magnetic field of enormous
magnitude is created in the direction of angular momentum
of the collision; it has been evaluated in Refs. [17,18] (see,
also, [19] for a proposal to utilize electromagnetic fields in
the search for disoriented chiral condensates). If a nonzero
chirality is present in such a situation, an electromagnetic
current will be induced in the direction of the magnetic
field. This is the so-called chiral magnetic effect [17,20—
22]; see the recent Ref. [23] for the first study of this effect
in lattice QCD. To understand this effect qualitatively, let
us imagine a situation in which the P-and CP-odd pro-
cesses made N5 positive, so that we have an excess of
quarks plus antiquarks with right-handed helicity. In a
background magnetic field, the quarks will align their
magnetic moments along the magnetic field. And assuming
the quarks can be treated as massless, the momenta of the
quarks will be aligned along the field as well. Con-
sequently a quark with left-handed helicity tends to move
exactly in the opposite direction to a quark with right-
handed helicity. Since the magnetic moment is propor-
tional to the charge, an antiquark with right-handed helicity
will move exactly opposite to a quark with right-handed
helicity. Accordingly, in this case of positive Ns, an excess
of positive charge will move parallel to the magnetic field
and an excess of negative charge will go in the opposite
direction. Thus an electromagnetic current is generated
along the magnetic field.

In a heavy ion collision this current leads to an excess of
positive charge on one side of the reaction plane (the plane
in which the beam axis and the impact parameter lies) and
negative charge on the other; the resulting charge asym-
metry is also modulated by the radial flow and the transport
properties of the medium. This charge asymmetry can be
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investigated experimentally using the observables pro-
posed in Ref. [24]. Preliminary data of the STAR collabo-
ration has been presented in Refs. [25,26]. Implications of
the chiral magnetic effect on astrophysical phenomena
have recently been discussed in Ref. [27]; another astro-
physical implication can be found in [28].

A system of massless fermions with nonzero chirality
can be described by a chiral chemical potential w5 which
couples to the zero component of the axial vector current in
the Lagrangian. The induced current in such a situation can
be written as j = o, B, where o is the chiral magnetic
conductivity. For constant and homogeneous magnetic
fields its value is determined by the electromagnetic axial
anomaly and for one flavor and one color equal to
[22,29,30] (see, also, [31])

62

UX(w=0,P=0)EUo=ﬁM5: (2)
where w and p denote frequency and momentum, respec-
tively, and e equals the unit charge. For a finite number of
colors N, and flavors f, one has to multiply this result by
NS fq]% where ¢, denotes the charge of a quark in units of
e. The generation of currents due to the anomaly in back-
ground fields or rotating systems is also discussed in
related contexts in Refs. [31-35].

For constant magnetic fields which are inhomogeneous
in the plane transverse to the field, one finds that the total
current J along B equals [22],

J= e[@J%, 3)

27

where L, is the length of the system in the z direction and
the flux ® is equal to the integral of the magnetic field over
the transverse plane,

D= j xB(x, y). )

The floor function |x] is the largest integer smaller than x.
The quantity |e®/(277)] in Eq. (3) is equal to the number of
zero modes in the magnetic field [36].

To compute the current generated by a configuration of
specific topological charge, one should express w5 in terms
of the chirality N5. By using the anomaly relation, one can
then relate N5 to the topological charge. This is discussed
in detail in Ref. [22].

The aim of this paper is to study how a system with
constant nonzero chirality responds to a time-dependent
magnetic field. This is interesting for phenomenology
since the magnetic field produced with heavy ion collisions
depends strongly on time. To obtain the induced current in
a time-dependent magnetic field, we will compute the
chiral magnetic conductivity for nonzero frequencies and
nonzero momenta using linear response theory. We will
compute the leading order conductivity and leave the in-
clusion of corrections due to photon and or gluon exchange
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for future work. In leading order, the chiral magnetic
conductivity for an electromagnetic plasma and quark
gluon plasma are equal (up to a trivial factor of
NL.qu]%). Since we do not take into account higher order
corrections, some of our results for QCD will only be a
good approximation in the limit of very high temperatures
where the strong coupling constant «; is sufficiently small.
We will take the metric g#” = diag(+, —, —, —). The
gamma matrices in the complete article satisfy {y#, y"} =
2g*”. We will use the notation p for both the four-vector
p* = (po, p) and the length of a three-vector p = |p|.

II. KUBO FORMULA FOR CHIRAL MAGNETIC
CONDUCTIVITY

For small magnetic fields, the induced vector current can
be found using the Kubo formula. This formula tells us that
to first order in the time-dependent perturbation, the in-
duced vector current is equal to a retarded correlator of the
vector current with the perturbation evaluated in equilib-
rium. More explicitly, one finds that

G () = j '3 T2 (x, X)A, (), 5)

where j“(x) = e(x)y* s(x) and the retarded response
function IT{" is given by

HR"(x, x) = i[j# (), j* (DO — 7). (6)

The equilibrium Hamiltonian is invariant under transla-
tions in time and space, therefore we can use that
&7 (x, x') = TI§"(x — x'). Let us take a vector field of
the following specific form A, (x) = A, (p)e~?*. The Kubo
formula now becomes

)y = " (p)A,(p)e ™, 7

where
I ' (p) = jd“xeil’xﬂl’{'/(x). (8)

In order to compute the chiral magnetic conductivity, we
will take a time-dependent magnetic field pointing in the z
direction. Because of Faraday’s law (V X E = —dB/d1),
such a time-dependent magnetic field comes always to-
gether with a perpendicular electric field. Let us choose a
gauge such that the only component of the vector field that
is nonvanishing is A,. Then B,(x) = 9,A,(x) so that
B.(p) = ip'A%(p). Using Eq. (7) we find that the induced
vector current in the direction of the magnetic field can
now be written as

(j.(x)) = o (p)B.(p)e” P, )

where the chiral magnetic conductivity equals

1 = 1
B P =
ipl R (P) le

o (p) = ¥ (p)elit.  (10)

i
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The right-hand side of the last equation is a result of
rotational and gauge invariance. We can now write the
chiral magnetic conductivity in the following way:

1 .
with
Gi(p) = LTI (p). (12)

The last two equations show that the chiral magnetic con-
ductivity follows directly from evaluating G*(p), which is
the spatially antisymmetric part of the off diagonal re-
tarded current-current correlator, or equivalently the pho-
ton polarization tensor.

Another related quantity that follows from the off di-
agonal part of the photon polarization tensor is the Hall
conductivity. The Hall current is generated in the presence
of a magnetic field that is perpendicular to an electric field.
Unlike the chiral magnetic current, the Hall current is in a
direction perpendicular to the magnetic field. In order to
obtain the Hall conductivity one usually computes the
photon polarization tensor in the presence of a homoge-
neous background field. The electric field is then treated as
a perturbation (see, e.g., Ref. [37] for a recent calculation
using a holographic model of QCD).

In general, the chiral magnetic conductivity will be
complex. Let us therefore write

oy(p) = o\ (p) + iok(p), 13)

where o’ (p) and o)(p) are real functions given by

1 .
a\(p) = Pl ImGx (p), (14)

1 ,
oy(p) = — P ReGr(p). 5)

For convenience we will write the zero momentum limit of
the chiral magnetic conductivity as follows:

o (0) = limo (py = o, p) (16)

The real part of the conductivity is an even function of w
while the imaginary part is odd, ie., o/ (w) = o\ (—®)
and of(w) = —o(—w). If we apply a homogeneous
magnetic field B(r) = B, cos(wt)Z the response j(t) =
(j. (1)) will be

J(t) = [0 (w) cos(w?) + o (w) sin(w?)]B,, 17

Hence the real part and imaginary part correspond to the
in- and out-phase response, respectively. To find the re-
sponse to a general time-dependent magnetic field B =
B(7)Z one first has to compute the Fourier transform of the
magnetic field
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B(w) = [ dte'B(t). (18)
The response will then be

() = L “df[a'(w)cos(m) + o(w) sin(w)]B(w).
(19)

The real and imaginary parts of the chiral magnetic
conductivity related to each other by the Kramers-
Kroning relation

Lo o)
ol(w) =P L,o dqo qox_qi), (20)
1 o0 o’ (q0)

In the next section we will study the fermion propagator
in the presence of a chiral chemical potential. Then using
this propagator we will compute the retarded current-
current correlator from which we can derive the chiral
magnetic conductivity.

III. FERMION PROPAGATOR

The bare fermion propagator as a function of Euclidean
momentum Q in the presence of a chiral chemical potential
equals

1
iY@, —ip —ipnsy’) —v-q
where @,, = 2m + 1)#T with m € Z is a fermionic

Matsubara mode. By computing the inverse, this propaga-
tor can be written as

S(Q) = (22

2. p 2
o T
where we have defined Q% = (i@, q¢) with @. = @,, —
i+ and p+ = u * ws. Accordingly, Q-+, = (i@+, —q)
and Q% = —(@% + ¢*). Furthermore @. = Q%y,. The
right- ( + ) and left-handed ( — ) chirality projection op-
erators are given by P = 1(1 = vys). They satisfy P% =
P. and P, P_ = 0. Let us now define

1
qo+ E

+ P

S(Q)=7P (23)

A+(q0.q) = : (24)

q
where E, = |q|. Furthermore we introduce § = ¢/|q| and
g" = (1, £4). With these definitions, the fermion propa-
gator can be rewritten as

1
S(Q) =5 X Alio, 9Pyy,4t- (25)
s, ==

As can be seen from Eq. (25), the propagator consists of
two parts describing the modes with right- (s = +) and
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left-handed chirality (s = —). Because we took m = 0, the
opposite chiralities do not mix. The different values of ¢
correspond to particles (modes with positive energy,
t = +) and antiparticles (modes with negative energy, t =
—). In the following section we will use this expression for
the propagator to compute the retarded current-current
correlator.

IV. COMPUTATION OF RETARDED
CORRELATOR

We will compute the retarded correlator G (p), defined
in Eq. (12), using the imaginary time formahsm of thermal
field theory. The retarded correlator can be obtained from
the Euclidean correlator by analytic continuation in the
following way:

Gr(po, p) = Gi(@,, P iy, —py+ier (26)

where € = 07.

At very high temperatures, the gluons and quark masses
can be neglected to first approximation and the current-
current correlator is a convolution of two bare massless
fermion propagators S(Q) (see, e.g., Ref. [38] for the
correct expression). Using Eq. (12), we find

2 3
Gi(P) =353 [ -ty Sy'se + 01

27)

With use of Eq. (25) and the properties of the chirality
projection operators, the integrand of Eq. (27) can now be
written as

Y etuly, Yy, ¥y PIA e, q)

s,Lu==

X Ai@, + i, p + Q3 (p T @)t (28)

It can be seen from the last equation that the opposite
chiralities (s = =) do not mix. As long as m = 0, the
chiral magnetic conductivity is a sum of a contribution
from purely right-handed modes and purely left-handed
modes.

We can now use that tr[y#y?’yPy7y ] = —4ietre
where €777 is the complete antisymmetric tensor with
€123 = 1. Then it follows that

e*tuly, Yoy, ¥y latb” = 8i(a'b® — ab').  (29)
As a result, we obtain

Ge(P) = Z[(Zw)3s,M . [ gﬁ,_“p; qj]

Ptq

XAfidy, @A, (id; + iw,, p + q). (30)

We can now perform the sum over Matsubara frequencies.
Using that w, = 2n#T is a bosonic Matsubara frequency
one finds
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1
= Alidy, @A, (id; + iw, p +q)

B4
_ tﬁ(Eq - tlu's) - uﬁ(Ep+q - u/*l“s) + %(” - t) G1)
i(l)n + tE(j - MEP+ ’
where 7i(x) = [exp(Bx) + 1]7! is the Fermi-Dirac distri-

bution function. We can now perform the analytic continu-
ation in order to obtain the retarded correlator Gi(p),
which amounts to replacing iw, by pg + i€ in Eq. (31).

We obtain
Pq q P+ g
2y ZS[tE_ “E ]

s,Lu== q rPtq

% tﬁ(Eq - tlu’s) - uﬁ(Ep+q - ulu’s) + %(” - t)
po + i€ +1E, —uk,., ’

Gr(p )——

(32)

Before we compute the integral over ¢, let us try to
interpret Eq. (32). The retarded correlator Gk(p) has a
real part when py = uk, ., — tE,. From Eq. (15) it can
be seen that in that case the chiral magnetic conductivity
acquires an imaginary part. When py = ukE,,, — tE,, the
virtual particles in the loop of the photon polarization
tensor go on the mass shell, which by the optical theorem
corresponds to production or scattering of real particles in
the electromagnetic field.

If u = —1 this implies that particle-antiparticle pairs are
produced from the electromagnetic field that oscillates
with frequency p,. If t = u, particles (v = t = 1) or anti-
particles (u = t = —1) scatter from the electromagnetic
field and acquire or lose some momentum and energy. Let
us take a closer look at the pair-production process.

If pg > 0, the produced particles and antiparticles have
energies E,,, (u = 1) and E, (t = —1), respectively. If
the system we consider consists mainly of particles, w, is
positive. At zero temperature all particle states up to the
Fermi energy u, are filled, so then it is impossible to
produce particles with energy per particle less than g
due to Pauli blocking. This is reflected in the Fermi-
Dirac distributions in the integrand of Eq. (32), for u =

= —1, uy, >0, and T =0, the integrand vanishes if
E,ig <p, If E, ;> pg there is no Pauli blocking, in
that case £, > u, — p. Hence at T = 0, Gk(p) develops a
real part and particle-antiparticle pairs with chirality s can
be produced if py>2u, — p. If both E, ., and E, are
larger than u, the produced pair does not feel the influence
of the nonzero chirality, so then the imaginary part of the
chiral magnetic conductivity should vanish as well. In that
case, E, < u, so that E,,, < u, + p which gives p, <
2u + p. So concluding, we expect the chiral magnetic
conductivity to have an imaginary part for 2u, — p <
Po <2u, + p due to pair production.

Now let us continue the calculation of G &(p). The last
term in the integrand of Eq. (32) vanishes after summing
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over chiralities (s). It then follows that the function G} (p)
is ultraviolet finite because the high-momentum part of the
integrand is exponentially suppressed by the Fermi-Dirac
distribution functions. We can therefore shift and reflect
the integration variable as follows: ¢ — —¢ — p in order to
make both Fermi-Dirac distribution functions dependent
on E,. Then after interchanging 7 with u and inversions t —
—t and u — —u, we arrive at

&g q P+
Gi(p) = s[t— +u ]
K 2 2 )3 st,uz=t E, Epiq
i(E, — w,) — A(E, +
% n( q Ms) n( q MS) (33)
po tie +tE, +uk,,,
Here we used that since t = =,
t[ﬁ(Eq - tMS) - ﬁ(Eq + tlu’s)]
We can now perform the sum over u, which gives us
citr =i [ 20 5 1220 - ]
¢ 2 )3 2
i(E, — ) — A(E, +
a( ii( MS)' 35)

(po + i€ + tE )~ Ey,

Now it is possible to perform the angular integral. We use
the fact that the integral has to be proportional to p’. Hence
we can replace g’ by (q - p)p'/p*. We find after integrating
over angles

' ie2 pip?—p2 [
Gi — Ll 0[ d 2g +t
R(P) =1 Pl i Qf(Q),:Zi( q + tpo)
+ie +tq)* — (g + p)?
% 1o [(Po ie tq)2 (q p)z], (36)
(po + i€ +tq)* — (¢ — p)
where

flg) = _Z sliilg — ) — iilg + u)l (37

We now have all results in order to obtain the chiral
magnetic conductivity which follows from combining
Eq. (36) with Eq. (15). We will discuss the result in the
next section.

V. COMPUTATION OF CHIRAL MAGNETIC
CONDUCTIVITY

We will discuss the leading order contribution to the
chiral magnetic conductivity as a function of frequency and
momentum. The zero frequency and momentum value is
constrained by the axial anomaly, so loop corrections by
gluons and/or photons will not alter this result [22].
However, loop corrections will change the conductivity
at nonzero frequencies.

PHYSICAL REVIEW D 80, 034028 (2009)

In an electromagnetic (EM) plasma, the leading order
result is a sensible approximation since loop effects are of
order agy which is small. The results for an electromag-
netic plasma are only reliable if the temperature is larger
than the mass of the electron, since we have assumed
massless particles. In a quark gluon plasma loop correc-
tions are only negligible at very high temperatures due to
asymptotic freedom. Hence one should keep in mind that
the leading order result is in QCD only a valid approxima-
tion at high temperatures.

A. Zero frequency limit

Let us first rederive the zero frequency, zero momentum
limit of the chiral magnetic conductivity. Since

+ie+1tq?—(qg+p?] 2
lim lim 3 10g[(po ie q)2 (q p)z] _2
r—0p—0 &2 “L(py + i€ +1q)* — (q — p) q
(38)
it immediately follows from Eq. (36) that
limGi(po = 0, p) = i D (39)

As a result we recover the known zero frequency result of
the chiral magnetic conductivity for homogeneous mag-
netic fields (p — 0),

2
e
O'OEUX(CU=0)=WM5- (40)

The zero frequency limit is independent of w and 7'. Since
this value is constrained by the axial anomaly, loop cor-
rections by gluons and/or photons will not alter this result
[22].

B. Imaginary part

To obtain the imaginary part of the chiral magnetic
conductivity we need to compute the imaginary part of
the logarithm in Eq. (36). This is a sum of step functions
times 77. We find using that g = 0 and p = |p| = 0,

(po +ie+19)* — (g + p)z]
(po + i€ + 19)* — (g — p)*

= 729 — |pol0(p§ — p)N6(q+ — q) — 0(g- — q)]
+ 7pob(p* — pp)lolg — q+) + 0(g — q-)], (41)

Im Z (2g + tpy) log[
==

where g. = |py = pl.

To compute the imaginary part of the chiral magnetic
conductivity we furthermore need the to perform the fol-
lowing two indefinite integrals:
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[ dqf(q) =T Y stlog[l + elatm)/T]

s, t==*

[dqqf(q) D st{qTlog[1 + elatr)/T] (42)

s, =+

+ T2Liy[—elat /Ty,

where Liy(z) = ¥, z¥/k* denotes a polylogarithm of
second order. We now find for the imaginary part of the
chiral magnetic conductivity at nonzero frequency and
momentum

2

e p —po
ox(p) = 167 p° {89(17 — P3)Poks
+T Y st{2rTLiy[—eletim)/T]
s,r==x

p?) + ro(p* — p})l

X log[1 + e<qr+w/T]}}.

+ plsgn(po)8(p§ —

(43)

In the limit of homogeneous magnetic fields (p — 0),
the imaginary part of the chiral magnetic conductivity
becomes

2
e
) =+ wd(w)us

ol [ d
+ st| —ii(g + t,us)] .44
967 s,; dq g=lwl/2

The derivative with respect to the Fermi-Dirac distribution
shows that for small temperatures only states near the
Fermi-surface contribute to the chiral magnetic
conductivity.

At zero temperature, the imaginary part of the leading
order chiral magnetic conductivity becomes

2 2

967

o) = —w5(w)M5 D std(w/2+ 1py).

s,1==x

(45)

The last equation shows that in the limit of p — O the
leading order contribution to the chiral magnetic conduc-
tivity develops resonances at @ = *2u . As argued in the
previous section, these resonances can be attributed to
particle-antiparticle pair production in the time-dependent
electromagnetic field.

For large temperatures (7" > us), we can approximate
Eq. (44) by

colo| _
244 T2
% [eIwI/T — lol/@n)]y,

oh(w) = wé(w)us i(lwl/2)?

(46)

The imaginary part at large temperatures has a maximum
at w/T = 5.406 with the value ¢” = 0.394 0.
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C. Real part

At zero temperature we can now recover the real part of
the chiral magnetic conductivity by applying the Kramers-
Kronig relation, Eq. (20). We find

2

a’f\,(a) =0) = W#S’ (47)

o #0) = P (48)
o,\w = —F —_— 5.
o 3772 s=i4 - (a)/lu’s)2

For finite temperatures we were unfortunately not able to
obtain an analytic expression for the real part.

The delta function of the imaginary part at @ = 0 only
contributes to 2/3 of the real part at @ = 0. The other 1/3
part comes from the pair-production processes. This con-
clusion holds for any temperature. This is because both the
real [see, Eq. (40)] and imaginary part [Eq. (44)] at @ = 0
are independent of temperature. From the Kramers-Kronig
relation it follows that for any nonzero frequency the
imaginary part at @ = 0 does not contribute to the real
part at @ # 0. Therefore for any temperature the real part
of the chiral magnetic conductivity drops from o at w =
0 to a/3 just away from w = 0.

D. Discussion

We display the real and imaginary part for 7 = 0, p =
0.1us,and u = 0in Fig. 1. As was argued at the end of the
previous subsection, it can be seen in this figure that the
real part of the chiral magnetic conductivity drops from o

8 !

=

-8 I I !
0 1 2 3 4 5!

w/ s

FIG. 1 (color online). Real (red, solid) and imaginary (blue,
dashed) part of the leading order chiral magnetic conductivity as
a function of frequency, at T = O and & = O for p = 0.1us. The
result is normalized to the zero frequency conductivity oy, =
e s/ (27).
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at w = 0 to gy/3 just away from @ = 0. Also the reso-
nance at w = 2us is clearly visible. The width of the
imaginary part at the resonance is equal to 2p. The real
part of the conductivity becomes negative above the reso-
nance frequency. This is a typical resonance behavior and
implies that when the imaginary part vanishes the response
is 180 degrees out of phase with the applied magnetic field.

In Fig. 2 we display the real and imaginary part for 7 =
0, p =0.1us, and w = 1.5us. In this case there are reso-
nances at w = Sus and @ = ws. Equation (45) shows that
the imaginary part is proportional to w?, therefore the
second resonance at w = Sus is much stronger than the
first one at w = wus. Because the second resonance is due
to the right-handed modes, and the first one due to left-
handed modes, the contribution of the second resonance
has opposite sign to the first resonance.

The real and imaginary part of the chiral magnetic
conductivity at high temperatures (7" > us) are displayed
in Fig. 3. This figure is the most relevant for QCD at very
high temperatures, since then loop corrections will be
small. As argued in the previous subsection, it can be
seen in the figure that the real part of the conductivity
drops from o, at @ = 0 to o)/3 just away from w = 0.

Let us now study the induced current in a magnetic field
of the form created during heavy ion collisions. For sim-
plicity we approximate the two colliding nuclei by point-
like particles like in Ref. [19]. This gives a reasonable
approximation to the more accurate methods discussed in
Refs. [17,18] and is most reliable for large impact parame-
ters. The magnetic field at the center of the collision can

4

w/ s

FIG. 2 (color online). Real (red, solid) and imaginary (blue,
dashed) part of the leading order normalized chiral magnetic
conductivity as a function of frequency, at T =0, u = 1.5us,
and p = 0.1us. The result is normalized to the zero frequency
conductivity oy = e?us/(272).
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1 .

w/T

FIG. 3 (color online). Real (red, solid) and imaginary (blue,
dashed) part of the leading order normalized chiral magnetic
conductivity at high temperatures (7 > us) for homogeneous
magnetic fields (p = 0). At w = 0, the normalized conductivity
is equal to 1.

then be written as

1
Tl W

with 7 = b/(2sinhY) and eB, = 8Zagy, sinhY /b*. Here b
denotes the impact parameter, Z the charge of the nucleus,
and Y the beam rapidity. For Gold-Gold (Z = 79) colli-
sions at 100 GeV per nucleon, one has ¥ = 5.36. At typical
large impact parameters (say » = 10 fm) one finds eB, ~
1.9 X 10° MeV? and 7 = 0.05 fm/c. For 31 GeV per
nucleon (Y = 4.19) Gold-Gold collisions, one finds at b =
10 fm, eBy ~ 5.9 X 10* MeV? and 7 = 0.15 fm/c. The
Fourier transform of Eq. (49) equals

B(1) (49)

B(w) = 27%|w|K,(7|])B,, (50)

where K,(z) denotes the first-order modified Bessel func-
tion of the second kind.

For illustration purposes, we will assume that our mag-
netic field is (unlike in heavy ion collisions) homogeneous.
The induced current can be found by applying Eq. (19). We
display the induced current in the magnetic field of Eq. (49)
in a system with nonzero chirality at very high tempera-
tures in Fig. 4. The induced current is plotted as a function
of time for three different characteristic time scales 7 of the
magnetic field.

In any general decaying magnetic field, the only relevant
frequencies are the ones which are smaller than the inverse
lifetime of the magnetic field, ® < O(1/7). In Fig. 3 it can
be seen that even in the noninteracting case there still is
sizable response at high temperatures as long as 7=
1/(5T). Hence even for such fast changing fields there
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0.4 . T T

FIG. 4 (color online).

Induced current in time-dependent mag-
netic field, Eq. (49), as a function of time, at very high tempera-
ture. The results are plotted for different values of the
characteristic time scale 7 of the magnetic field.

will really be an induced current, although it will be about
1/3 of the adiabatic approximation which is j(¢) = o,B(r).
This can be more clearly seen in Fig. 4. The red solid line
describes a relatively slowly varying field with 7 = 1/T, in
that case indeed j(r) ~ oyB(t)/3. The red solid line can
therefore also be seen as a guide to eye of the time
dependence of the magnetic field. Realizing this, in a fast
changing magnetic field with 7 = 0.1/T it clearly takes
some time for the current to respond. The maximal current
will be smaller, but it takes also more time for the current to
diminish after the magnetic field has gone away. At late
times, the current can even become negative. The situation
in which 7=0.1/T approximately corresponds to
100 GeV per nucleon Gold-Gold collisions at b = 10 fm.
Thermal fluctuations will increase in magnitude when
the temperature is increased. These fluctuations can cause
the spins of the particles to align along the magnetic field.
Hence one would expect that when keeping 7 fixed and
increasing the temperature, the system will respond faster
to the changing magnetic field. This can be seen in Fig. 4,
by increasing the temperature at fixed 7 one goes from the
dotted to the solid line, which indicates faster response.
The discussion will alter when loop corrections due to
interactions are taken into account. In that case the quasi-
particles obtain a thermal width I" which is of order aT.
Because of the thermal broadening, we expect that the peak
in the chiral magnetic conductivity (Fig. 3) at w = 0 will
get a width of order I'. At the same time the value at w = 0
will not change since it is constrained by the anomaly. As
long as 7 = O(1/T), the zero frequency result will there-
fore be a reasonable estimate and the induced current will
be more or less equal to the adiabatic approximation j(r) ~
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ooB(17). Hence the stronger the system interacts at fixed ws
and T, the stronger the response at small frequencies.
Qualitatively one would expect such behavior, because
the stronger a particle interacts the faster the particle aligns
its spin and hence momentum along the field.

Let us finally discuss how much charge is separated by
the current. Let us divide our infinite system into an upper
half (#) and a lower half (/), and set the boundary to be the
plane z = 0. Using the fact that the current is conserved
d,J* = 0, one finds that the change in charge in the upper
hemisphere per unit of time equals

—dthu = — / d*xV - j = fdzsz(z =0,1). (51)
By integrating this equation over time and using Eq. (19),
we find that the change in charge in the upper hemisphere
AQ, equals

AQ, = A f Y dtj() = goAB(w = 0),  (52)

where A is the area of the plane z = 0. Because of global
charge conservation, the charge change in the lower hemi-
sphere is equal to AQ; = —AQ,. In Eq. (52) we find the
surprising result that as long as linear response is valid and
the chirality is constant, the total induced charge difference
between upper and lower hemisphere is independent of
detailed dynamics and is just determined by the zero
frequency chiral magnetic conductivity . In the mag-
netic field of Eq. (49) we obtain for the induced charge
difference between the upper and lower hemisphere

AQ =AQ, — AQ, = 40(ATB,. (53)

VI. CONCLUSIONS

In a quark gluon plasma it is possible to generate non-
zero chirality by gluon configurations with nonzero topo-
logical charge. In the presence of a magnetic field, nonzero
chirality leads to a current along the field. This is the chiral
magnetic effect which can potentially give rise to observ-
able effects in heavy ion collisions. Since the magnetic
field in heavy ion collisions is rapidly decreasing as a
function of time, it is desirable to study the chiral magnetic
effect in a time-dependent magnetic field. In this article, we
have shown for the first time that such study is possible in a
systematic way using linear response theory.

To obtain the induced current in a time-dependent mag-
netic field we have derived a general Kubo formula for the
chiral magnetic conductivity. We have shown that the
chiral magnetic conductivity is proportional to the anti-
symmetric part of the off diagonal photon polarization
tensor.

Since we have applied linear response theory, our results
are only valid for small magnetic fields. This means that
the magnetic fields should not alter the plasma dynamics
much, implying that the magnetic length 1/+/eB has to be

034028-8



CHIRAL MAGNETIC CONDUCTIVITY

larger than the (color) electric screening length ~1/gT.
Hence for reliable results, the magnetic field should satisfy
eB < g*T2.

We have computed the leading order chiral magnetic
conductivity for constant chirality using perturbation the-
ory. As such, our result is only applicable for QCD at high
temperatures where loop corrections can be neglected. We
have shown that pair production in the time-dependent
electromagnetic field gives rise to nontrivial behavior of
the chiral magnetic conductivity at nonzero frequencies.
Our result can be systematically improved by including
loop corrections, in a similar way to what has been done for
the electrical conductivity in, for example, Ref. [39].

The general formula for the chiral magnetic conductivity
we have obtained allows for the evaluation using other
methods. For example, as suggested in Ref. [40], one could
study the chiral magnetic effect in holographic models of
QCD. Also since w5 does not give rise to a sign problem
[22], one could in principle study the chiral magnetic
conductivity using lattice QCD (see, also, Ref. [23] for
another approach). However, because one has to perform
an analytic continuation in order to obtain the retarded
correlator, this is not completely straightforward to do.

The main message of this calculation is the finding that
even in the leading order the chiral magnetic conductivity
has sizable response at nonzero frequencies. This is a clear
proof that even a rapidly decaying magnetic can give rise to
a non-negligible current. By taking into account interac-
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tions, the quasiparticles will obtain a thermal width, which
as we argued will increase the response at small frequen-
cies but does not change the zero frequency result.

This calculation of the chiral magnetic conductivity is a
small step in order to improve our understanding of the
dynamics of the chiral magnetic effect. To apply our results
to heavy ion phenomenology, one has to take into account
also other dynamical effects like the time dependence of
the chirality, the radial flow, and possible screening mecha-
nisms. Also it would be interesting to study the effects of a
time-dependent magnetic field on other physical quantities
and effects, like, for example, the chiral condensate, the
chiral phase transition, and dynamical chiral symmetry
breaking. So far these have only been investigated in a
constant magnetic field [41-47].
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