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We study the semileptonic decays of double-heavy baryons using a manifestly Lorentz covariant
constituent three-quark model. We present complete results on transition form factors between double-
heavy baryons for finite values of the heavy quark/baryon masses and in the heavy quark symmetry limit,
which is valid at and close to zero recoil. Decay rates are calculated and compared to each other in the full
theory, keeping masses finite, and also in the heavy quark limit.
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I. INTRODUCTION

The semileptonic decays of double-heavy baryons pro-
vide yet another opportunity to measure the Cabibbo-
Kobayashi-Maskawa matrix element V. This is particu-
larly so since the transition matrix elements between
double-heavy baryons obey spin symmetry relations in
the heavy quark limit in addition to a model independent
zero recoil normalization of the relevant transition matrix
elements. In this paper we study current-induced transi-
tions between double-heavy baryons in a fully relativistic
constituent three-quark model. In the heavy quark limit we
recover the spin symmetry relations among the form fac-
tors valid at zero recoil and close to zero recoil including
their zero recoil normalization. Since the model is formu-
lated in terms of finite values of the quark and baryon
masses we are able to calculate the corrections to the
spin symmetry relations and the zero recoil normalization
valid in the heavy quark limit.

Current-induced double-heavy baryon (DBH) transi-
tions have been analyzed in a number of model approaches.
These include effective field theories based on heavy quark
spin symmetry [1-4], three-quark models [5-7], quark-
diquark models [8,9], and nonrelativistic QCD sum rules
[10,11]. The progress achieved up to now can be summa-
rized as follows. In the heavy quark limit (HQL) or in the
limit of infinitely heavy quarks (m, ;, — o0) double-heavy
baryons can be viewed as heavy-light mesonlike states
containing a heavy diquark in the 3 color state and a light
quark in the 3 color state [1]. In the HQL the spins of the
light quark and heavy diquark system decouple. This gives
rise to relations between different transition form factors
involving double-heavy baryons in the quark-diquark pic-
ture [1] as well as in the three-quark picture [3]. In par-
ticular, working in the near-zero recoil limit one can
express all weak transition form factors between double-
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heavy baryons through a single universal function n(w),
which depends on the kinematical parameter = v - v/,
where v and v’ stand for the four-velocities of the initial
and final double-heavy baryon, respectively.

In Ref. [5] we have analyzed double-heavy baryons for
specific decay modes. We have restricted ourselves to spin
1/2 to spin 1/2 transitions using the same relativistic
constituent three-quark model [5,12] as is being used in
the present paper except that we now no longer have to rely
on the impulse approximation. Differing from the approach
of the present paper, in [5] we have treated the double-
heavy baryons as bound states of a heavy b quark and a
heavy-light (cq) diquark. In this paper we take double-
heavy baryons to be bound states of a light quark and a
double-heavy (bc) diquark. In particular, this means that
the interpolating three-quark currents used in this paper
have a different spin-flavor structure than the correspond-
ing current in [5]. In the full theory this will lead to
different predictions for the rates. We would like to em-
phasize, though, that, in the nonrelativistic limit, both
currents are consistent with one another.

The relativistic constituent three-quark model can be
viewed as an effective quantum field theory approach
based on an interaction Lagrangian of hadrons interacting
with their constituent quarks. From such an approach one
can derive universal and reliable predictions for exclusive
processes involving both mesons composed of a quark and
antiquark and baryons composed of three quarks. The
coupling strength of a hadron H to its constituent quarks
is determined by the compositeness condition Zy = 0
[13,14], where Zy is the wave function renormalization
constant of the hadron. The quantity Z}{/z is the matrix
element between a physical particle state and the corre-
sponding bare state. The compositeness condition Zy = 0
enables one to represent a bound state by introducing a
hadronic field interacting with its constituents so that the
renormalization factor is equal to zero. This does not mean
that we can solve the QCD bound state equations but we
are able to show that the condition Z; = 0 provides an
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effective and self-consistent way to describe the coupling
of a hadron to its constituents. One starts with an effective
interaction Lagrangian written down in terms of quark and
hadron variables. Then, by using Feynman rules, the
S-matrix elements describing hadron-hadron interactions
are given in terms of a set of quark level Feynman dia-
grams. In particular, the compositeness condition enables
one to avoid the problem of double counting of quark and
hadronic degrees of freedom. The approach is self-
consistent and all calculations of physical observables are
straightforward. There is a small set of model parameters:
the values of the constituent quark masses and the scale
parameters that define the size of the distribution of the
constituent quarks inside a given hadron.

The main objective of the present paper is to present a
comprehensive analysis of all possible current-induced
spin transitions between double-heavy baryons containing
both types of light quarks—nonstrange g = u, d and
strange s. This involves the flavor transitions bc — cc
and bb — bc, where the transition bc — cc is treated as
the generic process in the main text, while the results for
the transition bb — bc are mainly relegated to tables. The
paper is structured as follows: First, in Sec. II we present
interpolating three-quark currents with the appropriate
quantum numbers of the double-heavy baryons. We then
write down the corresponding Lagrangians defining the
couplings of these currents to double-heavy baryons.
Second, we briefly discuss the calculational techniques of
how to calculate transition matrix elements generated by
the Lagrangian functions. In Sec. III, we consider the
heavy quark limit of our transition matrix elements and
recover the known heavy quark symmetry relations for the
transition matrix elements between double-heavy baryons
as well as the appropriate zero recoil normalization of the
form factors. In particular, we compare the results of the
full finite mass calculation with the results derived in the
HQL. Fourth, in Sec. IV we present our numerical results,
which are compared to predictions of other theoretical
approaches. In particular, we compare the results of the
full finite mass calculation with the results derived in the
HQL. Finally, in Sec. IV we present a short summary of our
results.

II. SEMILEPTONIC DECAYS OF DOUBLE-HEAVY
BARYONS

A. Lagrangian

For the evaluation of the semileptonic decays we will
consistently employ the relativistic constituent three-quark
model. In the following we present details of the model,
which is based on an interaction Lagrangian describing the
coupling between baryons and their constituent quarks.

The coupling of a baryon B(g,g»g3) to its constituent
quarks ¢, g,, and g5 is described by the Lagrangian
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Lin(x) = gBB(x)jdxl [dxzde3FB(x,x1,x2, x3)

X Jp(x1, x5, x3) + Hec,, (1)

where J(x, x5, x3) is the interpolating three-quark current
with the quantum numbers of the relevant baryon B. One
has

Jp(xy, X0, x3) = €194 g1 (x1) g5 () CThg5 (x3),  (2)

where the I'| , are sets of Dirac matrices, C is the charge
conjugation matrix C = y°y?, and the a; (i = 1, 2, 3) are
color indices. Fy(x, x|, x5, x3) is a nonlocal scalar vertex
function, which characterizes the finite size of the baryon.

B. Vertex function

The vertex function F'y is related to the scalar part of the
Bethe-Salpeter amplitude and characterizes the finite size
of the baryon. To satisfy translational invariance the func-
tion Fg has to fulfill the identity

Fp(x +a,x; +a,x, +a x;3+a) = Fglx, x, x5, x3) (3)

for any given four-vector a. In the following we use a
specific form for the vertex function

:1 Wixi>q)B(§j(xi - Xj)z),
“)

where @ is a nonlocal correlation function involving the
three constituent quarks with masses m;, m,, mz; Ng =9
is a normalization factor. The variable w; is defined by
w; = m;/(m, + my + m3). The vertex function (4) satis-
fies the translational identity (3).

The Fourier transform of the correlation function
®p(¥,<;(x; — x;)*) can be calculated by using Jacobi
coordinates. One has

Fp(x, x1, X0, x3) = N38(4)<x -

3
é)B(pl’ P2 P3) :NB/.dxeiian/‘dxieiPixi
i=1

X 5(4)(x — iwixi)q)g(Z(Xi - Xj)Z)

i=1 i<j
3
= @n6(p~ 3 pi) By~ - B). S)
i=1

where the Jacobi coordinates are defined by

1 1
Xy =x+t 7—2—§1W3 - 7—6—§2(2W2 + ws),

1 1
x2=x+7§§|w3+76§2(2w1 + ws), (6)

X3 =x _%51(% + wy) +\/L6§2(W1 — wy).
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The corresponding Jacobi momenta read

p=p1+ptps

1 1
Iy =—=w + ——=(w; + wy)ps,
1 \/5 3(171 Pz) \/E( 1 2)P3

1 1
L =——=Qw, +w3)p, + —6(2W1 + w3)ps

V6 V6
+ %(Wl — wa)ps, (7)

where, according to Eq. (4), 37, wx; = x. Since the
function ®p(3;-;(x; — xj)z) is invariant under transla-
tions, its Fourier transform only depends on two four-
momenta. The function ®z(—12 — 3) in Eq. (5) will be
modeled in our approach. The minus sign in the argument
is chosen to emphasize that we are working in Minkowski
space. A simple choice is the Gaussian form

D (=17 — ) = exp(18(17 + B)/AR), (®)

where the parameter Ap characterizes the size of the
double-heavy baryon. Since /2 and /5 turn into —/% and
—13 in Euclidean space the form (8) has the appropriate
falloff behavior in the Euclidean region.

C. Three-quark currents

Double-heavy baryons are classified by the set of quan-
tum numbers (J”, S;), where J” is the spin-parity of the
baryon state and S, is the spin of the heavy diquark. There
are two types of heavy diquarks—those with S; = 0 (anti-
symmetric spin configuration [ Q; Q,]) and those with S, =
1 (symmetric spin configuration {Q;Q,}). Accordingly,
there are two J© = 1/2% double-heavy baryon states. We
follow the standard convention and attach a prime to the
S, = 0 states, whereas the S; = 1 states are unprimed.
Note that the J¥ = 3/2" states are in the symmetric heavy
quark spin configuration. In Table I we list the quantum
numbers of the double-heavy baryons including their mass
spectrum as calculated in [9].

We pause for a moment to discuss some of the features
of the mass spectrum obtained in [9], which are relevant for
our calculation. One notes that there is a mass inversion in
the (1/2%) mixed flavor states (Z,,., 5/ ) and (Q,,, Q) )
inthat M(E) ) > M(E,,.) and M(Q} ) > M(£,,) contrary
to naive expectation even though the heavy triplet diquark
state has a higher mass than the heavy singlet diquark state
in the model of [9], i.e. m(bc;S; = 1) > m(bc; S; = 0).
The inverted mass hierarchy is at the origin of the prime
notation mentioned above. We mention that the inverted
mass hierarchy is a feature of all models that have at-
tempted to calculate the mass spectrum of double-heavy
baryons [6,9,11,16—18]. In particular, the inverted mass
hierarchy implies that one can only expect substantial
flavor-changing branching ratios for the two lowest-lying
states =, and ()., whereas the rates of the higher-lying
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TABLE I. Classification and mass values of double-heavy
baryons. Mass values are used from [9] except for the =,
mass which is taken from [15].

Notation Content Jr Y Mass (GeV)
= qlect 1/2* 1 3.5189
Epe gqi{bc} 1/2* 1 6.933
Ebe qlbc] 1/2* 0 6.963
Epb q{bb} 1/2* 1 10.202
=ht qlec} 3/2F 1 3.727
Ehe q{bc} 3/2* 1 6.980
Ehp q{bb} 3/2* 1 10.237
Q. s{ec} 1/2* 1 3.778
Qe s{bc} 1/2* 1 7.088
O, s[bc] 1/2+ 0 7.116
Oy s{bb} 1/2+ 1 10.359
Q. s{ec} 3/2* 1 3.872
Q. s{bc} 3/2+* 1 7.130
U s{bb} 3/2* 1 10.389

states =1 and Z;_, and ] and Q) will be dominated by
flavor-preserving one-photon transitions to the lowest-
lying states =, and ). It will be interesting to analyze
the strength of one-photon transitions between the S, = 0
and S; = 1 double-heavy baryon states, which are forbid-
den in the HQL since, in the HQL, the photon couples to
the light quark only. For finite heavy quark masses one-
photon transitions between the S; = 0 and S; = 1 double-
heavy baryon states will occur at a somewhat reduced rate
which, however, very likely will still exceed the flavor-
changing weak decay rates of these states.

We construct the interpolating currents of the double-
heavy baryon B, o, in the form of a light quark ¢“
coupled to a heavy diquark d;; ,, , viz.

_ (010)
‘]quQz - I‘IQleqaldall o 9)
d(Qle) — s“l“Z“S(Q"?CF(d) )
aj 1 0,0,=2 7

We shall only consider currents without derivatives. With
this restriction one can construct three interpolating cur-
rents for the (1/27, 0) states—the pseudoscalar J, scalar
JS and axial J4 currents

IP0 0, = €14 g (Q1Cys05Y), (10a)
J30,0, = €19y (01 COY), (10b)
T 0, = 814y gh (O Cysy, 05).  (10c)

For the (1/2%, 1) states one has a vector JV and a tensor J”
current

JVo.0, = €Sy S g (01 Cy, 05), (11a)
1
Je0,.0, = 58“‘“2“30‘”75q‘“(Q?ZCU,WQ?). (11b)

Finally, for the (3/2", 1) states one has the vector and
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tensor currents J), and J},

T40,00n = 1 q (07 Cy,05),
JngszlL = —ighhhy” qal(QIZCO-MVQ?)

Note that any double-heavy baryon current in the form of a
heavy quark coupling to a heavy-light diquark can be
transformed to a linear combination of the above form of
currents using a Fierz transformation.

In the heavy quark limit the scalar current le 0,q Van-
ishes, while the other currents become degenerate in the
following way:

(12a)
(12b)

T50.0, = 50,0, = £ O WG (WG 02 403), (13a)
30,0, = 50,0, = Sa‘aza3“¢31(¢Ql T25Y,),  (13b)
JlIQle = JngQz = gn®n ¢f1](¢gl Uz&lﬁg‘;), (13¢)

where ¢, o, are the upper components of the Dirac
quark spinors and the o; are Pauli spin matrices.
Excluding the scalar current J%]Qz 4> Which vanishes in
the HQL, we remain with two currents for each of the
double-heavy baryon states which, as shown above, be-
come degenerate in the HQL. It is therefore reasonable to
take only one of the interpolating currents each. Our choice
is to take the simplest current from each pair—the pseu-
doscalar current for the (1/2%,0) states and the vector
currents for the (1/2%,1) and (3/27, 1) states. Note that
the HQL coincides with the nonrelativistic limit. In the
nonrelativistic limit our DHB currents have a one-to-one
correspondence to the naive quark model baryon spin-
flavor functions, which are displayed in Table II. Further
details on the naive quark model and how to evaluate the
semileptonic current-induced transition amplitudes in this
framework can be found in Appendix A.

We now shall give explicit expressions for the three-
quark currents that are needed for the calculation of the
bcqg — ccq semileptonic transition amplitudes:

‘]bcq 1“ 4) g d?l;c)’ d(bc) = gt1ma3 (baz CF(d) ag)
(14a)

7 ~a,7(q) | — aaiaay(za; T ~jas

Jbeqg = (b Y Fb , d(bc) £ (=T Cb%),
(14b)

TABLE II. Double-heavy baryon wave functions.

Baryon Wave function Baryon Wave function

Ecc qccxs Qcc SCCXs

Epb qbbxs Qypy sbbxs

Ebe j-Q(bC + ch)xs Qe 7"5(50 + ch)xs

Ehe 7“1(176 ch)xa Q). Ts(bc ch)xa

Eee —qcexs Q:C —scexs

:Zb —qbbx Q3 —sbby

e - 715q(bc + ¢b) x5 Q5. - 715s(bc + cb) X
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where J = Jty% and T’ = y°T't 9. The corresponding ccq
currents are obtained by the obvious replacement b — c.
Note that CFE‘? C= —F(CdC)T. Using a rather suggestive
notation we specify the coupling content of the DHB
currents for the EQle baryons using the form = I'¥ @
'@ We thus consider the currents

Eee=vy’®y, Ei.=>I107y" (15a)
Epe=77v'®y, Ej=I10y, E, =187y
(15b)

We use the same set of currents for the double-heavy
Q,0,-type baryons replacing the light u, d-quark by a s
quark.

D. Normalization

As described, e.g. in [5] we need the derivative of the
mass operator for the double-heavy baryon EQIQZ in order

to evaluate the coupling constants gz = gz 0,0,° The mass

operator is given by a two-loop Feynman diagram and
reads

- d*k, [d*k
— Yaig 1 2 22
fiz, , (7 (16122)2/ f 2§3(—12 - B)
X tr[r(d)Sl (kl + wlp)r(d)sz(kz - WZP)]
X F(q)gg(kz - kl + W3P)F(q)’
1 1
I, = ﬁ(kl — k), L= —\/—g(k1 +ky), (16)

where gy = b or ¢, g = ¢, g3 = q and Ny, = 6, N.. =
12. The expression S;(k) = (m,, — K — ie)~! denotes the
free fermion propagator for the constituent quark with
mass m,_ . Integration momenta have been shifted in such
a way so as to remove the external momentum from the
vertex function. We have assigned outgoing momenta to
the first and third outgoing quarks and an ingoing momen-
tum for the second quark. Since the p dependence of the
mass operator resides entirely in the propagators it is not
difficult to calculate the derivative of the mass operator
needed for the normalization condition

d -
gL s, () =" (17)

The latter condition is known as a Ward identity, which is
equivalent to the compositeness condition Zy = 0 [13,14].
One obtains
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d o _ 5114]7
—dp:“' HEQIQZ(p) - (16772)2
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d*k d*k
[ : [ 2d3(— 2 = B)w, t[TDS,(ky + wp)y*S,(ky + wi p)T DS, (ky — wyp)]

X T@8;(ky — ky + W3P)F(q) — wo tf TS, (ky + wy p)T D8, (ky — wap)y#Sy(ky — wap)]
X T@DS3(ky — ky + wyp)I'D + w3 [ TS, (k; + wi p)TDS,(ky — wyp)]
X T@85(ky — ky + wyp)y*Ss(ky — ky + w3p)['9}, (18)

where the double-heavy E o, baryon is taken to be on its
mass shell.

E. Matrix elements of semileptonic decays

The generic matrix element describing the semileptonic
transitions =,, — =, reads

Hw@m[wMdewm> Zpe(p)

= Qm)*6W(p - p' — @iz, (p)A*(p, puz, (p).

(19)
where
8=,.85 d4k1 fd ks
A#(p, p') = 12572 Dp(—12 — 13
_ 1
X Dp(—1f — llzz)tr[r(d)54(k1 + 217/)0”
1
X Si(ky + p — —P/)F(d)sz(kz EP/)]
X TSk = k)T, (20)

Here, O* = y*(1 — y°) and w! = m;/(my + m, + m3)
with i = 4, 2, 3. For the masses one has m; = m,,, m2
my = m., my = m,. The Jacobi momenta w; and ] are
chosen as

1
I, =—=|ki — k, + w3p],
1 ﬁ[l 2 3p]
1
L=——|ki+k +(w —w + q],
2 \/5[1 )+ (wy Dp +ql
! (2D
l'1=—ﬁ[k1_k2+wl3p/],
1
A [ky + ky + (W5 — w))p'].

G

Note that the expressions for the normalization and the
vertex given in Eq. (18) and (20), respectively, are exact in
the sense that they are obtained directly from the
Lagrangian Eq. (2) for an arbitrary translationally invariant
vertex function Fp such as the one defined in Eq. (4). The
two-loop integrals in Egs. (18) and (20), are invariant under
translations of the loop variables k; — k; + b; (i = 1, 2),
where b; are arbitrary momentum four-vectors. We have
assigned the loop momenta such that the heavy quark limit
can easily be taken. Calculational techniques for the two-

loop quark integrals are given in some detail in our pre-
vious publication [5]. One uses Schwinger’s parametriza-
tion to raise the denominator factors into exponential
factors. The tensor integrals are dealt with by using differ-
ential representations of the numerator factors. After doing
as many loop integrations analytically as possible one ends
up with four-fold parameter integrations for the derivative
of the normalization factor and the transition form factors,
which are evaluated numerically.

III. HEAVY QUARK SPIN SYMMETRY

A. Structure of weak transitions in the HQL

In the HQL the spins of the double-heavy diquark and
the light quark in a double-heavy baryon decouple. At zero
recoil and close to zero recoil this leads to spin symmetry
relations among transition form factors between double-
heavy baryons and a zero recoil normalization for the form
factors. The spin symmetry is exact at zero recoil and close
to zero recoil where the near-zero recoil region is specified
later on. Near-zero recoil one can choose the momenta as
pi = my.v* and py = m  v'* = m,v* + r*, where r is
a small residual momentum in the sense that > ~ O(1)
when m, — oo. Since the final baryon is on mass shell one
has v - r = —r?/2m,. ~ O(1/m,). This imposes a restric-
tion on the kinematical variable w = v - v/ since r> =
m2.(v — v')?> = 2m2.(1 — w) ~ O(1). From the last equa-
tion one obtains w ~ 1 + O(1/m?2). This situation is differ-
ent compared with the case of baryons with a single heavy
quark. A baryon with a single heavy quark possesses both a
spin and a flavor symmetry. In what follows we will work
near-zero recoil in the sense that we neglect terms of O(v -
r). In order to keep things simple we assume that m;,. =
my, + m, and m.. = 2m,.

Using the above assumptions the heavy mass propaga-
tors simplify in the HQL. One has

3 1 1+y 1
Sy(ky +p—=p)— . (22
»(ky 219) 2 ku—i (22a)
~ 1 1xy
+ - pl)— 22
Sl 2500 = —— e @)

Because of the simple form of the heavy quark propagators
in the HQL the defining equation for the coupling constant
Eq. (16) simplifies considerably. One obtains
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2
8= 1+ y-1—97 [d*k
=010 (d) (d) !
1= Ny,o, (67 tr] [F > r 3 ]j

2)2 7T2i
d*k
[ 2B} ()

A similar simplification occurs for the transition operator
A#(p, p') in Eq. (20). One obtains

98, (ky — ky)T@
(—kjv —i€)* (kv — ie)’

(23)

Ar(v,v') = 12‘?% ;)2 tr [FE‘? 1 J;’A on! ; /
F(d)l — ][d4kl jd ko (I)B(YO)(I)B()’r)
FE%)Sg(kz k)T o)
T — ok — ekt — i€)
where
y=a0) =~ Sk~ kP = Lk k=R (9)

It is not difficult to see that once we put v = v'(r = 0) in
Eq. (24) the two-loop integral and the trace factor in (24)
reduce to the corresponding factors in Eq. (23). As a result
all semileptonic transition matrix elements can be ex-
pressed in terms of a universal function 7(w) normalized
to 1 at zero recoil with w = 1 in full consistency with the
heavy quark spin symmetry results derived in [3].
Neglecting terms of O(v - r) one finds

AB(E () — Bou(0)) = ﬁ(w = %yw)mw),

(26a)
— 2
AH(E(v) = B (V) = —\/;7"7577(% (26b)
. 2
A (Epe(v) = B (v, v) = —\Eg“”n(wx (26¢)
AR (B} (v) = Bi (v, v) = V2g# n(w), (26d)
2
AME} (v, v) = E. (V) = —\/;g“”n(W), (26e)
AR(E; (v, v) = BL(0, V) = V204 g™ n(w), (26
where
_J(w)
77(W) = m, (27)
d*ky [ d*k, - -
J(w) = ,/E ]ﬁ‘bﬁ'()’o)‘bg()’)
my + (ky — ky)v
( k]'U - lE)z(kQU - lE)(m - (k2 kl)2 - lE)
(28)
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By keeping the corrections of O(v - r) one can obtain
explicit model dependent expressions for the corrections
to the spin symmetry relations Eq. (26). These corrections
will not be listed in the present paper.

As an extra bonus of our dynamical treatment the bb —
bc transition matrix element can be related to the bc — cc
transition in the HQL. One simply has to replace m,. by
my,;, in the functional form of the universal function n(w)
in (27), i.e. in the functions ®p(y,) and ®g(y,) appearing
in (28).

B. Calculation of the universal function n(w)

It turns out that one can derive a closed-form expression
for the universal Isgur-Wise (IW) function n(w) if one uses
a Gaussian ansatz for the three-quark correlation function
®p as has been done in Eq. (8). We use the Laplace
transformation

B 4(2) = [ " ds®h(s)e (29)
0
and the integral representation
+ 00
exp(— 5152 x) o SZ[ dhf dt,
51+ 5,

X exp(=s,((t; + Vx)* + 1)
— 5,(82 + 1)) (30)

In terms of the variable w one obtains

= L[ [ [t
< [*an [ andy)@se), 31)
where
A= % + as, Dly(z) = dPp(z)/dz,
zy = z2(w)

w— 1\2 2 (32)
= (tl + me. T) + l% + g(&’:;m%]

1+ a3)(a% + oy, + a%) + a1a2a3)

+
4A

and where m, is the mass of the light quark in the DHB.
The integral (31) can be evaluated in closed form using the
Gaussian ansatz for the correlation function Eq. (8). One
obtains a rather simple form for the universal n(w) func-
tion

2
n(w) = exp( 3 ”A’%) (33)

The dependence on the light quark masses has disappeared
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SEMILEPTONIC DECAYS OF DOUBLE HEAVY BARYONS ...

due to cancellation effects between the numerator J(w) and
the denominator J(1).

For the slope p?> of m(w) defined by n(w)=
1 — p%(w — 1) + ... one obtains

P2 _ dn(w) _ 3m%c
dw A%’

w=1

As mentioned before, the HQL results for the bb — bc
transitions can be obtained by the replacement m_.. — my,,
in the IW function. Accordingly, the slope of the ITW
function for the bb — bc transitions is obtained from
(34) by the replacement m.. — my,;,, i.e. the slope in-
creases by the factor m?, /m2. when going from the bc —
cc case to the bb — bc transition if one uses the same size
parameter Ay in both cases. One should stress that there
exists a spin-flavor symmetry at zero recoil w = 1 giving
7n(1) = 1, which means that the bc — cc transition is
identical to the bb — bc one. Close to zero recoil there
exists only spin symmetry, because the IW functions for
bc — cc and bb — bc transitions explicitly contain the
flavor factors m,,. and my,,, respectively.

(34)

IV. RESULTS

We now proceed to present our numerical results. We
first present results on the semileptonic rates using finite
heavy quark masses, i.e. we do not take the HQL for the
transition form factors. In the finite mass case we present
results for both the electron/muon mode and the 7 mode.
We then present results using the zero recoil form factors in
Eq. (26) and the universal function n(w) of Eq. (33), i.e.

PHYSICAL REVIEW D 80, 034025 (2009)

we extent the validity of the near-zero recoil approach to
the whole kinematic range 0 < ¢> = (M, — M,)*. Also,
we present estimates of the width using the nonrelativistic
quark model, in which, as described before, the wave
functions have the same spin-flavor structure as our rela-
tivistic current considered in the nonrelativistic limit. Note,
in the naive quark model we drop the ¢> dependence of the
corresponding form factors and use only their values at
g> = 0. We choose the Gaussian form Eq. (8) for the
correlation function of the double-heavy baryons. Our
results depend on the following set of parameters: the
constituent quark masses and the size parameter Ag. The
parameters have been taken from a fit to the properties of
light, single and double-heavy baryons in previous analy-
ses [12]. One has

my(q) mg me nmy, AB (35)
042 057 1.7 52 2535 GeV’

All our analytical calculations have been done using the
computer program FORM [19]. For the numerical evalu-
ation we have used FORTRAN.

In Table III we present results on the g> = 0 values of
the transition form factors F} and F7 in the naive quark
model. In Table IV we compare our finite mass results with
the theoretical approaches of Refs. [4,9] for the electron/
muon mode. As indicated in Tables IV and V we allow the
size parameter Ap to vary in the range 2.5 = Az =
3.5 GeV. The variation of our rates listed in Tables IV
and V reflect via error bars the variation of the size pa-
rameter A . Note that a smaller value of Ay gives smaller

TABLE III.  F}(0) and G} (0) in the nonrelativistic quark model.

. — — —y — — = s — — ¢ — e — — ¢ = s
Quantlty ‘:bc - :‘cc ‘:bc - :‘cc :'bc - ‘:cc :‘bc - ‘:cc ‘:hc - ‘:(.‘C ‘:bc - :’CC
=, -5 = P———{ =g 55 =) =5 5 =E oo, 5
—bb —bc —bb —bc =bb —bc = bb ~bc —bb = bc —bb —bc
FY(0) V2 0 0 0 0 V2
FA0) 1 P 2 _2 \2 \2
1 Na 3 3 Na 3 3

TABLE IV. Semileptonic decay widths of double-heavy baryons in units of 1074 GeV. Comparison with other approaches in case

of light leptons (e, w) in the final state.

Decay mode Ref. [9] Ref. [4] Our results Decay mode Ref. [9] Ref. [4] Our results
Epp = Epe 1.63 192702 0.80 = 0.30 Qpp — Qe 1.70 2.14+029 0.86 = 0.32
Epe = Eec 2.30 257508 2.10 £0.70 Qpe = Qe 2.48 2.59+020 1.88 = 0.62
Ehe = B 0.88 1362043 1.10 £ 0.32 Q). — Q. 0.95 1.36+009 0.98 + 0.28
Ebp = B 0.82 1067003 0.43 = 0.12 Qpy, — O, 0.83 1167013 0.48 + 0.14
B — Ej. 0.53 0.61 004 0.25 * 0.07 Qpy — QF, 0.55 0.67+008 0.29 + 0.10
Epe — E5 0.72 0.75+0.06 0.64 % 0.19 Q. — QF, 0.74 076013 0.62 % 0.19
Bje — Bt 1.70 2.33+016 2.01 = 0.62 Q) —Qr, 1.83 236703 1.93 = 0.60
Er, = e 0.28 0.35+003 0.14 + 0.04 Q;, — Qe 0.29 0.3870.04 0.15 * 0.05
Eie — Eee 0.38 04370 030008 0, — Q. 040 0.4470% 027 = 0,07
g, — = 0.82 1.04+0.06 0.36 = 0.10 a;, — Q. 0.85 1.137011 0.42 + 0.14
Ehy = Ee 1.92 2.097016 1.05 *+ 0.40 Q;,— 2.00 2.29+03 111 + 0.4
B — Bk 2.69 2.63+040 2.66 + 0.86 Q;, — QF, 2.88 2.79+00 2.51 + 0.81
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TABLE V. Detailed analysis of semileptonic decay widths of
double-heavy baryons in units of 10~'% GeV.

Exact results

Decay mode e, u modes 7 mode HQS limit NQM
Ep— Epe 080030 0.46=0.13 1.33=0.61 958
Qp— Q. 086+032 049 +0.14 1.92+1.15 9.69
Epe— B 210%+0.70 097 =022 401 =121 857
ch—>Q 1.88 £0.62 0.80+0.16 4.12+1.10 7.73
. —E. 110+032 046*+0.10 1.94*+0.50 4.74
Q;,C — Q. 098028 038+008 196=046 460
B, — 2, 043x0.12 020*=0.04 0.76*+0.30 574
Q,,b - ch 0.48 £0.14 0.22+0.05 0.81+032 487
B, — B, 025+0.07 0.12*+0.02 0.61=0.15 1.39
be — Q,,C 0.29+0.10 0.13+0.03 0.57+023 132
Epe— Ef 064019 020*0.03 139*034 213
Q,— QfF 062+0.19 0.20+0.04 1.78+0.64 219
Bl — Bl 201*062 0.65*0.12 440*0.99 6.68
Q) — Qi 1.93*0.60 0.65=*0.13 4.61=1.10 734
By, — By 014004 0.06*0.02 025=0.10 1.12
Q5 — Qe 0.15%0.05 0.07*0.02 026+0.10 1.12
Er.—E. 030+0.08 0.13+0.02 0.58=0.14 045
Q5. — Q. 027%0.07 0.11%0.02 059=*0.13 042
By, —E,. 036+0.10 0.17*+0.03 0.76 =0.30 3.08
Q;,— Q) 042*0.14 020+0.05 0.80=+031 293
i, —E;. 105£040 055=0.16 1.62*0.73 1.12
Q;,—Q;, 1112044 059=0.18 172*0.77 6.70
By — Ei. 266+0.86 1.00*+021 4.63*+123 532
Q. — Qi 251*081 098+020 4.95+1.26 543

rates and vice versa. In Table V we present detailed results
on semileptonic rates of double-heavy baryons in the exact

1.2

Exact result

n(w)

<
=
2
=
0 . . . . .
1.0 11 1.2 1.3
w
FIG. 1. Form factor F} /+/2 describing the E,. — E., transi-

tions: exact result and IW function n(w).
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1.2
Exact result
n(w)
<
™
2
=
1.0 1.05 1.1

w

FIG. 2. Form factor F)//2 describing the E,, —
tions: exact result and IW function n(w).

— .
=i transi-

finite mass approach for the electron/muon and tau-lepton
modes. These are compared to the corresponding results in
the heavy quark spin symmetry limit and in the naive quark
model. One can see that the naive quark model gives larger
rates due to the omission of form factor effects that would
result from the nonlocal structure of semileptonic transi-
tions. The results in the heavy quark symmetry (HQS) limit
are calculated using the IW function (33) with m,.. =
2m, = 3.4 GeV for the bc — cc transitions and m;;, =
2m;, = 10.4 GeV for the bb — bc transitions.

In order to check on the quality of the HQS limit in
Figs. 1 and 2 we show plots of the w dependence of the
form factor F} (w)/ /2 for the exact finite mass result and
the HQS result using the IW functlon n(w). As examples
we take the two transitions Z,. — B, and 2, — =,..
From Table V and Figs. 1 and 2 one can see that HQS limit
is better justified for bb — bc transitions, while there is a
larger difference between the finite mass results and the
HQS results for the bc — cc mode as is evident in Fig. 1
and Table V.

V. SUMMARY

In this paper we have analyzed the semileptonic decay of
double-heavy baryons using a manifestly Lorentz cova-
riant constituent quark model approach. Our main results
are summarized as follows:

(i) We have derived results for the matrix elements of
the semileptonic decays of double-heavy baryons for
finite values of the heavy quark/baryon masses and
for the HQS limit, which is valid at and close to zero
recoil;
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(i1) We have presented a detailed numerical analysis of
the decay rates for the two (e/u)- and 7-lepton
modes in the exact finite mass approach and in the
HQS limit;

(iii) We have compared our results with the predictions of
other theoretical approaches.

We hope that the results of this paper can be used to
extract the value of the Cabibbo-Kobayashi-Maskawa ma-
trix element V., from future experiments on the semilep-
tonic decays of double-heavy baryons.
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APPENDIX A: NONRELATIVISTIC QUARK
MODEL: SPIN-FLAVOR WAVE FUNCTIONS AND
SEMILEPTONIC DECAY CONSTANTS OF
DOUBLE-HEAVY BARYONS

In this Appendix we present results on the g> = 0 values
of the double-heavy transition form factors F{(0) and
F(0) in the nonrelativistic quark model. As emphasized
before the nonrelativistic quark model is based on the spin-
flavor wave functions, which arise in the nonrelativistic
limit of the relativistically covariant double-heavy three-
quark currents with quantum numbers J” = 1/2% and
3/2*. The corresponding quark model spin-flavor wave
functions are given in Table II, where we use the following
notation for the antisymmetric y, and symmetric (xs, X’)
spin wave functions with S, = +1/2 (spin projection on z
axis):

Xa = \/g{T =1k xs= \/%{T (I + 1D =21,

Xs = \E{TN + 100+ 1 (AD)

_ . q q
MX = <BZ|JX|BI> = ”(P2’ SZ)I:Y,U,FY(QZ) - la—,u,vﬁyng(qz) + MMIF:‘;/(QZ)]M(F], sl)’

M3 — (B,JAIB,) = il(ps, s2>[yﬂF1*<q2) —ic,,

Transition 1/2* — 3/2*:

PHYSICAL REVIEW D 80, 034025 (2009)

We derive the expressions for the semileptonic decay con-
stants F} (0) and F4(0) of double-heavy baryons using the
master formulas:

3
FY(0) = <B'| ) [1,,.]"|B>
i=1

3
and F(0) = <B'| Z[U3Ibc](i)|3>,
=

where o5 is the z component of the Pauli spin matrix and
I, is the flavor matrix responsible for the b — ¢ semi-
leptonic transitions. In Table IIT we list the results for the
Ep,0,-type baryon decay modes. Corresponding results
for the () o,-type baryon decay modes can be obtained
by replacing the light nonstrange quark ¢ by the strange
quark s.

APPENDIX B: SPIN KINEMATICS OF
SEMILEPTONIC DECAYS

In this Appendix we first write down covariant expres-
sions for the current-induced transitions involving the
(1/2%) and (3/2%) baryons, which allows us to define
sets of vector and axial vector invariant transition form
factors. We then calculate all helicity amplitudes expressed
in terms of linear combinations of the invariant form
factors. The advantage of using helicity amplitudes is
that one obtains very compact expressions for the decay
rates including lepton mass effects. We mention that the
use of helicity amplitudes allows one also to derive very
compact expressions for single angular decay distributions
and for joint angular decay distributions of the decay
products (see e.g. [20,21]).

The momenta and masses in the semileptonic decays of
double-heavy baryons are denoted by

Bi(py, M) — By(py, M) + l(p, m;) + v/(p,,0), (Bl)

where p; = p, + ¢ and ¢ = p; + p,. The matrix ele-

ments of the vector and axial vector currents JX(A) between
the baryon states with spin 1/2 or 3/2 are written as
Transition 1/2% — 1/2%:

(B2a)

A

M, (B2b)

q
F3(q%) + #F?(qz)]%u(pl, 51)-
i
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PHYSICAL REVIEW D 80, 034025 (2009)

« _ V4 PiaP P1aq
M}, = (B3lJ}1By) = a*(pa, s2>[ngY(q2) +7, A;“ FY(q*) + ‘;4 2FY(g?) + }M "FV(qz)]vsu(pl,so (B3a)
1 1
# _ Pla PiaP Plaq
M4 = (B3lJA1By) = a*(pa, sz)[ga,LFi‘(q%wM la pA(g?) + TR RGP + 2 “FA(q2>]u<p1,s1> (B3b)
M, M? M3}
Transition 3/2% — 1/2%:
« _ p P2aP P2aq
M,Z=<BZ|JX|BI>=u(pz,s»[ngY(qz)w,L Ble pV(g?) + 2L FY (gP) + =2 “FV(gZ)]ysu (pr.s1),  (Bda)
M, M3 M3
# _ P2a P2aP P2a4
M;z=<lefﬁlBl>=u(pz,s»[gaw?(qzwn 2 (2 + P2 Pl pa g2y o P2 ’LFA<q2>] “(psy).  (Bdb)
M, M3 M3
Transition 3/2% — 3/2%:
* * - q
M), = (B3| |BY) = a*(py, 52) ga,B()’;LFV(qz) —ioy, M, FV( )+ = M FV( 2))
q q . q 8and 88uda
02 (@)~ i P + D) + %Fﬂqh]uﬂ(m,sl), (Bsa)
* * = [ . q q
My, = (B3|J5|BY) = a“(pa, s5) ga,e(yﬂFf(qz) - lU,wﬁVFﬁ‘(qz) + VMIF?(QZ))
6I q . q q Sapdp — 8pua
+ 0 (U@ — il PGP+ P )+ SO B |y ). B

where o, = (i/2)(v,¥, — ¥»¥,) and all y matrices are
defined as in Bjorken-Drell.

Next we express the vector and axial helicity amplitudes
H Xz’ﬁw in terms of the invariant form factors F lV A where
Aw =t *1, 0 and A, = *1/2, *3/2 are the helicity
components of the W g g and the daughter baryon,
respectively. Since lepton mass effects are taken into ac-
count in this paper we need to retain the temporal compo-
nent ‘¢ of the four-currents J X‘A. We need to calculate the

expressions

HYA = MpA(A)EH (Ay). (B6)

Note that the helicity of the parent baryon (A;) is fixed by
the relation A; = A, — Ay. We shall work in the rest frame
of the parent baryon B; with the daughter baryon B,

moving in the positive z direction: p, = (M;,0), p, =

(EZ) O’ 07 |p2|)7 and q = (QO’ 0’ 0’ _|p2|)7 where EZ =
0./2M,), Ip2| = VO 0-/(2M)), qo0 =
M| — E, and Q. = (M| = M,)* — ¢*.
The J = 1/2 baryon spinors are given by
+
ﬁz(l?zy i%) =VEy + Mz()(iy%/ﬁ:),
2 2 (B7)

1 .
Ml(Pb i§> = 2M1(X0* ),

where
_ 1
X + 0

[
and

(V)

are two-component Pauli spinors.
The J = % baryon spinors are defined as

u,(p,s*) = Z(l)\%s

A

3
25" )eulp Dulp.s). (®B9)

where (1A1/2s|3/2s*) is the projection matrix element of
the spin 3/2 onto spin 1/2; €,(p, A) is the polarization
vector and u(p, s) are the usual J = 1/2 spinors defined
above. In particular, the J = 3/2 spinors with helicities
A= *3/2, +1/2 read

3 1
ulu(p, ii) =€,(p, il)u(p, iE)’
1 2 1
u’u<p, ii) = J;EM(p’ O)M(p, + E)
1 _1
+ \/;e#(p, il)u(p, ¥ 5)

The polarization vectors corresponding to the parent and
daughter J = 3/2 baryons are given by:

(B9)

1
e(p,00=1(0,0,0,1), €e(p;,£1)=—2=(0,F1,—10),
(p1,0)=( ), €(p,=1) J'z'( - )
1 1
(py,0) =— ,0,0,E,), “(py, 1) =—=(0,*1,1,0).
€ (p2,0) M2(|P2| 1), €(py ) \/5( *1,i,0)

(B10)
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The polarization vectors of the W, are written as They satisfy the conditions
. 1
E"H(t) = ﬁ(‘lo, 0,0, —Ip.l), quEH*(=£1,0) =0, 4, E" (1) = \/; (B12)

. 1 ) Using the above formulas for the spin wave functions with
en(=l) = \TE(O’ *1,4,0), (BI1)  definite helicities one can then calculate the helicity am-
plitudes H,,, = HY, — H}, , where the vector and

2Aw Ay Ay

1 . . . ..
EH(0) = —2(Ip2|, 0,0, gp). axial components for the different spin transitions are
q defined by: Transition 1/2% — 1/2%:
v v pv v 4 v V(v v @ 4 v v v M.
H%tza%t<F1M,+F3 1‘41), H%OZCY%O<F1M++F2 ]‘41), H%IZCY%1<_F1 _F2 ]‘41),
(B13)
A Af A s A A (A s A A A aM-
H%t=a%t<FlM+—F3 E), H%OZCY%OC(FIM__Fzﬁl), H%OZCY%]<_F1 +F2V1)’
where
PPy Mi+M;—q? M? + M3
M. =M, *M,, 2=2M\M ) = = , = ,
1 2 q 1 Z(Wmax W) M1M2 2M1M2 Wmax 2M1M2
oV — o — 2M My(w + 1) oV — of — 2M My(w — 1) (B14)
I | D I e Y
2 2 q 2 2 q

From parity or from explicit calculations one has for the 1/2" — 1/2% helicity amplitudes

vV —
H*/\z,f)\w -

Hie  Hion, = ~Hi, (B15)
Transition 1/2% — 3/2%:

2 M2 q2

2
H) = —‘/;al‘g(FY(le — M,) — FY(w+ )M_ + FY(w? — )M,),
2

10
HY = Lol (FY —2FYw+ 1), HY = — ol FY
1 1 ’ 31 51 ’
6 2
2 \/_ 2 2 \/_ 2 (B16)
A |2 04 A A a Mo e
H%I_ ga%t(W‘i‘l) FlMl+F2M_+F3E(M1W_M2)+F4E,
2
H’;O = \/;a;‘O(Ff(le - M,) + F’Z“(w - 1)M, + Fg‘(w2 — 1)M,),
1 1
H?l = %a; (F{ = 2F3(w — 1)), HQ = \/—Ea?IFf.
From parity or from explicit calculations one has for the 1/2* — 1/3% helicity amplitudes
HYony = ~Hiaw  HA, = Hiy (B17)

Transition 3/2% — 1/2%:
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2 2
HY = \[ alw 1)(FVM2 +FYM, - FV—(M, Myw) — FY 174_)
2 2

2
Hy = Jralo(FV(Ml Myw) + FY(w + 1)M_ — FY(w* — )M)),
2

1 1
HLV1 = all(FV +2FY(w + 1)), HY = allFY,
2

6 2
G o (B18)
2 M q
Hfy = \/-alt(w + 1)(FAM2 FAM_ — Fg‘ﬁ;(M1 — Myw) — F} Mz)
2
HQ) = \[a,o( F{ (M| — Myw) + Fy(w — DM, + F{(w? — 1)M),
HY = Lad (CF 2R — 1), HA = — L ad
W= g w= 3 N
From parity or from explicit calculations one has for the %Jr — %Jr helicity amplitudes
HK/\Z Ay H); Aw’ Hé/\z,_)\w = Hﬁz,/\w‘ (B19)
Transition 3/2% — 3/2*:
H%‘;=— 3 H;(FV,FX,F¥)+§(WZ—I)EH%‘;(FV,F;/,FX),
1+2 2 1
HY =~ HYFL S Y + 507 = D2 HYFL YL P — a0+ DY < pa,
2 2 1
2w
H%V1 =3 (FV,FX,FV)+ (w —1)— (FV,FSV,FV)+ a}’l(w+1) F7V,
y | vV gV gV 1 14 v o L vy pvopy !
H%]——\/§ (F , F, F )+\/_a1](w+1) F7, H%il——ﬁH%l(F ,F2,F3)+\/§a,l(w+l)F ,
H%‘;: —H;(FV, FX,F;/), H3V = —Hl (FV,FX,FX),
1-2 (B20)
2wy
Hy = ———Hy(FY, 3 FY) + 3 ( ? - 1) ;;(FA, F3, Fg),
1 —2w V2gq
H%AO =—3 (I/Z)O(FA’ F3, F{) + = ( 2 — 1) HA (FA, F4, F4) + 3% ( - 1)— M, F?,
A 2W A (A pA pA A pA pAy ) A
Hy = —— H(F{, F3, F5) + 3 2 w? —1) (F,FS,F)——a,l(W—U_F,
2
1 1 1
Hg‘l = —7§HA (F{, F3, F4) — Tall(w — 1)—FA, HA L= T ]l(FA, Fy, F%) —\/—ga,l(w - 1)F%,
Hj = —HM\FLF3,FY),  Hjy = —H\(F}, Fg*, F{),
where
q* q* M,
Hl,(x y,2) = om,(xM + le) H%VO(x, y,2) = a%vo(xM+ + yﬁl), (x y,2) = —afl(x + yﬁl),
(B21)
A — A 7’ A — A 7 A — A M-
H%t(x, y,7) = a%t<xM+ - ZE H%O(x, v, 2) = a xM_ — yﬁl) H%I(x, y,2) = ag | —x + yﬁl>
From parity or from explicit calculations one has for the 3/2% — 3/2* helicity amplitudes
HK/\z,_Aw = H/\\/z,/\w’ Hé/\z,_/\w = _Hﬁz,/\w' (B22)
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The decay width is given by the expression

_ . GilVexul” M,

T,

[l
mj

PHYSICAL REVIEW D 80, 034025 (2009)

@ —m)Nw? = 1H

(B23)

N U H
where N, = 1 fors; = 1/2 and 1/2 for s; = 3/2; H, \—s, are the bilinear combinations of the helicity amplitudes
j‘[%_,% = |H(1/2)1|2 + |H7%,1|2 + |H%O|2 + |H,%0|2
2
m
—12(3|H%,|2 +3|H > + [Hy P + [H P+ [Hy > + [H ), (B24a)
Hy ;= |H11|2 +H P+ Hy P+ 1H g P+ [Hy | + [H g
(3|H1 |2 + 3|H_ 1t|2 + |I‘111|2 + |H 1|2 + |H21|2 |H7%,1|2 + |H%0|2 + |H,%0|2), (B24b)
Hy = |H| ke H_y o2+ Hy 2+ 1 |H%0|2 +1H
—’2(3|H%,|2 +3IH P+ [Hy >+ [Hoy P+ [ H P+ [ H oy P+ [HylP + [H o), (B24c)
3‘[%_,% |I‘111|2 + |H 1|2 + |H31|2 + |H_ 3- 1|2 + |H1 1|2 |H_%1|2 + |H%0|2 + |H_%0|2 + |H%0|2 + |H_%0|2
—’2(3|H1 >+ 31H > + 3|Hy > + 31H 31> + |Hy |> + |H > + [Hy > + [H_y I + |Hyl?
+ |H7%O| |H%,]|2 + |H7%1|2 + |H%0|2 + |H,%0|2). (B24d)
In the zero recoil limit the expressions for the rates simplify considerably. One obtains
Iy = By f " W — L (W) F2w) + I (w)G2(w)), (B25a)
g 1
Ty = By f " dww? — 1L (w)G2(w), (B25b)
1
F%_,% 2 [ S dwVw? = 115(w)G2(w), (B25¢)
1 max
Ly =5 B [ T 10 )P 00 + 100G 0), (B25d)
where F = FY, G = F{, r = M,/M;,w = (1 + r*)/(2r) and
GE|Vexml? . _ w?—1
By = CECCOL MY ) = 0 F DG £ 1 =20, b(w) = 20w + 1)(wmax et )
w? — 1r . 4¢ . 3 +2uw?
L(w) = 20w + 1)(wmax —w T) I (w) = §<lf(w) = (e + D2 — 1)). (B26)
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