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I. INTRODUCTION

The energy between a static quark and a static antiquark
separated at a distance r, which is referred to as the static
energy, is a basic object to understand the dynamics of
QCD [1]. When calculated at short distances in perturba-
tion theory, the virtual emission of ultrasoft gluons (i.e.
gluons with energy and momentum smaller than 1=r that
can change the color state of the quark-antiquark pair from
singlet to octet) produce infrared divergences. These, after
resummation of certain diagrams, induce in the static
energy logarithms, ln�sð1=rÞ [2]. In an effective field
theory framework [3,4], the separation of scales in the
problem is made explicit: the static energy becomes the
sum of a matching coefficient, the static potential, which
encodes all contributions from the scale 1=r, and of the
contributions coming from ultrasoft gluons, which start at
three loops. Logarithms are remnants of the cancellation
between infrared divergences of the potential and ultravio-
let divergences of the ultrasoft contributions [5]. These
logarithms may be potentially large when r is very small,
so that �sð1=rÞ ln�sð1=rÞ terms in the static energy may
need to be resummed. The resummation of the ultrasoft
leading logarithms1 was performed in [6]. The anomalous
dimension of the ultrasoft next-to-leading logarithm2 was
calculated in [7]3 and turned out to be quite large, showing
that the resummation of the ultrasoft next-to-leading log-

arithms should also be addressed. In this paper, we will
consider this resummation.
It has been argued in [9–12] that the proper considera-

tion, and cancellation, of the renormalon singularities is
crucial to obtain a good convergence of the perturbative
series for the static potential in the short-distance region.
The detailed analysis of the possible influence of ultrasoft
effects in the renormalon structure of the potential will not
be presented in this paper. We will just follow the analysis
of [9–12], which essentially takes advantage of the fact that
a constant term may be added to the potential, a freedom
that remains even if ultrasoft effects are taken into account.
As we will see later, this seems to be enough to obtain a
convergent perturbative series for the static potential in the
short-distance region.
The static potential is a basic ingredient of heavy-

quarkonium physics [13]. In particular, its perturbative
evaluation at higher orders is relevant to describe the top-
quark pair production process near threshold. This process
is expected to allow the extraction of the top-quark mass to
a high precision, and hence a remarkable effort is being
made to calculate it at next-to-next-to-next-to-leading or-
der (N3LO) [14–17]. The past experience with the next-to-
next-to-leading order (N2LO) results [18] indicates that
both renormalon cancellation and the logarithmic resum-
mation [19,20] are necessary for accurate determinations
of the position of the pole and of the shape of the cross
section, respectively. Our results will be relevant for the
N3LL calculation of this process.
The paper is structured as follows: In the next section,

we introduce residual mass terms in potential non-
relativistic QCD (pNRQCD) and summarize the current
status of the perturbative calculations for the static poten-
tial. In Sec. III, we present and solve the renormalization
group (RG) equations for the static pNRQCD Lagrangian,
at next-to-leading order, and briefly describe the renorma-

1Leading ultrasoft logarithms contribute to the static energy at
order �3þn

s lnn�s for n � 0, i.e. at next-to-next-to-leading loga-
rithmic, N2LL, order.

2Next-to-leading ultrasoft logarithms contribute to the static
energy at order �4þn

s lnn�s for n � 0, i.e. at next-to-next-to-next-
to-leading logarithmic, N3LL, order.

3The calculation relies on the next-to-leading order calculation
of the chromoelectric correlator done in [8].
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lon subtracted scheme that we use. Section IV presents a
comparison of our results for the static energy with lattice
data, and the numerical extraction of the missing piece of
the three-loop static potential. We conclude in Sec. V.

II. POTENTIALS AND RESIDUAL MASS TERMS
IN PNRQCD

The general form of the dimension six operators in the
pNRQCD Lagrangian is

csS
ySþ coO

ayOa; (1)

where S is the singlet and Oa the octet fields. The coef-
ficients cs and co have dimension one.

Let us recall that, in order to define heavy-quark effec-
tive theory (HQET) beyond perturbation theory, or even in
perturbation theory when regularizations with an explicit
scale (cutoff) are used, one needs to introduce a residual
mass term �mQ in the Lagrangian [21]

L HQET ¼ c yðiD0 � �mQÞc þO
�
1

mQ

�
; (2)

with mQ the heavy-quark mass and c the heavy-quark

field. We may associate to �mQ the size of the typical

hadronic scale �QCD. This residual mass term will be

inherited by the pNRQCD Lagrangian. In the paper, we
consider the weak-coupling regime of pNRQCD, defined
by

1

r
� �s

r
� �QCD; (3)

at leading order in the 1=mQ expansion; in this situation,

the residual mass term is absorbed in the coefficients cs and
co above. Therefore, it is useful to split them in a part that
is proportional to 1=r, which corresponds to the singlet and
octet potential,4 and a part that is proportional to �QCD:

cs ¼ Vs þ�s ¼ �CF

�Vs

r
þ�s; (4)

co ¼ Vo þ�o ¼ 1

2Nc

�Vo

r
þ�o; (5)

where

�Vs;o
ðr; �Þ ¼ �sð1=rÞ

�
1þ ~a1

�sð1=rÞ
4�

þ ~a2s;o

�
�sð1=rÞ
4�

�
2 þ

�
16�2

3
C3
A lnr�þ ~a3s;o

��
�sð1=rÞ
4�

�
3

þ
�
aL24 ln2r�þ

�
aL4 � 16

9
�2C3

A�0ð5� 6 ln2Þ
�
lnr�þ ~a4s;o

��
�sð1=rÞ
4�

�
4 þ . . .

�
; (6)

with

~a 1 ¼ 31

9
CA � 10

9
nf þ 2�E�0; (7)

~a2;s ¼
�
4343

162
þ 4�2 � �4

4
þ 22

3
�ð3Þ

�
C2
A �

�
899

81
þ 28

3
�ð3Þ

�
CAnf �

�
55

6
� 8�ð3Þ

�
CFnf þ

�
10

9
nf

�
2

þ
�
�2

3
� 4�2

E

�
�2

0 þ �Eð4~a1�0 þ 2�1Þ; (8)

~a 2;o ¼ ~a2;s þ C2
Að�4 � 12�2Þ; (9)

aL24 ¼ 16�2

3
C3
A

�
� 11

3
CA þ 2

3
nf

�
; (10)

aL4 ¼ 16�2C3
A

�
~a1 þ nf

�
� 20

27
þ 4

9
ln2

�

þ CA

�
149

27
� 22

9
ln2þ 4

9
�2

��
; (11)

� is the ultrasoft factorization scale. The color factors are
defined as CF ¼ ðN2

c � 1Þ=ð2NcÞ, CA ¼ Nc, where Nc is
the number of colors; nf is the number of (massless)
flavors; �E is the Euler constant. The strong coupling

constant �s is in the MS scheme. The beta function is
defined as

�s�ð�sÞ ¼ d�s

d ln�
¼ � �2

s

2�

X1
n¼0

�
�s

4�

�
n
�n; (12)

where �0 ¼ 11CA=3� 2nf=3, �1 ¼ 34C2
A=3�

10CAnf=3� 2CFnf, and explicit expressions of �2 and
�3 may be found, for instance, in [22,23].

4The singlet potential is often referred to as the static potential,
a terminology that we also adopt in the paper. Recall that it
coincides with the static energy up to two loops but differs from
it beyond that order.
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The one-loop coefficient ~a1 was calculated in [24,25],
the two-loop singlet coefficient ~a2;s in [26–29], and the

two-loop octet coefficient ~a2;o in [30]. The logarithmic

piece of the third-order correction was calculated in
[4,5,19,31], whereas the nonlogarithmic piece ~a3s;o has

not been completely calculated yet. The fermionic contri-
butions of ~a3s have been presented very recently in [32],
where the computation of the nf independent piece is

reported to be in progress. A Padé estimate of ~a3;s gives

~a3;s ¼ �48�3Vð3Þ
s , Vð3Þ

s ðnf ¼ 3Þ ¼ �38:4, Vð3Þ
s ðnf ¼

4Þ ¼ �28:7, Vð3Þ
s ðnf ¼ 5Þ ¼ �20:5 [33]. The double loga-

rithmic coefficient aL24 may be obtained from [6,7], and the
logarithmic coefficient aL4 was obtained in [7].5�s;o stands

for �s;oðr; �Þ.6
At order r0 in the multipole expansion, the dimension six

operators of pNRQCD do not have an anomalous dimen-
sion and, therefore, the RG equations for the coefficients
�s and�o will have the same structure as in the HQET the
RG equation for the coefficient of the operator c yc has.
At next-to-leading order in the multipole expansion, the
pNRQCD Lagrangian reads

LpNRQCD ¼ Llight þ
Z

d3rTrfSy½i@0 � csðr; �Þ�S
þOy½iD0 � coðr;�Þ�Og
þ VAðr;�ÞTrfOyr � gESþ Syr � gEOg

þ VBðr; �Þ
2

TrfOyr � gEOþOyOr � gEg
þ . . . ; (13)

where Llight is the part of the Lagrangian involving gluons

and light quarks, which coincides with the QCD one, S ¼
1c=

ffiffiffiffiffiffi
Nc

p
S, O ¼ ffiffiffi

2
p

TaOa, E is the chromoelectric field, VA

and VB are matching coefficients associated with the OðrÞ
operators of the pNRQCD Lagrangian, and the dots stand
for higher-order terms in the multipole expansion.
Ultrasoft gluons cause transitions between singlet and octet
fields and generate an ultrasoft anomalous dimension for
the dimension six operators. In particular, this modifies the
RG equations for �s and �o.

III. RENORMALIZATION GROUP

The general structure of the RG equations of pNRQCD
in the static case has been discussed in [6], where the
complete N2LL order was calculated. Here, we will calcu-
late the completeN3LL order. It has been proved in [7] that

in order to perform the calculation one needs not to con-
sider higher orders in the multipole expansion beyond
those already contributing to the N2LL calculation.
Hence, the structure of the RG equations remains the
same as in [6], but the anomalous dimensions need to be
calculated to one order more in the ultrasoft loops. The RG
equations read

�
d

d�
cs ¼ �sð�sÞV2

Aðco � csÞ3r2

�
d

d�
co ¼ �oð�sÞV2

Aðco � csÞ3r2

�
d

d�
�s ¼ �s�ð�sÞ

�
d

d�
VA ¼ �Að�sÞVA

�
d

d�
VB ¼ �Bð�sÞVB;

(14)

where the anomalous dimensions �sð�sÞ, �oð�sÞ, �Að�sÞ
and �Bð�sÞ are needed at order �2

s . Strictly speaking the
equations above hold for cs;o ¼ Vs;o þ�s;o, provided that

Vs;o � �s;o and one stays at linear order in �s;o. If qua-

dratic or cubic terms in �s;o are included, additional coun-

terterms in the potential are needed to absorb the
ultraviolet divergences of the ultrasoft calculation.

A. Anomalous dimensions

We calculate the anomalous dimensions in a regulariza-
tion scheme in which the gluons, light quarks, and center of
mass motion are taken in D dimensions but the potentials
in the ultrasoft loops are kept in three dimensions. We

renormalize using the MS scheme in (relative) coordinate
space.
In this scheme, the anomalous dimension �s was ob-

tained in [7]. It is �2�s � @Zð1Þ=@�s, where Zð1Þ denotes
the coefficient of the 1=�̂ (1=�̂ ¼ 1=�� �E þ ln4�, D ¼
4� 2�) pole of the ultrasoft contribution to the static
energy; we have

�sð�sÞ ¼ � 2

3

�sCF

�

�
1þ 6

�s

�
B

�
; (15)

with

B ¼ �5nf þ CAð6�2 þ 47Þ
108

: (16)

In a similar way, �o can be obtained from the 1=�̂ poles
of the ultrasoft contribution to the self-energy of the octet
field. It is important to recall that, although we may obtain
it by matching gauge-dependent Green’s functions, the
self-energy of the octet field is a gauge invariant quantity
in perturbation theory, for the same reason as the pole mass

5Only the coefficient of the singlet potential was obtained
there, it will be shown later in the paper that it coincides with the
coefficient of the octet potential.

6To simplify the notation, we will often suppress the depen-
dence on r and just write �s;oð�Þ.
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is. At the order we are interested in, it can be obtained from
the following expression to be taken in the T ! 1 limit
[4]:

hTaWhT
bi ¼ ZoðrÞe�iTVoðrÞ

�
h	ðT=2;�T=2Þadjab i

� g2

2Nc

V2
AðrÞ

Z T=2

�T=2
dt
Z t

�T=2
dt0e�iðt�t0ÞðVs�VoÞ

� h	ðT=2; tÞadj
aa0r �Ea0 ðtÞr �Eb0 ðt0Þ

�	ðt0;�T=2Þadj
b0bi

�
: (17)

TaWhT
b stands for a Ta and a Tb insertion at the time T=2

and�T=2, respectively, in the space sides of a rectangular

Wilson loop, and 	ðt; t0Þadjab is a Wilson line in the adjoint

representation. The Feynman diagrams involved in the
evaluation of this quantity in a covariant (or Coulomb)
gauge do not coincide with the ones needed for �s (com-
pare Fig. 1 with Fig. 4 of [7]), and would require extra
calculations. Fortunately there is an argument that makes
the explicit calculation unnecessary. If we take the A0 ¼ 0
gauge, the number of diagrams to be evaluated collapses to
a few (the octet field does not emit gluons anymore),
which, in addition, are the same for �s and �o. In this
gauge, both anomalous dimensions are related by trivial
color factors. Since both anomalous dimensions are gauge
invariant, it turns out that we can read �o from the known
result for �s:

�oð�sÞ ¼ � �sð�sÞ
N2

c � 1
: (18)

At order �s, this is confirmed by the explicit calculation of
[4].
Let us turn now to the evaluation of �A and �B. We use

the fact that the � dependence of VA and VB can be also
obtained from the infrared logarithms in the matching
calculation between HQET and pNRQCD. There is only
one diagram that is infrared divergent in the matching
calculation: it is displayed in Fig. 2. However, the diver-
gence turns out to be linear and produces no logarithms.
Then these anomalous dimensions remain zero also at
next-to-leading order

×

)b()a(

)d()c(

)f()e(

)h()g(

)j()i(

)l()k(

×××

× × × ×

× ×× ×

× × × ×

× ×××

×× × ×

FIG. 1. Ultrasoft contributions to the self-energy of the octet
field in a covariant gauge, at the order of interest. Symmetric
graphs are understood for (c)–(i).

FIG. 2. Infrared divergent diagram in the matching calculation
of VA and VB.
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�Að�sÞ ¼ �Bð�sÞ ¼ 0: (19)

B. Solution of the RG equations

The RG equations for Vs and Vo can be read from (14)
using that Vs;o � �s;o and neglecting the latter. They are

given by

�
d

d�
Vs ¼ � 2

3

�sCF

�

�
1þ 6

�s

�
B

�
V2
AðVo � VsÞ3r2

�
d

d�
Vo ¼ 1

3

�s

�

1

Nc

�
1þ 6

�s

�
B

�
V2
AðVo � VsÞ3r2

�
d

d�
�s ¼ �s�ð�sÞ

�
d

d�
VA ¼ 0

�
d

d�
VB ¼ 0:

(20)

The solutions of these equations, at the order we are
interested in, are VAð�Þ ¼ VAð1=rÞ ¼ 1, VBð�Þ ¼
VBð1=rÞ ¼ 1 (from VA;Bð1=rÞ ¼ 1þOð�2

sÞ, see [7]), and

Vsð�Þ ¼ Vsð1=rÞþ 2

3
CFr

2½Voð1=rÞ�Vsð1=rÞ�3

�
�
2

�0

ln
�sð�Þ
�sð1=rÞþ
0½�sð�Þ��sð1=rÞ�

�
; (21)

Voð�Þ ¼ Voð1=rÞ� 1

3Nc

r2½Voð1=rÞ�Vsð1=rÞ�3

�
�
2

�0

ln
�sð�Þ
�sð1=rÞþ
0½�sð�Þ��sð1=rÞ�

�
; (22)

where


0 ¼ 1

�

�
� �1

2�2
0

þ 12B

�0

�
: (23)

The RG equations for �s and �o can also be obtained
from (14) by expanding cs;o about Vs;o and keeping the

terms linear in �s;o. They are given by

�
d

d�
�s ¼ �2

�sCF

�

�
1þ 6

�s

�
B

�
V2
Ar

2

� ½Voð1=rÞ � Vsð1=rÞ�2ð�o ��sÞ
�

d

d�
�o ¼ �s

�

1

Nc

�
1þ 6

�s

�
B

�
V2
Ar

2½Voð1=rÞ � Vsð1=rÞ�2

� ð�o ��sÞ
�

d

d�
�s ¼ �s�ð�sÞ; (24)

where we have already approximated Voð�Þ and Vsð�Þ by
Voð1=rÞ and Vsð1=rÞ [the � dependence of Voð�Þ and
Vsð�Þ enters at N3LO, which is beyond the accuracy of
(24)]. The solutions of the RG equations read

�sð�Þ ¼ Ns�þ 2CFðNo � NsÞ�r2½Voð1=rÞ � Vsð1=rÞ�2

�
�
2

�0

ln
�sð�Þ
�sð1=rÞ þ 
0½�sð�Þ � �sð1=rÞ�

�
;

(25)

�oð�Þ ¼ No�� 1

Nc

ðNo � NsÞ�r2½Voð1=rÞ � Vsð1=rÞ�2

�
�
2

�0

ln
�sð�Þ
�sð1=rÞ þ 
0½�sð�Þ � �sð1=rÞ�

�
;

(26)

where Ns, No are two arbitrary scale-invariant dimension-
less constants, and � is an arbitrary scale-invariant quan-
tity of dimension one.
The integration constants Ns and No are fixed by the

initial conditions �sð1=rÞ and �oð1=rÞ of the solutions of
the RG equations. In turn, the initial conditions are fixed by
matching a suitable Green’s function in QCD with the
corresponding one in pNRQCD. Note that if at the match-
ing scale �sð1=rÞ ¼ �oð1=rÞ ¼ 2�mQ, as it happens in

minimal subtraction-type schemes, then �sð�Þ ¼
�oð�Þ ¼ 2�mQ for any �. We will see, in the following

sections, the convenience to use an RS (renormalon sub-
tracted) scheme. In the RS scheme, �sð1=rÞ and �oð1=rÞ
are different constants (which also differ from 2�mQ) and

hence�sð�Þ and�oð�Þ evolve in a nontrivial way accord-
ing to the RG equations above.

C. The renormalon subtracted scheme

The discussion in the previous sections is independent of
the renormalization scheme used for the matching calcu-
lation between HQETand static pNRQCD at the scale 1=r.
The outcome of the matching calculation only enters
through the initial conditions of the RG equations. It is
well known that the singlet potential Vs calculated in the

MS scheme displays a bad behavior as a series in �sð1=rÞ
even at small values of r. This bad behavior may be
ascribed to renormalon singularities that lie very close to
the origin of the Borel plane. In order to treat the renorma-
lon singularity, we shall follow the procedure described in
Ref. [34], the so-called RS scheme. Under the RS scheme
we understand a class of subtraction schemes that subtract

from the perturbative series of Vs;o in the MS scheme the

nonintegrable piece at u ¼ 1=2 in the Borel transform of
the potential, expanded about u ¼ 0 and integrated over u.
The whole nonanalytic piece (nonintegrable and inte-
grable) at u ¼ 1=2, expanded about u ¼ 0 and integrated
over u, reads (at the scale �)

Rs;o�
X1
n¼1

�
�0

2�

�
n
�sð�Þnþ1

X1
k¼0

dk
�ðnþ 1þ b� kÞ
�ð1þ b� kÞ : (27)

The coefficients dk are given in terms of the coefficients
of the beta function. Since the beta function is known up to
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four loops only, all dk for k � 3 are unknown; the known terms are

d0 ¼ 1; d1 ¼ �2
1 � �2�0

4b�4
0

; d2 ¼ �2�4
0�3 þ 4�3

0�1�2 þ �2
0ð�2

2 � 2�3
1Þ � 2�0�

2
1�2 þ �4

1

32ðb� 1Þb�8
0

; (28)

with

b ¼ �1

2�2
0

: (29)

Hence, it is practically unfeasible to subtract Eq. (27). This
is not a real problem because only subtracting the k ¼ 0
term, which corresponds to the nonintegrable piece in the
Borel transform, is necessary in order to obtain a series that
is Borel summable. In the following, we will subtract all
the known terms in Eq. (27), i.e. up to k ¼ 2, as was done
in the original proposal of the RS [34].

Furthermore, since the potential is given as an expansion
of �sð1=rÞ, in order to achieve a successful renormalon
subtraction at every order in �s, it is important to expand
�sð�Þ in terms of �sð1=rÞ (or vice versa). We chose to
expand �sð1=rÞ in terms of �sð�Þ in Eq. (6) instead of
doing the reverse in Eq. (27), because the uncertainty in the
normalization constants Rs;o of the renormalon singular-

ities is then largely absorbed in the arbitrary additive
constant needed to compare with lattice data (as it will
be described in the next section). This expansion generates
lnr� terms, which will be kept from becoming large by
choosing � ¼ 1=hri ¼ 3:25=r0, hri being the central value
of the range where we compare with lattice data and r0
being the reference scale used in the lattice computation
(see the next section). At the order we are working, we only
need to keep terms up to order �4

sð�Þ.

IV. COMPARISON WITH LATTICE RESULTS

In this section we will compare our results with the
(nf ¼ 0) lattice data of Ref. [35]. This will allow us to

extract a value for the three-loop coefficient ~a3s.

A. Setting the scales and parameters

We choose, as anticipated in the previous section, � ¼
1=hri ¼ 3:25=r0 (the reference scale r0, used in the lattice
computation, has a value of about 0.5 fm, see [35] for more
details; we will present all our results in units of r0). The
remaining scales and parameters entering in the expres-
sions are chosen as follows: The number of light flavors nf
is set to zero. The ultrasoft scale � is set to � ¼ 2=r0. The
normalizations of the u ¼ 1=2 renormalon singularities for
the singlet and octet potentials, Rs;o, are determined using

the procedure described in [36]; one obtains [12,37]

Rs ¼ �1:333þ 0:499� 0:338 ¼ �1:172;

Ro ¼ 0:167� 0:0624þ 0:00972 ¼ 0:114:
(30)

�s at the relevant scales is determined according to [38],

which uses�MSr0 ¼ 0:602ð48Þ. We will use the running of

�s according to the order we are working at (for instance,
for the one-loop curve we use the two-loop running for the
order �s term and the one-loop running for the order �2

s

term, and so on).
The three-loop coefficient ~a3;s, which enters in our

N3LL results, is unknown. We can use the Padé estimate
of [33] to get an idea of its expected size (that is, use
cPred0;nf¼0 ¼ 313 from Table I of that paper, which corre-

sponds to ~a3;s ¼ 114633; the relation between c0, V
ð3Þ
s

and ~a3;s is given in Eq. (29d) of [33], for easier reference

we reproduce it in the appendix). To estimate the uncer-
tainty that we should associate to that Padé value we can
make use of the results of [32]. In Ref. [32], all the
fermionic contributions to the three-loop coefficient c0
are calculated, therefore the difference

c0;nf � c0;nf�1 (31)

is known (c0;nf stands for the coefficient c0 calculated with

nf flavors). Since Ref. [33] presents the Padé estimated

values of c0 for nf ¼ 0; . . . ; 6, we can check if those results

satisfy the known values for (31) or not. This comparison is
presented in Table I.7 In addition, we can also obtain c0 for
nf ¼ 0, which is the coefficient we need here, from the

Padé estimated value of c0 for nf ¼ 6 and (31)8:

c
from nf¼6

0;nf¼0 ¼ 239; (32)

to be compared with the value c0;nf¼0 ¼ 313 presented in

[33]. We will take this as an indication that one should
assign an uncertainty of around 30–40% to the Padé esti-
mate. As wewill see later, though, the lattice data is precise
enough to be used to obtain an independent extraction of
the value of c0.

B. The static potential

Using the choices of scales and parameters described in
the previous section, we obtain the singlet potential in the
RS scheme represented in Fig. 3 (to alleviate the notation
we do not explicitly indicate the dependences on � and �
of the different functions in the labels of the plots). In all
the plots in this section, the dotted blue curve will be at tree

7In [32], the coefficient of the dabcdF dabcdF color structure is
given numerically, but the limited numerical precision is not yet
affecting the numbers presented in Table I.

8We chose nf ¼ 6, because it is for nf ¼ 6 that the Padé
approximation comes closest to the three-loop RG accessible
coefficient c1, in the notation of [33] that we reproduce in
Eqs. (A2) and (A4).
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level, the dotted-dashed magenta curve will be at one loop,
the dashed brown curve will be at two loop plus N2LL
resummation and the long-dashed green curve will be at
three loop (with the Padé estimated value for c0, i.e. c0 ¼
313) plus N3LL resummation. As expected and in sharp
contrast to what would happen in an on-shell scheme [12],
we see that when we use a threshold scheme that cancels
the leading renormalon, like the RS scheme, the perturba-
tive series for the potential exhibits a convergent behavior.

C. The static energy

In order to perform a comparison with lattice data, we
have to plot the static energy E0 as a function of r:

E0ðrÞ ¼ Vs þ�s þ �US

¼ Vsðr; �; �Þ þ K1ð�Þ þ K2ð�Þfðr; �; �Þ
þ �USðr;�Þ; (33)

where �s is given by Eq. (25) and �US contains the con-
tributions from ultrasoft gluons. Vs, K1 and K2 have to be

understood in the RS scheme, which is where the � de-
pendence comes from (at the order we are working, f will
not depend on �, which will be dropped from it in the
following). Also, at the order we are working, the renor-
malized expression of �US is only needed at leading order

9

(and can be read from Eq. (14) of [7]):

�US ¼ CF

C3
A

24

1

r

�sð�Þ
�

�3
sð1=rÞ

�
�
�2 ln

�sð1=rÞNc

2r�
þ 5

3
� 2 ln2

�
: (34)

K1 and K2 are the constants Ns� and ðNo � NsÞ� in
Eq. (25), while fðr; �Þ is
fðr; �Þ ¼ 2CFr

2½Voð1=rÞ � Vsð1=rÞ�2

�
�
2

�0

ln
�sð�Þ
�sð1=rÞ þ 
0½�sð�Þ � �sð1=rÞ�

�
:

(35)

We are considering the weak-coupling regime in the
static limit, defined by the hierarchy of scales given in
(3). To have a definite way to organize the terms in
Eq. (33) we will also use

�� Ns�� No���QCD � �2
s

r
; (36)

which is compatible with Eq. (3). Figure 4 shows that the
scale hierarchy of Eq. (3) as well as the counting above
hold for r=r0 � 0:5.
The lattice data of [35] is presented as the difference

between the static energy at distance r and the static energy
at a reference scale rc. Therefore, what we actually need to
plot, in order to compare with the lattice data, is

E0ðrÞ � E0ðrminÞ þ Elatt
0 ðrminÞ ¼ Vs þ ~K1 þ K2fþ �US;

(37)

where rmin is the shortest distance at which lattice data is
available, r0E

latt
0 ðrminÞ ¼ �1:676 is given in Table II of

[35], and ~K1 is a suitable constant, which can be obtained
by imposing the equation to be true at r ¼ rmin.
From the counting described above, we see that the last

two terms in the rightmost part of Eq. (37) only start
contributing at the three-loop level. We also see that, at
three-loop level, we only need the function fðrÞ in Eq. (35)
at leading order, i.e.

fðr; �Þ ¼ 2CF

�
�sð1=rÞ
2Nc

þ CF�sð1=rÞ
�
2 2

�0

ln
�sð�Þ
�sð1=rÞ :

(38)

Therefore, the static energy (that we will use to compare
with lattice data) at N3LL order is given by Eq. (37), with

TABLE I. Values of the difference c0;nf � c0;nf�1 for the exact
result and the Padé estimates.

Exact result [32] Padé estimate [33]

nf ¼ 6 �21:39 �29:6
nf ¼ 5 �26:56 �37:4
nf ¼ 4 �31:86 �44:5
nf ¼ 3 �37:28 �51
nf ¼ 2 �42:84 �57
nf ¼ 1 �48:52 �63

0.15 0.20 0.25 0.30 0.35 0.40 0.45
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r 0
V

s
r

FIG. 3 (color online). Static potential r0VsðrÞ, in the RS
scheme, as a function of r=ro. The dotted blue curve is at tree
level, the dotted-dashed magenta curve is at one loop, the dashed
brown curve is at two loop plus leading ultrasoft logarithmic
resummation, and the long-dashed green curve is at three loop
(Padé estimate) plus next-to-leading ultrasoft logarithmic resum-
mation. The solid black curve is also at three loop plus next-to-
leading ultrasoft logarithmic resummation but using c0 ¼ 250:7,
see Sec. IVD.

9Note that large logarithms have been resummed in Vs, so that
the counting of �US is a fixed order one if �� Vo � Vs.
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Vs given by (21) (understood in the RS scheme), f given by
(38) and �US given by (34). The constant K2 will be fixed
by a fit to the lattice data below r=r0 ¼ 0:5. In all the plots,

we will always display our results until r=r0 ¼ 0:5, which
is the region where we expect perturbation theory and our
hierarchy of scales to be reliable.

1. Analysis of the uncertainties in the static energy

As we have already mentioned, ourN3LL results depend
on the unknown three-loop coefficient c0 (in addition to the
constant K2). The static energy also suffers from uncer-
tainties due to the �MS parameter, used to determine �s,

and from uncertainties due to the neglecting of �5
s=r and

higher-order terms. Since we want to use the lattice data to
extract c0, we need to make sure that the static energy is
more sensitive to variations of c0 (and K2, which will be
also fitted to the data) than to the errors due to�MS and the

higher-order terms.
According to the discussion in Sec. IVA, we will let c0

vary by 35% around the Padé value c0 ¼ 313. K2 will be
varied from �5 to 5. �MS will be varied according to the

range quoted in Ref. [38], �MSr0 ¼ 0:602ð48Þ. Finally, we
assess the impact of neglecting the four-loop, �5

s=r, terms
by simply adding the term 	10CF�

5
s=r to the three-loop

curve (	 10 is intended to be a rough estimate of the size
of the four-loop coefficient in the RS scheme). All those

0.0 0.1 0.2 0.3 0.4
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r r0

r 0
sc
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e

FIG. 4 (color online). Illustration of the hierarchy of scales
relevant for the static energy. The scales are: 1=r (dotted red),
ðVo � VsÞ (dotted-dashed green), �sðVo � VsÞ (dashed black)
and �MS ¼ 0:602=r0 (solid blue). ðVo � VsÞ is taken at tree

level, ðVo � VsÞ ¼ Nc�s=ð2rÞ, and the one-loop running of
�s ¼ �sð1=rÞ is used.
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FIG. 5 (color online). Impact of the variation of c0, K2, �MS and effect of higher-order terms in the N3LL expression for the static
energy, respectively, represented as the green bands. c0 has been varied by 35% around the Padé value c0 ¼ 313. K2 has been varied
from �5 to 5. �MS has been varied according to �MSr0 ¼ 0:602ð48Þ [38], and the effect of higher-order terms has been estimated by

adding the term	10CF�
5
s=r to the N3LL curve. c0 ¼ 313 and K2 ¼ 0 have been used as central values. The red points are the lattice

data of [35].
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variations are shown in Fig. 5 as the green bands. We have
used the Padé value c0 ¼ 313 for the plots where we vary
K2, �MS, and the higher-order terms. K2 ¼ 0 is taken for

the plots where we vary c0, �MS, and the higher-order

terms. We can clearly see that the variations due to c0
and K2 produce larger bands than those due to the uncer-
tainties in �MS and higher-order terms. Therefore, it will

make sense to fit c0 and K2 to the lattice data.

D. Lattice comparison and extraction of c0

We are now ready to compare with lattice data. As we
have seen, the N3LL expression for the static energy de-
pends on two unknown parameters, K2 and c0, which we

will obtain from a fit to the lattice data points below r=r0 ¼
0:5. The result of this two parameters fit (�MSr0 ¼ 0:602
and higher-order terms are set to zero) gives the values

K2 ¼ �1:0465; c0 ¼ 250:7; (39)

the �2=d:o:f: of the fit is 0.07 (we have 4 degrees of free-
dom). Those are the best fit values, but to obtain an allowed
range of values for c0, according to the lattice data, we will
analyze the �2 of theN3LL curve for different values of the
c0 and K2 parameters (with �MSr0 ¼ 0:602 and higher-

order terms set to zero). We choose the allowed range of
values for c0 by identifying the region of the c0-K2 pa-
rameter space where the reduced �2 of the N3LL curve is
better than that of the N2LL curve, and, at the same time,
K2 retains a reasonable power counting value. The reduced
�2 of the N2LL curve is 3383 (in this case we have
6 degrees of freedom). We will allow values of jK2j up to
jK2j ¼ 2, to be conservatively consistent with our power
counting. Figure 6 presents a scatter plot which shows the
values of the ratio ð�2=d:o:f:ÞN3LL=ð�2=d:o:f:ÞN2LL with
different values of the K2 and c0 parameters. In that plot,
lighter (darker) colors correspond to higher (lower) values
of the ratio. From that we obtain the range (215, 350) for
c0, as can be read from the figure. To make the values of �2

easier to visualize, we also present, in Fig. 7, separate scans
over values of c0 and K2, i.e. we scan over c0 or K2, fit the
other parameter for each point, and present the ratio of �2s
as a function of c0 or K2.
In Fig. 8, we show the N3LL curve, with the best fit

values for K2 and c0 given in (39), together with the lattice
data. We also show in the plot the tree-level, one-loop, and
N2LL curves for the static energy. Several comments are in
order. First, we can see that the agreement with lattice is
improved when we go from tree level, to one loop, to
N2LL. We also note that the N3LL curve describes very
well the data. The fit of the N3LL curve to the lattice data
was not constrained to give a value of K2 compatible with
the counting, but this turns out to be the case (recall that our
power counting requires jK2j � �2

s=r��� 0:6, in units
of r0). This gives us much confidence in the consistency of

220 240 260 280 300 320 340
2

1

0

1

2

c0

K
2

FIG. 6 (color online). ð�2=d:o:f:ÞN3LL=ð�2=d:o:f:ÞN2LL for dif-
ferent values of the K2 and c0 parameters. The color of each
point in the c0 � K2 plane represents the value of the ratio,
lighter colors correspond to higher values and darker colors to
lower values. We show values of the ratio up to 1.

FIG. 7 (color online). ð�2=d:o:f:ÞN3LL=ð�2=d:o:f:ÞN2LL for different values of c0 (left) or K2 (right), the other parameter is fitted.
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our analysis. Note also that the best fit value for c0 is
smaller than the Padé estimate of [33], but in better agree-
ment with (32). We would like to emphasize that the values
of c0 in Eqs. (32) and (39) are obtained by completely
independent procedures. Finally, let us also note that, when
we use the value of c0 in Eq. (39), the convergence of the
perturbative series for the potential seems to be slightly
improved, with respect to using the Padé value c0 ¼ 313
(see the solid black curve in Fig. 3).
In Fig. 9 we present the bands obtained by varying c0

and K2 according to the ranges described above, and the
bands induced by the variations in �MS and higher-order

terms. All the bands are obtained by keeping the rest of the
parameters at their central or best fit values.
Let us comment at this point on the scheme, factoriza-

tion scale, and implementation of the RS scheme depen-
dences of the extracted value of c0 (or equivalently ~a3;s).
Concerning the scheme dependence, recall that the scheme
of Ref. [7] has been used to factorize the ultrasoft contri-

butions, which differs from standard MS scheme (we note
that ultrasoft contributions were ignored in the Padé esti-
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FIG. 8 (color online). Comparison of the singlet static energy
with lattice data. We plot roðE0ðrÞ � E0ðrminÞ þ Elatt

0 ðrminÞÞ as a
function of r=r0 and the lattice data of [35] (red points). The
dotted blue curve is at tree level, the dotted-dashed magenta
curve is at one loop, the dashed brown curve is at two-loop plus
leading ultrasoft logarithmic resummation and the solid black
curve is at three-loop plus next-to-leading ultrasoft logarithmic
resummation, using the best fit values of Eq. (39).
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FIG. 9 (color online). Impact of the variation of c0, K2, �MS and effect of higher-order terms in the static energy, respectively,
represented as the gray bands. c0 has been varied in the interval (215 350), K2 in the interval ð�2; 2Þ, �MS has been varied according to

�MSr0 ¼ 0:602ð48Þ [38] and the effect of higher-order terms has been estimated by adding the term 	10CF�
5
s=r to the N3LL curve.

All the bands are obtained by fixing the other parameters at their central or best fit values. The curves are the same as in Fig. 8. The red
points are the lattice data of [35].
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mate of Ref. [33]). However, if we add to ~a3;s the corre-

sponding nonlogarithmic parts coming from �US, then we
obtain the nonlogarithmic piece of the static energy at three
loops (which was denoted as ~a3 in [7]). The three-loop
coefficient of the static energy ~a3 is independent of the
scheme used to factorize the ultrasoft contribution, as
opposed to ~a3;s. At the practical level, the nonlogarithmic

part of the ultrasoft contribution just shifts the values of c0
that we quote above by�1%. Concerning the factorization
scale and implementation of the RS scheme dependences,
we have checked that varying Rs by 30%, Ro by 10%
[according to the corresponding last known terms of the
series in (30)], the scales � and � by 10% and implement-
ing the RS subtraction with just the d0 term in (27) shifts
the range for c0 by a maximum of 7%.

We conclude by noting that both the best fit value from
the lattice comparison and Eq. (32) indicate a value of c0
lower than the Padé estimate c0 ¼ 313. The computation
of this three-loop coefficient is reported to be in progress
[32]. For the sake of comparison, the static energy atN3LO
is given by

E0ðrÞ ¼ �CF�sð1=rÞ
r

�
1þ ~a1

�sð1=rÞ
4�

þ ~a2

�
�sð1=rÞ
4�

�
2

þ
�
16�2

3
C3
A ln

CA�sð1=rÞ
2

þ ~a3

��
�sð1=rÞ
4�

�
3
�

þ K1; (40)

with ~a2 ¼ ~a2s and ~a3 in the range ð1:08; 1:17Þ � 105.

V. CONCLUSIONS

We have calculated the QCD static energy at short
distances at N3LL accuracy, in terms of the three-loop
singlet potential, whose coefficient ~a3;s for nf ¼ 0 is the

only missing ingredient in our calculation. It is remarkable
that such a higher-order calculation can be carried out
analytically, which shows, once more, what invaluable
tools effective field theories provide for higher-order cal-
culations. The static energy at this order turns out to
depend on two arbitrary constants, rather than one, which
encode nonperturbative effects that are competing with the
weak-coupling calculation at the considered accuracy. We
have used the lattice data of Ref. [35] to extract the value of
the unknown piece of the three-loop singlet potential. Our
analysis indicates the following value of ~a3;s:

~a 3;s ¼ 1:11þ0:06
�0:03 � 105; (41)

where the central value corresponds to the best fit of the
N3LL curve. For those values, an excellent agreement with
lattice data is achieved in the region where the weak-
coupling calculation is reliable.

ACKNOWLEDGMENTS

We thank A. Pineda for many clarifications. N. B., J. S.,
and A.V. acknowledge financial support from the MEC-
INFN exchange program (Italy-Spain) and the RTN
Flavianet under Contract No. MRTN-CT-2006-035482
(EU). J. S. acknowledge financial support from the
FPA2007-60275/ and FPA2007-66665-C02-01/ MEC
Grants, from the CPAN CSD2007-00042 Consolider-
Ingenio 2010 program (Spain), and the 2005SGR00564
CIRIT Grant (Catalonia). The work of X.G. T. was sup-
ported in part by the U.S. Department of Energy, Division
of High Energy Physics, under Contract No. DE-AC02-
06CH11357. The research of N. B. and A.V. was partially
supported by the DFG cluster of excellence ‘‘Origin and
Structure of the Universe’’ [39]..

APPENDIX A: RELATION BETWEEN c0 AND ~a3;s

Writing the expansion of the singlet potential (for � ¼
1=r) as

Vs ¼ �sð1=rÞ
r

X1
n¼0

VðnÞ
s �n

s ð1=rÞ; (A1)

we have

Vð3Þ
s ¼ � 4

3�3

�
c0 þ 2�Ec1 þ

�
4�2

E þ �2

3

�
c2

þ ð8�3
E þ 2�2�E þ 16�ð3ÞÞc3

�
; (A2)

where for nf ¼ 0

c1 ¼ 290:769; c2 ¼ 1639

16
; c3 ¼ 1331

64
: (A3)

Finally, the relation between ~a3;s and Vð3Þ
s is

� CF

~a3;s
ð4�Þ3 ¼ Vð3Þ

s : (A4)
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