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We investigate the spectroscopy and decays of the charm-strange quarkonium system in a potential

model consisting of a relativistic kinetic energy term, a linear confining term including its scalar and

vector relativistic corrections, and the complete perturbative one-loop quantum chromodynamic short

distance potential. The unperturbed wave functions of the various states are obtained using a variational

technique. These are then used in a perturbative treatment of the potential to fit the mass spectrum of the

c�s system and calculate the radiative decay widths. Our results compare well with the available data for

the spectrum of Ds states. We include a discussion of the effect of mixing and investigation of the Lorentz

nature of the confining potential.
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I. INTRODUCTION

Recently we reported on a study of the charmonium and
upsilon systems in a semirelativistic model which includes
all v2=c2 and one-loop QCD corrections for the interaction
of a quark and antiquark of equal mass [1]. This semi-
relativistic potential model successfully describes the spec-
tra and leptonic and radiative decays of those systems. We
have now extended this modeling approach to systems in
which the quark and antiquark have different masses.

Interest in the modeling of light-heavy quarkonia is over
25 years old [2]. A variety of modeling approaches have
been employed with varying success [3–8]. Renewed and
continuing interest in the modeling of c�s quarkonia is
fueled by, in particular, the recent discovery of the 23S1
state [9] as well as ongoing efforts to determine the masses
and decays of the Ds mesons [10].

We have revised and extended the approach of our ear-
lier papers in order to investigate the spectroscopy and
decays of the Ds system, as well as to discuss other ques-
tions of modeling interest. In addition, we investigate the
scalar/vector mixture of the phenomenological confining
potential.

In the next section, we describe the potential model in
some detail. This is followed, in Sec. III, by an outline of
our calculational approach. In Sec. IV, we present our
results for the Ds system, and then give some conclusions
in Sec. V. The conventions we use for our treatment of the
mixing of the J ¼ 1 p states are given in the Appendix.

II. SEMIRELATIVISTIC MODEL

In our analysis, we use a semirelativistic Hamiltonian of
the general form

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2
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where m1 and m2 are the quark masses, � is the renormal-
ization scale, nf is the effective number of light quark

flavors, and �E is Euler’s constant. VL contains the v2=c2

corrections to the linear confining potential
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where A is the linear coupling strength. The terms in
Eq. (3) with coefficient (1� fV) are the contributions
from scalar exchange and those with a coefficient fV are
the contributions from vector exchange. Here, fV repre-
sents the fraction of vector exchange in the interaction. The
short distance potential is [2]

VS ¼ VHF þ VLS þ VT þ VSI þ VMIX; (4)

with

*sradford@brockport.edu
†repko@pa.msu.edu
‡mike.saelim@gmail.com

PHYSICAL REVIEW D 80, 034012 (2009)

1550-7998=2009=80(3)=034012(5) 034012-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.034012


VHF ¼ 32��S
~S1 � ~S2

9m1m2

��
1� 19�S

6�

�
�ð ~rÞ � �S

8�

�
8
m1 �m2

m1 þm2

þm1 þm2

m1 �m2

ln
m2

m1

�
�ð ~rÞ � �S

24�2
ð33� 2nfÞr2

�
ln�rþ�E

r

�

þ 21�S

16�2
r2

�
lnðm1m2Þ1=2rþ�E

r

��
; (5a)
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We have chosen H0 such that it contains the relativistic
kinetic energy and the leading order spin-independent
portions of the long-range confining potential and the
one-loop QCD short-range potential. It is important to
recall that the potential given by Eq. (4) does not reduce
to the potential in Ref. [1], due to the presence of annihi-
lation terms in the equal-mass quark-antiquark potential. It
should also be noted that in calculating the matrix elements
of the �ð~rÞ terms in Eqs. (5a) and (5d), we ‘‘soften’’ their
singularity by adopting the quasistatic approximation of
Ref. [4], which leads to the replacement

�ð ~rÞ ! !2

�r
e�2!r; (6)

where !2 ¼ 2m2
1m

2
2=ðm2

1 þm2
2Þ. This softening helps the

stability of the eigenvalue calculation.

III. CALCULATIONAL APPROACH

The c �s mass spectrum and corresponding wave func-
tions are obtained using the variational approach described
in Ref. [1]. In this approach, we expand the wave functions
as

c m
j‘sð ~rÞ ¼

Xn
k¼0

Ck

�
r

R

�
kþ‘

e�r=RYm
j‘sð�Þ; (7)

whereYm
j‘sð�Þ denotes the orbital-spin wave function for a

specific total angular momentum j, orbital angular mo-
mentum ‘, and total spin s. The Ck’s are determined by
minimizing

E ¼ hc jHjc i
hc jc i (8)

with respect to variations in these coefficients. This proce-

dure results in a linear eigenvalue equation for the Ck’s and
the energies, and is equivalent to solving the Schrödinger
equation. The wave functions corresponding to different
eigenvalues are orthogonal and the kth eigenvalue �k is an
approximation to the true eigenvalue Ek. For n ¼ 14, the
lowest four eigenvalues for any ‘ are stable to one part in
106. We performed a perturbative calculation, using H0 as
the unperturbed Hamiltonian and all other terms treated as
first-order perturbations.
An optimal set of the parameters � ¼ ð�1; �2; . . . ; �nÞ

was found by minimizing the �2 function

�2 ¼ XN
i¼1

ðOexpi �Othð�ÞiÞ2
�2

i

; (9)

where the Oi denote the experimental and theoretical
values of some quarkonium observable and the �i are the
associated errors. In this work, theOexpi consist of a subset

of the measured Ds masses. For the masses, the �i are
taken to be the actual experimental error and a common
intrinsic theoretical error added in quadrature. The latter
error reflects the theory uncertainty associated with omit-
ting corrections beyond one loop and is estimated by
requiring the �2=degree of freedom to be approximately
unity. Typically, this error is a few MeV. The minimization
of �2 with respect to variations of the parameters � is
accomplished using the search program STEPIT [11].
In QCD the values of �S and quark masses at different

energy scales are related through the renormalization
group (RG) equations, and depend not only on the scale
but also on the renormalization scheme employed. We note
that we use the Gupta-Radford scheme [12], which is
particularly well suited for potential calculations. In
Ref. [1] we obtained �S and mC at �c �c ¼ 2:60 GeV as
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0.334 and 1.51 GeV, respectively. The values of �S andmC

in this paper were kept consistent with the results of RG
running these parameters by using a two-step procedure.
First, we allowed STEPIT to find best fit values for A,mS,�,
and fV while requiring �Sð�Þ andmCð�Þ, to run according
to the RG relations. We then relaxed these requirements by
refitting the spectrum with �S and mC as parameters con-
strained by introducing a Gaussian prior in the �2 function
for each one, centered on the RG-preferred values. The
final value for mC is about 5% high compared to the RG-
preferred value. However, the fitted value of �S is about
17% low, although consistent with the direction of the RG
running.

For the case of the long-range coupling coefficient, A,
the fit was constrained with a Gaussian prior centered at
0:155 GeV2. This value was used assuming a slight scale
dependence following the trend found in Ref. [1]: Aðb �bÞ ¼
0:177 GeV2; Aðc �cÞ ¼ 0:166 GeV2. The lower value of A
found here was strongly preferred by the fitting routine.

In this perturbative treatment, as in the equal-mass case
[1], the value of fV , the long-range scalar/vector mixing
parameter, is fV ¼ 0. We could set this mixing equal to
zero at the outset and the quality of the fix to the spectrum
would not be affected in any substantial way.

IV. RESULTS

We summarize our results in the following tables. The
parameters resulting from our fit are given in Table I. The
results for our determination of the Ds levels are shown in
Table II [13]. Overall our fit to the spectrum is quite good.

As is usual in potential model treatments [5,7,14–16],
the radiative widths were calculated in the dipole approxi-
mation. We obtained the E1 matrix elements by using the
variational radial wave functions to construct initial and
final state wave functions with the appropriate angular
dependence and explicitly performing the angular integra-
tion. Our results are

�fi ¼ 4�

9

�
q1m2 � q2m1

m1 þm2

�
2
!3jhfjrjiij2 Ef

Mi

�

8>>>>>><
>>>>>>:

1 for 3PJ ! 3S1;

1 for 1P1 ! 1S0;

ð2J þ 1Þ=3 for 3S1 ! 3PJ;

3 for 1S0 ! 1P1;

(10)

for E1 transitions. Here, ! is the photon energy, q1 and q2
are the quark charges in units of the proton charge,Ef is the

energy of the final quarkonium state, Mi is the mass of the
initial quarkonium state, and m1 and m2 are the quark
masses.
We also take into account the mixing between the 1P1

and 3P1 eigenstates of the c�s Hamiltonian due to the ~L �
ð ~S1 � ~S2Þ terms in Eqs. (3) and (5e) of the perturbative
potential. This mixing yields the two J ¼ 1 states Ds1 and
D0

s1. They are, explicitly,

jDs1ð2460Þi ¼ sinð	Þj3P1i þ cosð	Þj1P1i; (11a)

jD0
s1ð2536Þi ¼ cosð	Þj3P1i � sinð	Þj1P1i; (11b)

where

tanð	Þ ¼ � V31

Eþ � Eð1P1Þ
; (12)

with V31 denoting the expectation value of the mixing
terms and Eþ denoting the larger of the two eigenvalues
of the mixing matrix. Note that, because of the 1=m2

2

behavior of these terms, the mixing is quite sensitive to
the strange quark mass. The conventions used in parame-
trizing the mixing are given in the Appendix.
For M1 transitions, a parallel calculation, using the fact

that the singlet and triplet s states have the same wave
functions in the perturbative treatment, yields

�fi ¼ 4�

3
!3

�
q1
2m1

� q2
2m2

�
2 Ef

Mi

(13)

for the D�
s ! Ds þ �. In the case of the p-state magnetic

transitions Ds1 ! Ds0 þ � and D0
s1 ! Ds0 þ �, both the

singlet and triplet states of the mixtures in Eq. (11) con-
tribute to the widths. If we use the perturbative wave
functions, then the relative phase of the triplet contribution
with respect to the singlet contribution is �=2. The widths
in this case are

TABLE II. Results for the Ds spectrum are shown. The fit uses
all the indicated states of the Ds system except for the n ¼ 2
Dsð2503Þ.
mc �s (MeV) Model Experiment

Ds 1968.8 1968:49� 0:34
D�

s 2111.8 2112:3� 0:5
Ds0ð2317Þ 2317.1 2317:8� 0:6
Ds1ð2460Þ 2460.8 2459:6� 0:6
D0

s1ð2536Þ 2534.4 2535:35� 0:34
Ds2ð2573Þ 2574.8 2572:6� 0:9
Dsð2503Þ 2503.7

D�
sð2690Þ 2654.8 2690:� 7

TABLE I. Fitted parameters for the c�s system.

A (GeV2) 0.123

�S 0.384

mc (GeV) 1.72

mS (GeV) 0.406

� (GeV) 1.43

fV 0.00
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The resulting radiative widths are shown in Table III.

V. CONCLUSIONS

We have shown that a potential model consisting of the
relativistic kinetic energy, a linear long-range confining
potential together with its v2=c2 relativistic corrections,
and the full v2=c2 plus one-loop QCD corrected short
distance potential is capable of providing extremely good
fits to the spectra of the Ds states by treating them as states
of the c �s system. We find that in this perturbative treatment
the long-range potential must be entirely due to scalar
exchange.

The single photon widths can be obtained from the
variational wave functions, but, apart from some branching
ratio measurements, there are relatively little data avail-
able. Our theoretical results are compared with those given
in Refs. [5,7] in Table III. With respect to Ref. [7], the
difference in the calculated widths might be attributable to
the larger value of ms (480 MeV) used by these authors. In
Ref. [5], the strange quark mass is taken to be ms ¼
419 Mev, which is comparable to our value given in
Table I. The differences in the E1 widths must, therefore,
be attributable to differences in the dipole matrix elements
and/or the choice of the mixing angle. For the most part,
these differences can be reconciled by using our values of
the dipole matrix elements, h1Sjrj1Pi ¼ 2:72 GeV�1 and
h1Pjrj2Si ¼ 3:04 GeV�1, together with those given in
Ref. [5] to rescale our radiative widths. Keeping in mind

that our mixing angles differ, the resulting rescaled widths
are quite comparable to those in Ref. [5]. In every case,
efforts to model these states will be greatly improved by
the availability of additional data.
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APPENDIX: DETAILS OF MIXING

The mixing of the 3P1 and 1P1 states is obtained by
diagonalizing the 2� 2 matrix

E3 V31

V31 E1

� �
; (A1)

where E3 is the
3P1 energy, E1 is the

1P1 energy, and V31 is
the mixing matrix element. In perturbation theory, this is
relatively simple since all of these matrix elements can be
calculated using the unperturbed wave functions that are
all the same. The energy eigenvalues are

E� ¼ 1
2ðE3 þ E1Þ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE3 � E1Þ2 þ 4V2

31

q
; (A2)

TABLE III. The radiative decays of the Ds mesons are shown. These widths are computed
using the mass values obtained directly from our calculation. This includes the n ¼ 2 pseudo-
scalar and vector states, the latter of which has recently been observed with a higher mass [13].
The widths are from [13]. Included in the table are the results from Refs. [5,7] for comparison.

�� (keV) Model Ref. [5] Ref. [7] Experiment

D�
s ! Ds 1.12 0.43 <1:9� 103

Ds0ð2317Þ ! D�
s 3.37 1.9 1.74

Ds1ð2460Þ ! Ds 8.3 6.2 5.08 BR ¼ 0:18� 0:04
Ds1ð2460Þ ! D�

s 11.0 5.5 4.66 BR< 0:08
Ds1ð2460Þ ! Ds0ð2317Þ 4.70 2.74

D0
s1ð2536Þ ! Ds 37.7 15.0

D0
s1ð2536Þ ! D�

s 5.74 5.6 Possibly seen

D0
s1ð2536Þ ! Ds0ð2317Þ 5.62

Ds2ð2575Þ ! D�
s 30.5 19.0

D�
sð2655Þ ! Ds0ð2317Þ 5.64 3.4

D�
sð2655Þ ! Ds1ð2460Þ 2.66 2.3

D�
sð2655Þ ! D0

s1ð2536Þ 0.26 0.5

D�
sð2655Þ ! Ds2ð2573Þ 0.48 1.5

Dsð2503Þ ! Ds1ð2460Þ 0.04
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and we fit the D0
s1ð2536Þ and Ds1ð2460Þ to Eþ and E�.

Note that as V31 ! 0, Eþ ! E3, and E� ! E1. To define
the mixing angles in terms of known parameters, we as-
sume that the eigenvector cþ corresponding to Eþ be-
haves as

cþ !V31!0 1
0

� �
: (A3)

With this assumption, cþ is

cþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþ � E1Þ2 þ V2

31

q Eþ � E1

V31

� �
: (A4)

By writing cþ as

cþ ¼ cosð	Þ
� sinð	Þ

� �
; (A5)

with

tanð	Þ ¼ � V31

Eþ � E1

; (A6)

we arrive at the decomposition Eq. (11). It is possible to
obtain an estimate of the mixing angle by using the branch-
ing ratios of theDs1ð2460Þ ! Ds� andDs1ð2460Þ ! D�

s�,
whose ratio gives

�ðDs1ð2460Þ ! D�
s�Þ!3

�ðDs1ð2460Þ ! Ds�Þ!�3 ¼ tan2ð	Þ; (A7)

where ! is the momentum of the photon in the Ds tran-
sition and !� is the corresponding photon momentum in
the D�

s transition. Using the published branching ratio
information, with favorable assumptions, the data are con-
sistent with 	 ¼ �50�. Our calculation gives 	 ¼ 60:7�.

[1] S. F. Radford and W.W. Repko, Phys. Rev. D 75, 074031
(2007).

[2] S. N. Gupta, S. F. Radford, and W.W. Repko, Phys. Rev. D
28, 1716 (1983).

[3] S. Godfrey and R. Kokoski, Phys. Rev. D 43, 1679 (1991).
[4] S. N. Gupta and J.M. Johnson, Phys. Rev. D 51, 168

(1995).
[5] S. Godfrey, Phys. Lett. B 568, 254 (2003).
[6] R. N. Cahn and J. D. Jackson, Phys. Rev. D 68, 037502

(2003).
[7] W.A. Bardeen, E. J. Eichten, and C. T. Hill, Phys. Rev. D

68, 054024 (2003).
[8] O. Lakhina and E. S. Swanson, Phys. Lett. B 650, 159

(2007).
[9] B. Aubert et al., Phys. Rev. Lett. 97, 222001 (2006); J.

Brodzicka et al., Phys. Rev. Lett. 100, 092001 (2008).
[10] T. Aaltonen et al., Phys. Rev. Lett. 100, 082001 (2008);

V.M. Abazov et al., Phys. Rev. Lett. 100, 082002 (2008);
S. Chekanov et al. (Zeus Collaboration), Eur. Phys. J. C
60, 25 (2009).

[11] J. P. Chandler, Behavioral Science 14, 81 (1969). This
code is available on the Web.

[12] S. N. Gupta and S. F. Radford, Phys. Rev. D 25, 2690
(1982).

[13] Unless otherwise noted, all data used follow C. Amsler
et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008),
http://pdg.lbl.gov.

[14] S. N. Gupta, S. F. Radford, and W.W. Repko, Phys. Rev. D
34, 201 (1986).

[15] E. J. Eichten, K. Lane, and C. Quigg, Phys. Rev. D 73,
014014 (2006); 73, 079903(E) (2006).

[16] T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D 72,
054026 (2005).

POTENTIAL MODEL CALCULATIONS AND PREDICTIONS . . . PHYSICAL REVIEW D 80, 034012 (2009)

034012-5


