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We present a calculation of the leading SU(3)-breaking Oðp3Þ corrections to the electromagnetic

moments and charge radius of the lowest-lying decuplet resonances in covariant chiral perturbation

theory. In particular, the magnetic dipole moment of the members of the decuplet is predicted fixing the

only low-energy constant (LEC) present up to this order with the well-measured magnetic dipole moment

of the ��. We predict �þþ
� ¼ 6:04ð13Þ and �þ

� ¼ 2:84ð2Þ, which agree well with the current experi-

mental information. For the electric quadrupole moment and the charge radius, we use state-of-the-art

lattice QCD results to determine the corresponding LECs, whereas for the magnetic octupole moment

there is no unknown LEC up to the order considered here, and we obtain a pure prediction. We compare

our results with those reported in large Nc, lattice QCD, heavy-baryon chiral perturbation theory, and

other models.

DOI: 10.1103/PhysRevD.80.034027 PACS numbers: 12.39.Fe

I. INTRODUCTION

The �ð1232Þ resonance is the lowest-lying excited state
of the nucleon and plays a very important role in the low-
energy baryon phenomenology. Unfortunately, its lifetime
�10�23 s, marked by the strong decay into pion nucleon, is
too short and therefore its properties are only indirectly
accessible in experiment. For instance, the electromagnetic
form factors have been probed and the magnetic dipole
moment (MDM) of the �þþ and of the �þ measured. In
the former case, the radiative pion-nucleon scattering
(�þp ���! �þp�) is analyzed although the results of the
different experiments [1–3] are not completely consistent.
This is the reason behind the large uncertainties of the
estimation quoted in the current Particle Data Group
(PDG) review, ��þþ ¼ 3:7� 7:5�N [4]. On the other
hand, the MDM of �þ has been recently extracted from
the radiative photoproduction of neutral pions (�p !
�0p�0) first proposed in Ref. [5], ��þ ¼ 2:7þ1:0

�1:3ðstatÞ �
1:5ðsystÞ � 3ðtheorÞ�N [6]. A new experiment with the
Crystal Ball detector at MAMI is expected to give soon
new results with improved statistics [7] and using theoreti-
cal extraction methods based either on a dynamical model
[8,9] or on chiral effective field theory [10,11]. Concerning
the SU(3)-multiplet partners of the �ð1232Þ resonances,
namely, the other members of the spin-3=2 lowest-lying
decuplet, only the MDM of the �� has been measured,
��� ¼ �2:02� 0:05�N [4].

The electromagnetic properties of the decuplet reso-
nances have been studied theoretically during the last
two decades, and information not only on MDMs but
also on other properties like the electric quadrupole mo-
ment (EQM), the magnetic octupole moment (MOM), or
on the charge radius (CR) and the q2 dependence of the
form factors, have arisen from many different frameworks.

Indeed, the electromagnetic structure of the decuplet bary-
ons has been studied within the nonrelativistic quark model
(NQM) [12,13], the relativistic quark model (RQM) [14],
the chiral quark model (�QM) [15,16], the chiral quark
soliton model (�QSM) [17,18], the spectator quark model
(SpQM) [19,20], the general parametrization method (GP)
[21,22], QCD sum rules (QCD-SR) [23–26], large Nc [27–
29], chiral perturbation theory (�PT) [10,11,30–34] and in
lattice QCD (lQCD) [35–42]. Lately, the lQCD calcula-
tions have experienced a remarkable progress that allows a
quantitative description of these properties from first
principles.
The �PT provides a model-independent and systematic

framework to study the nonperturbative regime of the
strong interactions [43–46]. The application of SU(3) fla-
vor �PT to the analysis of the electromagnetic properties
of the decuplet, either in its full [30,31] or quenched
versions [32,34], has been restrained to the heavy-baryon
chiral perturbation theory (HB�PT) approach [47].
Recently, we have applied a covariant formalism [48–51]
to successfully improve the classical Coleman-Glashow
description of the baryon-octet magnetic moments by in-
cluding the leading SU(3) breaking provided by the chiral
loops without [50] and with explicit decuplet-baryon con-
tributions [51]. This approach that includes both octet and
decuplet virtual contributions has also been used to predict,
up to Oðp4Þ, the vector hyperon decay charge f1ð0Þ [52],
which is essential to extract the Cabibbo-Kobayashi-
Maskawa matrix element Vus from the hyperon decay data.
The goal of the present paper is to use the covariant �PT

formalism to describe the leading SU(3) breaking (up to
Oðp3Þ) of the electromagnetic static properties of the dec-
uplet baryons, and more particularly, of the �ð1232Þ reso-
nances. In Sec. II, we display the chiral Lagrangians used
in this work, discuss the power-counting problems and
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solutions of the present covariant calculation and introduce
the electromagnetic form factors and moments of a
spin-3=2 particle. In Sec. III, we present the details of the
calculation and the results for the MDMs, the EQMs, the
MOMs, and the CRs. The latter can be numerically
achieved only after fixing the different low-energy con-
stants (LECs) appearing up to this order. The single LEC
that contributes to the MDMs will be fixed with the well-
measured ��� , whereas the ones that contribute to the
EQMs and to the CRs could be determined using lQCD
results for the�� at the physical point. Finally, there is no
exclusive contribution of any LEC to the decuplet MOMs,
and they come as a true prediction of �PT at Oðp3Þ.

II. FORMALISM

A. Chiral Lagrangians

The baryon decuplet consists of a SU(3)-flavor multiplet
of spin-3=2 resonances that we will represent with the
Rarita-Schwinger (RS) field T� � Tade

� with the following

associations: T111 ¼ �þþ, T112 ¼ �þ=
ffiffiffi
3

p
, T122 ¼

�0=
ffiffiffi
3

p
, T222 ¼ ��, T113 ¼ ��þ=

ffiffiffi
3

p
, T123 ¼ ��0=

ffiffiffi
6

p
,

T223 ¼ ���=
ffiffiffi
3

p
, T133 ¼ ��0=

ffiffiffi
3

p
, T233 ¼ ���=

ffiffiffi
3

p
, and

T333 ¼ ��. The covariantized free Lagrangian is

L D ¼ �Tabc
� ði����D� �MD�

��ÞTabc
� ; (1)

where MD is the decuplet-baryon mass and D�T
abc
� ¼

@�T
abc
� þ ð��; T�Þabc, �� being the chiral connection (see

e.g. Ref. [46]) and with the definition ðX; T�Þabc �
ðXÞadTdbc

� þ ðXÞbdTadc
� þ ðXÞcdTabd

� . In the last and following

Lagrangians we sum any repeated SU(3) index denoted by
Latin characters a; b; c; . . . , and ðXÞab denotes the element

of the row a and column b of the matrix representation of
X.

For the meson-octet-decuplet and meson-decuplet-
decuplet vertices we use the ‘‘consistent’’ lowest-order
couplings [49,53,54]

L ð1Þ
�BD ¼ iC

MDF�

"abcð@� �Tade
� Þ����Be

c@��
d
b þ H:c:; (2)

L ð1Þ
�DD ¼ iH

MDF�

�Tabc
� ����	�5ð@�Tabd

� Þ@	�c
d; (3)

with � and B the SU(3) matrix representation of the
pseudoscalar mesons and of the octet baryons, respectively,
and where C andH are the�BD and�DD couplings and
F� is the meson-decay constant. Up to third order there are

three terms that contribute to the observables studied in this
paper

L ð2Þ
�DD ¼ � gd

8MD

�Tabc
� 	�	g��ðFþ

�	; T�Þabc; (4)

L ð3Þ
�DD ¼ � gq

16M2
D

�Tabc
� ���	ðð@�Fþ

�	Þ; T�Þabc

� ger
12

�Tabc
� ���	ðð@�Fþ

�	Þ; T�Þabc; (5)

with Fþ
�� ¼ 2eQqF��, e the fundamental electric charge,

Qq the SU(3)-flavor quark-charge matrix, and F�� the

electromagnetic tensor. The LEC gd gives at Oðp2Þ the
SU(3)-symmetric description of the anomalous part of the
MDMs of the decuplet baryons, while the LECs gq and ger
appear at Oðp3Þ and describe a SU(3)-symmetric part of
the EQMs and CRs, respectively. Up to Oðp3Þ there is not
any unknown contact interaction (LEC) contributing ex-
clusively to the MOM and, therefore it comes as a predic-
tion from the chiral loops obtained in the present work.
Finally, it is worth to observe that working out the flavor-
index summations in Eqs. (4) and (5), we find that the
SU(3)-symmetric contribution to the observables is pro-
portional to the charge of the particular decuplet-baryon
(see e.g. Ref. [30]).
The �BD coupling is obtained by fitting the � ! N�

decay width [51], which yields C � 1:0. The �DD cou-
pling H is barely known, and we fix it using the large Nc

relation between the nucleon and � axial charges, gA and
HA, respectively, HA ¼ ð9=5ÞgA. Given that HA ¼ 2H
and gA ¼ 1:26, we use H ¼ 1:13. For the meson-decay
constants we take an average F� � 1:17f� with f� ¼
92:4 MeV. For the masses of the pseudoscalar mesons
we take m� � m�� ¼ 0:13957 GeV, mK � mK� ¼
0:49368 GeV, m
 ¼ 0:5475 GeV, while for the baryon

masses we use the average among the members of the
respective SU(3)-multiplets, MB ¼ 1:151 GeV and MD ¼
1:382 GeV.

B. Power counting

We apply the standard power counting where one as-
signs a chiral order n�PT ¼ 4L� 2NM � NB þP

kkVk to

a diagram with L loops, NM (NB) internal meson (octet-
and decuplet-baryon) propagators and Vk vertices from kth
order Lagrangians. In the covariant theory with the modi-

fied minimal subtraction method (MS), this rule is violated
by lower-order analytical pieces [45]. In order to recover
the power counting, we absorb into the LECs the terms
breaking the power counting that are obtained expanding
the loop functions around the chiral limit (all the SU(3)-
symmetric contribution of the loops) [51] in a dimensional-
regularization scheme known as the extended-on-mass-
shell prescription [48]. The regularized loops will then
start to contribute at the order assigned by the power
counting but will also include higher-order corrections
required by relativity and analyticity. We notice that only
for the MDMs a power-counting restoration procedure is
necessary since it is the only observable for which Oðp2Þ
analytical chiral pieces (LECs) are possible.
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Besides, the propagator corresponding to the RS action
in d dimensions

S��ðpÞ ¼ � p6 þMD

p2 �M2
D þ i�

�
g�� � 1

d� 1
����

� 1

ðd� 1ÞMD

ð��p� � ��p�Þ

� d� 2

ðd� 1ÞM2
D

p�p�

�
(6)

has a problematic high-energy behavior. In the context of
an effective field theory, this is responsible for the appear-
ance of d� 4 singularities of a chiral order higher than the
one naively expected using the power-counting rule ex-
plained above. These infinities would be absorbed by the
proper higher-order counterterms. However, we do not

include these terms explicitly but perform aMS subtraction
on them and study the uncertainty brought by the residual
regularization-scale dependence.

C. Spin-3=2 electromagnetic form factors

The structure of the spin-3=2 particles, as probed by
photons, is encoded into four electromagnetic form factors
[35]:

hTðp0ÞjJ�jTðpÞi¼� �u�ðp0Þ
��
F�
1ð�Þ��þi	��q�

2MD

F�
2ð�Þ

�
g�

þ
�
F�
3ð�Þ��þi	��q�

2MD

F�
4ð�Þ

�
q�q

4M2
D

�

�uðpÞ; (7)

where u� are the RS spinors and � ¼ �q2=ð4M2
DÞ. We can

define the electric monopole and quadrupole and the mag-
netic dipole and octupole form factors in terms of the F�

i ’s:

GE0ð�Þ ¼ ðF�
1ð�Þ � �F�

2ð�ÞÞ þ 2
3�GE2ð�Þ; (8)

GE2ð�Þ ¼ ðF�
1ð�Þ � �F�

2ð�ÞÞ � 1
2ð1þ �ÞðF�

3ð�Þ � �F�
4ð�ÞÞ;

(9)

GM1ð�Þ ¼ ðF�
1ð�Þ þ F�

2ð�ÞÞ þ 4
5�GM3ð�Þ; (10)

GM3ð�Þ ¼ ðF�
1ð�Þ þ F�

2ð�ÞÞ � 1
2ð1þ �ÞðF�

3ð�Þ þ F�
4ð�ÞÞ:

(11)

At q2 ¼ 0, the multipole form factors define the static
electromagnetic moments, namely, the charge Q, the mag-
netic dipole moment �, the electric quadrupole moment
Q, and the magnetic octupole moment O

Q ¼ eGE0ð0Þ ¼ eF�
1ð0Þ; (12)

� ¼ e

2MD

GM1ð0Þ ¼ e

2MD

ðQþ F�
2ð0ÞÞ; (13)

Q ¼ e

M2
D

GE2ð0Þ ¼ e

M2
D

�
Q� 1

2
F�
3ð0Þ

�
; (14)

O ¼ e

2M3
D

GM3ð0Þ ¼ e

2M3
D

�
GM1ð0Þ � 1

2
ðF�

3ð0Þ þ F�
4ð0ÞÞ

�
:

(15)
The electromagnetic multipole moments of the spin-3=2

resonances are connected with their spatial electromag-
netic distributions and, therefore, with their internal struc-
ture. Particularly, the EQM and MOM measure the
departure from a spherical shape of the charge and from
a dipole magnetic distribution, respectively.
Besides the static electromagnetic moments, the slope of

the form factors at q2 ¼ 0 is also of phenomenological
interest. In particular, the one corresponding to GE0 is the
so-called squared CR

hr2E0i ¼ 6
dGE0ðq2Þ

dq2

								q2¼0

¼ 6
dF�

1ðq2Þ
dq2

								q2¼0
þ 3

2M2
D

F�
2ð0Þ �

1

M2
D

GE2ð0Þ:
(16)

III. RESULTS

The Feynman diagrams that give contribution to decup-
let electromagnetic form factors are shown in Fig. 1. The
loop contributions to any of the four form factors for a
particular decuplet baryon D, �F�

j;Dð�Þ with j ¼ 1; . . . ; 4

can be expressed as

�F�
j;Dð�Þ ¼

1

ð4�F�Þ2
X

M¼�;K

�ðbÞ
DMðHðbÞ

j ð�;mMÞ þHðcÞ
j ð�;mMÞÞ þ M2

D

ð4�F�Þ2
�
C2
� X
M¼�;K

�ðdÞ
DMH

ðdÞ
j ð�;mMÞ

þ X
M¼�;K;


�ðeÞ
DMðHðeÞ

j ð�;mMÞ þHðf;IIÞ
j ð�;mMÞÞ

�
þH 2

� X
M¼�;K

�ðgÞ
DMðHðgÞ

j ð�;mMÞ �Hði;IÞ
j ð�;mMÞÞ

þ X
M¼�;K;


�ðhÞ
DMðHðhÞ

j ð�;mMÞ þHði;IIÞ
j ð�;mMÞÞ

��
; (17)

with HðXÞ
j ð�;mMÞ the loop function coming from the diagram ðXÞ and where the additional character that appears in the

function of the diagrams (f) and (i) indicates whether the seagull diagram comes from the minimal substitution performed
on the derivative of the meson fields (I) or of the decuplet fields (II). The loop functions for j ¼ 2; 3; 4 at q2 ¼ 0, and the
first derivative with respect to q2 of the one for j ¼ 1 at q2 ¼ 0 are given in the Appendix. The coefficients �ðXÞ

DM are listed
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in Table VIII. All this information together with Eq. (17), is
what is required for obtaining, through the
Eqs. (9)–(16), the loop results of the observables discussed
in the present work. The contact interactions, diagrams (a)
in Fig. 1, provide the SU(3)-symmetric contribution and
ensure the regularization of the divergencies coming from
the loops up toOðp3Þ. As explained above, they also allow
to recover the power counting by applying a suitable
regularization prescription.

We have done some checks on the calculation of the
loops of Fig. 1. The first one concerns the electromagnetic-
gauge invariance as well as the completeness of the
Lorentz decomposition of Eq. (7). Besides the structures
collected there, one also obtains contributions to g��q

and g�q� and to the electromagnetic-gauge violating
ones, g�q� and q�qq�. In order to fit the results of
the loops into the representation (7) we have used that [35]

g�q� ¼ g��q þ 2MDð1þ �Þg��� � g�P�

þ 1

MD

��q�q; (18)

where P� ¼ p� þ p0� and obtained that the resulting
coefficients of g��q, g�q�, and q�qq� are identically
zero. On top of that, we have tested the electromagnetic-
gauge invariance by checking that the loop contributions to
the electric charge vanish after including the wave-function
renormalization�0

D. Indeed, for each decuplet baryonD of
electric charge QD, we get �F

�
1;Dð0Þ þQD�

0
D ¼ 0.

We have obtained that the following relations, which are
a consequence of the assumed isospin symmetry, are full-
filed for any of the observables X studied in this work:

X�þþ �X�þ �X�0 þX�� ¼ 0;

X�þþ �X�� � 3ðX�þ �X�0Þ ¼ 0;

2X��0 ¼ X��þ þX��� : (19)

Furthermore, among the SU(3)-flavor relations discussed
in Ref. [31] only two

X �0 þX��0 ¼ 0; (20)

X ��0 ¼ 0 (21)

still hold when the higher-order relativistic corrections are
incorporated. Equations (19)–(21) mean that only the form
factors of five of the ten decuplet resonances are really
independent inOðp3Þ covariant �PT. For theOðp3Þ heavy-
baryon expansion, only two of them are independent [31].
The numerical results that we present in the following

are obtained fixing the renormalization scale at � ¼
1 GeV and using the values for the different masses and
couplings displayed above. In the presented results, we
also include an uncertainty estimated varying the renor-
malization scale and the mean baryon mass (keeping the
mass splitting MD �MB ¼ 0:231 GeV fixed) in the inter-
vals 0:7 GeV � � � 1:3 GeV and 1 GeV � MB �
1:3 GeV.

A. Magnetic dipole moments

The MDMs are the only observable discussed in this
work for which there exist experimental data. More pre-
cisely, the MDM of the �þþ, the �þ, and the �� have
been measured. In order to obtain the MDMs of the differ-
ent members of the decuplet in covariant �PT, we calculate
the contributions to F�

2ð0Þ of the diagrams listed in Fig. 1

(d) (e)

+

(f)

(g) (h)

+

(i)

(b) (c)(a)

+

FIG. 1. Feynman diagrams that contribute up to Oðp3Þ to the decuplet electromagnetic form factors. The external double solid lines
correspond to decuplet baryons, whereas the internal single (double) solid lines correspond to octet (decuplet) baryons. The dashed
lines represent mesons. Black circles, black squares, and black diamonds represent first-, second- and third-order couplings,
respectively.
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and use Eq. (13). Since we have a contact-term contribu-
tion at Oðp2Þ through the LEC gd, whereas the loops start
to contribute at Oðp3Þ, we apply the power-counting res-
toration prescription explained in Sec. II B. After removing

the Oðp2Þ ultraviolet divergences by the MS procedure,
this is equivalent to redefine gd as

ĝ d ¼ gd þ C2M2
D

ð4�F�Þ2
f1dð�Þ þ H 2M2

D

ð4�F�Þ2
f2dð�Þ; (22)

where the definition of the functions fidð�Þ can be found in
the Appendix. From the renormalized loop functions ĤðXÞ
we can then obtain the heavy-baryon expressions applying
that MD ¼ MB þ � and MB ���SM in what nowadays is

called the small-scale expansion (SSE) [55]. Only the
diagrams (d) and (g) contribute up to Oðp3Þ

ĤðdÞðmÞ’ ��rlog

�
�2

m

4 ��2

�

þ

8>>><
>>>:
2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m� ��2
q

ð�2þarctanð ��ffiffiffiffiffiffiffiffiffiffiffiffi
�2

m� ��2
p ÞÞ m	�

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2��2

m

q
ð�2�iþ logð ��þ

ffiffiffiffiffiffiffiffiffiffiffiffi
��2��2

m

p
���

ffiffiffiffiffiffiffiffiffiffiffiffi
��2��2

m

p ÞÞ m<�

;

(23)

Ĥ ðgÞðmÞ ’ 2r��m

3
; (24)

where r ¼ MB=MD, �� ¼ �=MD, and �m ¼ m=MD. These
loop functions are equal to the ones found in [31] and, with

the coefficients �ðXÞ
DM of Table VIII, they lead to the HB�PT

results given in Table I.1 Since the only precise experimen-
tal value on the decuplet MDMs is used to determine the
unknown LEC ĝd, it is not really possible to directly
compare the quality of the HB�PT and covariant �PT
results confronted to experimental data. Nonetheless, we
can compare the convergence properties of both schemes.
In Table I we list the results for the MDMs of �þþ, �þ,
��þ, ��� and �� after fitting the value of ĝd to obtain
��� ¼ �2:02ð5Þ. The results for the rest of the members
of the decuplet can be obtained using Eqs. (19)–(21). For
the MDM of any of the baryons we show the results either
in HB�PT or covariant �PT separated into the Oðp2Þ tree
level (TL) contribution, theOðp3Þ chiral correction coming

from internal octet-baryons (O) and the Oðp3Þ chiral cor-
rection coming from internal decuplet baryons (D).
For any of the five baryons displayed in Table I, we

observe that the heavy-baryon loop contributions are larger
than the covariant ones. The main difference arises from
the loops with internal octet baryons for which HB�PT
gives more than 2 times the covariant approach for most of
the channels. The chiral corrections with internal decuplet-
baryons in the two schemes are rather more similar, with
the HB�PT-SSE ones about 50% larger than those ob-
tained in the covariant calculation. Particularly for the
�þþ, we find that the heavy-baryon prediction ��þþ ¼
7:94�N is bigger than the upper bound provided by the
PDG, ��þþ � 7:5�N [4]. These comparisons suggest that
the heavy-baryon expansion probably overestimates the
size of the chiral corrections to the MDMs of the decuplet
resonances as it occurred for the case of the baryon-octet
magnetic moments [50,51]. The comparison with the
heavy-baryon study of Ref. [30] is not straightforward
since in the latter the physical baryon masses as well as
the physical meson-decay constants are used, which ac-
counts for higher-order SU(3)-breaking mechanisms not
included in the present work. The strict third-order
HB�PT-SSE results are the ones presented in Table I.
In Table II we compare the results obtained in the

covariant �PT approach of the present work for the
MDMs of all the decuplet baryons with the ones obtained
in NQM [12], RQM [14], �QM [16], �QSM [18], QCD-
SR [23], (extrapolated2) quenched lQCD [36,38], large Nc

[27], and the HB�PT calculation of Ref. [30]. We also list
the experimental values as averaged by the PDG [4]. In
general, our results are consistent with the central value of
the experimental numbers for ��þþ and ��þ . Moreover,
for the former we do agree very satisfactorily with the
latest experiment, ��þþ ¼ 6:14� 0:51 [3]. The covariant
�PT results are also consistent with those obtained in other
approaches, although they tend to be larger for all chan-
nels. Interestingly, they are very similar to the ones ob-
tained in the large Nc expansion of Ref. [27] and also to
those reported in the NQM [12]. It is worth to remark that
the small error bars assigned to our results in Table II
indicate a small sensitivity to the chosen values of MB,
MD, and �. They do not account, however, for other
systematic uncertainties as those coming from unknown
higher-order contributions. Given the ratios between the
next-to-leading-order (NLO) and the leading-order shown
in Table I and assuming a good convergence of the chiral
series in the MDMs, one may expect these uncertainties to
be, at least, of �30% of the NLO contributions.

1We have found discrepancies among the relative signs and
absolute factors of the dynamical-octet and -decuplet diagrams
reported in previous works [30,31,34,37]. Besides, the loop
function coming from (d) in Fig. 1 is multivalued, and we
have noticed that the form presented in Refs. [30,34] does not
univocally give the physical branches. These are specified in Eq.
(23). Notice that the loop functions develop an imaginary part for
m< �, although in the present work we only discuss the real
part.

2It must be pointed out that the chiral extrapolations in
Refs. [36,38] have been performed without taking into account
the nontrivial analytical structure across the point m ¼ MD �
MN [10,37] and the artifacts introduced by the quenched ap-
proximation at such values of m (see for instance [42]).
Therefore, their results should be compared with some care.
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The present work is also to be compared with studies
focused on the MDM of the �ð1232Þ resonance. We find
again that the values predicted in covariant �PT are larger
than those found in lQCD (��þ ¼ 2:32ð16Þ�N [39],
��þ ¼ 2:49ð27Þ�N [37]), in the SpQM (��þ ¼ 2:51�N

[19]), and with light-cone QCD-SRs (��þ ¼ 2:2ð4Þ�N

[24]).

B. Electric quadrupole moments

Although so far there is no experimental information on
the EQMs of the decuplet, they have motivated several
theoretical studies in the past. Their interest lie in that they
provide information on the deviation from a spherical
shape of the charge distribution and, consequently, on the
internal structure of the spin-3=2 resonances. To obtain the
covariant �PT results for the EQMs it is required to
determine the unknown LEC gq and use Eq. (14) after

evaluating the loop contributions given by the diagrams of
Fig. 1. The LEC gq could be fixed with an eventual

experimental value of the EQM of one of the members of
the decuplet baryons, most likely the one of the �� (for
proposed experimental methods to measure it we refer to
Ref. [21] and references therein). An alternative source of
information could come from lQCD since the properties of
the �� can be obtained at the physical point and, con-
sequently, a full-dynamical lQCD (unquenched) calcula-

tion of its electromagnetic properties could be reached in
the near future. Once this value is used to determine gq,

�PT provides a prediction on the EQMs of the rest of the
decuplet baryons and, in particular, of the �ð1232Þ.
Therefore, it is particularly interesting to express the
�PT results of the EQMs for the decuplet in terms of the
EQM of the ��. This can be done by just redefining gq

ĝ q ¼ gq þ �Q�� ; (25)

where �Q�� is the loop contribution to the EQM of the
��, and ĝq would then mean the physical Q�� .

In Table III we list the results obtained for the EQMs of
the decuplet in relativistic �PT up to Oðp3Þ. They consist
of the SU(3)-symmetric part depending on the value Q��

that we encourage to fix in the future using either experi-
ment or unquenched lQCD, in addition to the leading
relativistic loop contributions. If in a first approximation
we use the recent quenched lQCD result Q�� ¼
0:86ð12Þ10�2 fm2 [42] to fix gq, we obtain the results

displayed in Table IV compared with those obtained in
NQM [13], �QM [16], QCD-SR [25,26], andHB�PT [30].
We observe that with this value of Q�� , the loop contri-
butions are quite large and the EQMs of the decuplet
baryons are dominated by the chiral SU(3)-breaking
corrections.

TABLE II. Values in nuclear magnetons (�N) of the decuplet magnetic dipole moments in relativistic chiral perturbation theory up
to Oðp3Þ calculated in this work. We compare our results with the SU(3)-symmetric description and with those obtained in other
theoretical approaches including the NQM [12], the RQM [14], the �QM [16], the �QSM [18], the QCD-SR [23], (extrapolated)
lQCD [36,38], large Nc [27], and the HB�PT calculation of Ref. [30]. The experimental values for Ref. [4] are also included.

�þþ �þ �0 �� ��þ ��0 ��� ��0 ��� ��

SU(3)-symm. 4.04 2.02 0 �2:02 2.02 0 �2:02 0 �2:02 �2:02

NQM [12] 5.56 2.73 �0:09 �2:92 3.09 0.27 �2:56 0.63 �2:2 �1:84

RQM [14] 4.76 2.38 0 �2:38 1.82 �0:27 �2:36 �0:60 �2:41 �2:35

�QM [16] 6.93 3.47 0 �3:47 4.12 0.53 �3:06 1.10 �2:61 �2:13

�QSM [18] 4.85 2.35 �0:14 �2:63 2.47 �0:02 �2:52 0.09 �2:40 �2:29

QCD-SR [23] 4.1(1.3) 2.07(65) 0 �2:07ð65Þ 2.13(82) �0:32ð15Þ �1:66ð73Þ �0:69ð29Þ �1:51ð52Þ �1:49ð45Þ
lQCD [36] 6.09(88) 3.05(44) 0 �3:05ð44Þ 3.16(40) 0.329(67) �2:50ð29Þ 0.58(10) �2:08ð24Þ �1:73ð22Þ
lQCD [38] 5.24(18) 0.97(8) �0:035ð2Þ �2:98ð19Þ 1.27(6) 0.33(5) �1:88ð4Þ 0.16(4) �0:62ð1Þ -

large Nc [27] 5.9(4) 2.9(2) - �2:9ð2Þ 3.3(2) 0.3(1) �2:8ð3Þ 0.65(20) �2:30ð15Þ �1:94

HB�PT [30] 4.0(4) 2.1(2) �0:17ð4Þ �2:25ð19) 2.0(2) �0:07ð2) �2:2ð2Þ 0.10(4) �2:0ð2Þ �1:94

This work 6.04(13) 2.84(2) �0:36ð9Þ �3:56ð20Þ 3.07(12) 0 �3:07ð12Þ 0.36(9) �2:56ð6Þ �2:02

Expt. [4] 5:6� 1:9 2:7þ1:0
�1:3 � 1:5� 3 - - - - - - - �2:02� 0:05

TABLE I. Values in nuclear magnetons (�N) of the different contributions to the magnetic dipole moments of �þþ, �þ, ��þ, ���,
and �� after fitting the value of ĝd to obtain ��� ¼ �2:02ð5Þ. For the MDM of each baryon we show the results either in heavy
baryon or covariant �PT separated into the Oðp2Þ TL contribution, the Oðp3Þ chiral loop contributions coming from internal octet
baryons (O) and the Oðp3Þ chiral loop contributions coming from internal decuplet baryons (D). We also list the fitted value of ĝd.

�þþ �þ ��þ ��� ��
ĝd TL O D TL O D TL O D TL O D TL O D

HB�PT Oðp3Þ 7.64 11.75 �2:85 �0:96 5.87 �1:98 �0:57 5.87 �0:86 �0:39 �5:87 þ1:98 þ0:57 �5:87 þ3:11 þ0:75
Cov. �PT Oðp3Þ 4.71 7.76 �1:09 �0:63 3.88 �0:70 �0:34 3.88 �0:46 �0:35 �3:88 þ0:89 þ0:44 �3:88 þ1:34 þ0:52
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We can also compare with calculations focused on the
�ð1232Þ isospin multiplet. The result on the �þ given in
Table IV, Q�þ ¼ �2:5ð1:5Þ10�2 fm2, marginally agrees
with recent theoretical determinations within the �QSM
(Q�þ ¼ �5:09 10�2 fm2 [18]) and the SpQM (Q�þ ¼
�4:2 10�2 fm2 [20]).

C. Magnetic octupole moments

The MOMs of the decuplet baryons are experimentally
unknown and only few theoretical predictions are avail-
able. Their interest also lie in that they contain information
on the internal structure of the spin-3=2 baryons, more
precisely on the current and spin distribution beyond the
dipole form one given by the MDMs. From the �PT
perspective, there are no LECs contributing exclusively

to the MOMs up to Oðp3Þ, although they depend on the
ones that contribute to the MDMs, gd, and to the EQMs, gq
[see Eq. (15)]. Once these LECs are fixed, the MOMs come
as a true prediction from the chiral loops in the covariant
formalism. In the heavy-baryon scheme the loop contribu-
tions to the MOMs are at least of order Oðp4Þ so that the
relativistic results could be considered from that perspec-
tive as pure recoil corrections. In Table V we show the
results for the MOMs once gd is fixed with the �� MDM
and the gq dependence is introduced in terms of the ��

EQM (in the proper units ~Q ¼ ðQ=MDÞ½e=ð2M3
NÞ
). If we

use again the value obtained in quenched lQCD [42] for the

�� EQM, ~Q�� ¼ 0:113e=ð2M3
NÞ, we obtain the results

displayed in the last row of Table VI. Moreover, in the
same table we also collect the ones obtained previously in

TABLE III. Values of the electric quadrupole moments of the decuplet resonances in relativistic chiral perturbation theory up to
Oðp3Þ (in units of 10�2 fm2). We express the results in terms of the quadrupole moment of the ��.

�þþ �þ �0 �� ��þ

�2Q�� � 0:9ð3:3Þ �Q�� � 1:6ð1:5Þ �2:20ð24Þ Q�� � 2:8ð2:0Þ �Q�� þ 1:9ð1:3Þ
��0 ��� ��0 ��� ��

0 Q�� � 1:9ð1:3Þ 2.20(24) Q�� � 1:0ð0:6Þ Q��

TABLE V. Values in units of e=ð2M3
NÞ of the magnetic octupole moments of the members of the decuplet resonances in relativistic

chiral perturbation theory up to Oðp3Þ. The results depend on the �� electric quadrupole moment given in proper units, ~Q ¼
ðQ=MDÞ½e=ð2M3

NÞ
.
�þþ �þ �0 �� ��þ

�2 ~Q�� � 1:6ð4:2Þ � ~Q�� � 0:8ð2:1Þ 0.026(16) ~Q�� þ 0:8ð2:1Þ � ~Q�� � 0:5ð2:0Þ
��0 ��� ��0 ��� ��

0 ~Q�� þ 0:5ð2:0Þ �0:026ð16Þ ~Q�� þ 0:3ð1:9Þ ~Q�� þ 0ð1:7Þ

TABLE IV. Values of the electric quadrupole moments in units of 10�2 fm2 in different theoretical approaches. We compare the
results obtained using the latest quenched lQCD result [42] in combination with the relativistic chiral corrections (Table III) with those
obtained in the NQM [13], in �QM [16], in GP [21], in light-cone QCD-SR [25,26], and in HB�PT [30].

�þþ �þ �0 �� ��þ ��0 ��� ��0 ��� ��

NQM [13] �9:3 �4:6 0 4.6 �5:4 �0:7 4.0 �1:3 3.4 2.8

�QM [16] �25:2 �12:6 0 12.6 �12:3 �2:1 8.2 �3:0 4.8 2.6

GP [21] �22:6 �11:3 0 11.3 �10:7 �1:7 7.4 �2:3 4.4 2.4

QCD-SR [25,26] �2:8ð8Þ �1:4ð4Þ 0 1.4(4) �2:5ð8Þ 0.1(3) 3(1) 0.23(7) 4(1) 10(3)

HB�PT [30] �8ð5Þ �3ð2Þ 1.2(5) 6(3) �7ð3Þ �1:3ð7Þ 4(2) �3:5ð2Þ 2(1) 0.9(5)

This workþ qlQCD [42] �2:7ð3:3Þ �2:4ð1:5Þ �2:20ð24Þ �2:0ð2:0Þ 1.1(1.3) 0 �1:1ð1:3Þ 2.20(24) �0:1ð6Þ 0.86

TABLE VI. Values in units of e=ð2M3
NÞ of the magnetic octupole moments of the members of the decuplet resonances in different

theoretical approaches.

�þþ �þ �0 �� ��þ ��0 ��� ��0 ��� ��

GP [22] �5:2 �2:6 0 2.6 �0:87 0.43 1.7 0.43 1.1 0.7

QCD-SR [25,26] �1:3ð4Þ �0:65ð21Þ 0 0.65(21) �2:6ð9Þ �0:11ð2Þ 2.6(9) �0:28ð11Þ 2.2(9) 3.3(1.1)

This work [42] �1:8ð4:2Þ �0:9ð2:1Þ 0.026(16) 1.0(2.1) �0:7ð2:0Þ 0 0.7(2.0) �0:026ð16Þ 0.4(1.9) 0.2(1.8)
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the general parameterization method [22] and in light-cone
QCD sum rules [25,26]. Our results for the �þ favor a
negative value for the MOM of the �þ, in agreement with
those obtained in the two latter approaches. Remarkably,
our prediction for O�� agrees with the recent determina-
tion from the same quenched lQCD calculation used to fix
~Q, O�� ¼ 0:2ð1:2Þe=ð2MNÞ3 [42].

D. Charge radii

In Table VII we show the results for the leading breaking
corrections to the SU(3)-symmetric description of the qua-
dratic CR of the decuplet baryons expressed in terms of the
one of the��. This can be done using a redefinition of the
LEC ger equivalent to the one performed for the EQMs,
Eq. (25). This LEC could be determined either from ex-
periment or, in a model-independent way, from lQCD. A
remarkable feature of the chiral corrections to the squared
CR is that they are quite small. Taking the value from
quenched lQCD for the ��, r2�� ¼ �0:307ð15Þ [42], we
observe that the calculated chiral loops represent less than
a 10% correction to the SU(3)-symmetric prediction.
Therefore, we may anticipate that the description of the
CR is dominated by short-range physics. Moreover, using
the value from the lattice we can predict the CR of the rest
of the decuplet baryons and, in particular, of the �ð1232Þ
isospin multiplet. Indeed, we obtain for the �þ a quadratic
radii r2E0 ¼ 0:328ð16Þ fm2 that we can compare with recent

results obtained in the �QM (r2E0 ¼ 0:781 fm2 [15]), the

�QSM (r2E0 ¼ 0:794 fm2 [18]), the SpQM (r2E0 ¼
0:325 fm2 [19]), and in lQCD (r2E0 ¼ 0:477ð8Þ fm2 [39]).

IV. SUMMARYAND CONCLUSIONS

In this work we have studied the electromagnetic static
properties of the lowest-lying decuplet of baryons in co-
variant �PT, with special attention given to the �ð1232Þ
isospin multiplet. The MDMs are of most relevance since
they are the only diagonal electromagnetic observables for
which there exist some experimental information. More
precisely, the MDM of the �� has been measured with a
good precision, while the values for the MDMs of the �þþ
and �þ are not very accurate yet. By fixing the only LEC
appearing up to Oðp3Þ with the MDM of the �� the
covariant �PT prediction is that �þþ

� ¼ 6:04ð13Þ and

�þ
� ¼ 2:84ð2Þ, which are very close to the central values

of the current PDG [4]. Moreover, our agreement with the
latest experimental value for the�þþ; �þþ

� ¼ 6:14� 0:51

[3] is excellent. Nevertheless, the PDG averages are still
afflicted with large uncertainties within which the results
coming from any of the theoretical approaches collected in
Table II are consistent. Therefore, the new and high preci-
sion data for the MDM of the �þ that is expected to come
soon [7] will be extremely valuable to assess the quality of
the different theoretical predictions. Among these different
approaches, the large Nc [27] and the NQM [12] give
results that are more consistent with the ones obtained in
the present work.
We have also studied the higher-order electromagnetic

multipoles, the EQMs and the MOMs, and the CR. These
properties that give insight into the spin-3=2 internal struc-
ture have been receiving increasing attention lately.
Although experimental data is not available yet, and it is
doubtful it will be in the near future, the rapid development
of lQCD could lead soon to model-independent results on
these observables. In covariant �PT, the EQMs, the MOMs
and the CRs depend on two unknown LECs that we have
related with the CR and the EQM of the ��, which is the
decuplet baryon for which reliable information is expected
to come sooner. With the current results obtained in
quenched lQCD, we predict for the�ð1232Þ values of these
observables that are consistent with other approaches. In
particular, we predict negative values for the EQM and
MOM of the �þ, and a squared CR that is almost half that
of the proton. Finally, concerning the future of lQCD in the
evaluation of the observables discussed in this work, we
want to stress the nontrivial analytical structure across the
pointm ¼ MD �MB unveiled by different �PT studies. In
this regard we want to highlight that the present calculation
provides for the first time the covariant �PT Oðp3Þ results
including the contributions of both dynamical octet- and
decuplet-baryons that may be helpful to extrapolate the
lQCD results to the physical point.

ACKNOWLEDGMENTS

This work was partially supported by the MEC Grant
No. FIS2006-03438 and the European Community-
Research Infrastructure Integrating Activity Study of
Strongly Interacting Matter (Hadron-Physics2, Grant
Agreement No. 227431) under the Seventh Framework

TABLE VII. Values in units of fm2 of the squared CR of the members of the decuplet
resonances in relativistic chiral perturbation theory up to Oðp3Þ. We express the results in terms
of the corresponding squared CR of the ��.

�þþ �þ �0 �� ��þ

�2r2�� þ 0:035ð13Þ �r2�� þ 0:021ð6Þ 0.006(1) r2�� � 0:009ð8Þ �r2�� þ 0:008ð6Þ
��0 ��� ��0 ��� ��

0 r2�� � 0:008ð6Þ �0:006ð1Þ r2�� � 0:005ð3Þ r2��

GENG, MARTIN CAMALICH, AND VICENTE VACAS PHYSICAL REVIEW D 80, 034027 (2009)

034027-8



Programme of EU. L. S. G. acknowledges support from the
MICINN in the Program ‘‘Juan de la Cierva.’’ J.M. C.
acknowledges the same institution for a FPU grant.

APPENDIX: LOOP FUNCTIONS

In the calculation of the loop diagrams, we have used the
following d-dimensional integrals in Minkowski space:

Z
ddk

k�1 . . . k�2n

ðM2 � k2Þ� ¼ i�d=2 �ð�� nþ "� 2Þ
2n�ð�Þ

� ð�1Þng�1...�2n
s

ðM2Þ��nþ"�2
; (A1)

with g�1...�2n
s ¼ g�1�2 . . . g�2n�1�2n þ . . . symmetrical with

respect to the permutation of any pair of indices (with
ð2n� 1Þ!! terms in the sum). We will present the divergent
part of the loops as the contact piece �" ¼ �1="�
log4�þ �E, where " ¼ ð4� dÞ=2 and �E ’ 0:5772 the
Euler constant.

We display below the loop functions HðXÞ
j and H0ðXÞ

1 �
@q2H

ðXÞ
1 jq2¼0 of the diagrams of Fig. 1 that contribute to the

observables studied in this work. These are written in a
dimensionless form usingMB ¼ rMD, � ¼ ��MD,M2

B ¼
xm2 þ ð1� xÞM2

B � xð1� xÞM2
D, M2

D ¼ xm2 þ ð1�
xÞ2M2

D and M2
B;D ¼ M2

D
�M2

B;D. These loop funtions are

H0ðbÞ
1 ¼ 2

3

�
�� � 1

2
log

�
m2

�2

��
;

HðdÞ
2 ¼ 1

2

Z 1

0
dxxðrþ xÞð2x� 1Þ

�
�� þ log

� �M2
B

��2

��
;

HðdÞ
3 ¼ 1

3

Z 1

0
dxx2

�
2ðx� 1Þðrþ xÞx

�M2
B

þ ð3rþ 4xÞ
�
�� þ log

� �M2
B

��2

���
;

HðdÞ
4 ¼ �

Z 1

0
dx

2ðx� 1Þx3ðrþ xÞ
3 �M2

B

;

H0ðdÞ
1 ¼ � 1

24M2
D

Z 1

0
dxx2

�
ð3rþ 2xÞ

�
�� þ log

� �M2
B

��2

��

� 2ðx� 1Þxðrþ xÞ
�M2

B

�
;

HðeÞ
2 ¼ �

Z 1

0
dxðx� 1Þ2ðrþ xÞ

�
�� þ log

� �M2
B

��2

��
;

HðeÞ
3 ¼ � 1

3

Z 1

0
dxðx� 1Þ2

�ðrþ xÞ2ðx� 1Þ
�M2

B

þ
�
1� xþ 3ðrþ 1Þ

�
�� þ log

� �M2
B

��2

����
;

HðeÞ
4 ¼

Z 1

0
dx

2ðx� 1Þ4ðrþ xÞ
3 �M2

B

;

H0ðeÞ
1 ¼ � 1

24M2
D

Z 1

0
dxðx� 1Þ2

�ðrþ xÞ2ðx� 1Þ
�M2

B

þ
�
1� x� 3ðrþ 2x� 1Þ

�
�� þ log

� �M2
B

��2

����
;

HðgÞ
2 ¼ 1

18

Z 1

0
dxxðxþ 1Þ

�
�
34x� 26þ 3ð7x� 5Þ

�
�� þ log

� �M2
D

��2

���
;

TABLE VIII. Coefficients of the loop contribution Eq. (17) for any of the decuplet baryons D.

�þþ �þ �0 �� ��þ ��0 ��� ��0 ��� ��

�ðbÞ
�;D

3
4

1
4 � 1

4 � 3
4

1
2 0 � 1

2
1
4 � 1

4 0

�ðbÞ
K;D

3
4

1
2

1
4 0 1

4 0 � 1
4 � 1

4 � 1
2 � 3

4

�ðdÞ
�;D �4 � 4

3
4
3 4 � 8

3 0 8
3 � 4

3
4
3 0

�ðdÞ
K;D �4 � 8

3 � 4
3 0 � 4

3 0 4
3

4
3

8
3 4

�ðeÞ
�;D 4 8

3
4
3 0 2

3 0 � 2
3 � 4

3 � 2
3 0

�ðeÞ
K;D 4 4

3 � 4
3 �4 4

3 0 � 4
3

4
3 � 4

3 �4
�ðeÞ

;D 0 0 0 0 2 0 �2 0 �2 0

�ðgÞ
�;D � 4

3 � 4
9

4
9

4
3 � 8

9 0 8
9 � 4

9
4
9 0

�ðgÞ
K;D � 4

3 � 8
9 � 4

9 0 � 4
9 0 4

9
4
9

8
9

4
3

�ðhÞ
�;D

16
3

26
9

4
9 �2 8

9 0 � 8
9 � 4

9 � 2
9 0

�ðhÞ
K;D

4
3

4
9 � 4

9 � 4
3

28
9 0 � 28

9
4
9 � 28

9 � 4
3

�ðhÞ

;D

4
3

2
3 0 � 2

3 0 0 0 0 � 2
3 � 8

3
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HðgÞ
3 ¼ 1

27

Z 1

0
dxx

�
4xð33� 19xÞ � 24x2ðx2 � 1Þ

�M2
D

þ 27 �M2
D þ 3ð36� 70x2 þ 6x� 27 �M2

DÞ

�
�
�� þ log

� �M2
D

��2

���
;

HðgÞ
4 ¼ 4

9

Z 1

0
dxx

�
2ðx� 1Þðxþ 1Þx2

�M2
D

þ
�
9ðx� 1Þ þ 9ð2x2 � 1Þ

�
�� þ log

� �M2
D

��2

����
;

H0ðgÞ
1 ¼ � 1

216M2
D

Z 1

0
dxx

�
22xð6� 5xÞ þ 66x2ð1� x2Þ

�M2
D

þ 27 �M2
D þ 3ðð6� 77xÞx� 27 �M2

D þ 36Þ

�
�
�� þ log

� �M2
D

��2

���
;

HðhÞ
2 ¼ 1

108

Z 1

0
dxð1� xÞ

�
2ðxþ 1Þðxð23xþ 88Þ � 79Þ

þ ð139x� 107Þ �M2
D þ 3ð5ðxþ 9Þx2 þ 3x� 37

þ ð20x� 16Þ �M2
DÞ
�
�� þ log

� �M2
D

��2

���
;

HðhÞ
3 ¼ 1

54

Z 1

0
dxð1� xÞ

�
2ðxðxð7x� 195Þ þ 281Þ þ 3Þ

� 24ðx2 � 1Þ2
�M2

D

þ ð47x� 317Þ �M2
D þ 3ððx� 93Þx2

� 25xþ 21Þ þ ð4xþ 26Þ �M2
DÞ
�
�� þ log

� �M2
D

��2

���
;

HðhÞ
4 ¼ 2

81

Z 1

0
dxð1� xÞ2

�
ð43x2 � 242xþ 103Þ

þ 3ðx2 � 1Þððx� 10Þxþ 1Þ
�M2

D

þ 3ðxð5x� 118Þ � 79Þ
�
�� þ log

� �M2
D

��2

���
;

H0ðhÞ
1 ¼� 1

432M2
D

Z 1

0
dx

�
2ðxðxð9�xð23xþ21ÞÞþ9Þþ26Þ

þ66ðx�1Þ3ðxþ1Þ2
�M2

D

þð1�xÞð139x�395Þ �M2
D

þ3ð1�xÞð5ðx�5Þx2�109xþ41

þð20xþ14Þ �M2
DÞ
�
��þ log

� �M2
D

��2

���
;

Hði;IÞ
3 ¼ 2

Z 1

0
dx �M2

D

�
xþ ð5� 3xÞ

�
�
�� þ log

� �M2
D

��2

��
� 3

�
;

H0ði;IÞ
1 ¼ � 1

8M2
D

Hði;IÞ
3 ;

Hði;IIÞ
3 ¼ 4

9

Z 1

0
dx �M2

D

�
5xþ 3ð5� 4xÞ

�
�
�� þ log

� �M2
D

��2

��
� 19

�
;

H0ði;IIÞ
1 ¼ � 1

8M2
D

Hði;IIÞ
3 :

The functions f1dð�2Þ and f2dð�2Þ used in the regulari-

zation of the loop integrals HðXÞ
2 that contribute to the

MDMs are

f1dð�Þ ¼ 1

9

�
ð3rðrðrð6r2 þ 8r� 7Þ � 11Þ þ 3Þ þ 34Þr

� 3ðrðrð2rðrð3rþ 4Þ � 5Þ � 15Þ þ 6Þ þ 12Þ

� log

�
r2

��2

�
r3 þ 3ðr� 1Þðrþ 1Þ3ðrð2ðr� 1Þ

� rð3rþ 1Þ þ 1Þ þ 2Þ log
�
1� r2

��2

�
þ 13

�
;

f2dð�Þ ¼ 1

324
ð606 logð ��2Þ � 335Þ:
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